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FREE BOUNDARY PROBLEM IN FLUID DYNAMICS 

by A. FRIEDMAN (Northwestern University) 

PART I: ONE FLUID PROBLEMS. 

Let N be a C curve x = g(y) (b£y<°°) with b>0, g(b) = 0 and 

lim g(y) = -00. Consider the 2-dimensional symmetric je t problem: Find a function 
y -* 00 
u and a curve T in {0 < y£b} satisfying 

(1.1) NUT i s a continuous curve, such that with G denoting the domain bounded 

by N U T and the x-axis IQ , the following properties hold: 

(1.2) 0 < u < l in G , 

(1.3) Au = 0 in G , 

(1.4) u = 0 on IQ , 

(1.5) u = 1 on NU T , 

(1.6) | ^ = A on NU T ; 

finally, T i s required to be smooth, say in C1+<̂  , and 

(1.7) NUT is a C1 curve in (A) , u is in C^GflB^A)) 

for some 6>0 , where A = (0,b) and B^(X) denotes the disc of radius r and 

center X. The parameter X i s to be determined together with u,F. 

This problem was solved by Leray [213, Serrin [223 and others; see [113 [203 

and the references given there. The methods used by most authors are based on 
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reducing the problem by means of the hodograph variables to a nonlinear integral 

equation, and then solving the equation with the aid of the Leray-Schauder fixed 

point theorem. There are however some other methods, based on variational 

principles; see Garabedian and Spencer C18D and Garabedian, Lewy and Schiffer [173. 

A new variational approach was introduced by Alt, Caffarelli and Friedman 

(ACF) C23; i t exploits the paper of Alt and Caffarelli [13 who studied the 

following variational problem. Let 

d.7) j(V) = j J l V v l 2 + ^ ( x ) I { v > o } ) d x 

and let 

v € H ' (ft) , v = u on a part S of 8ft 

where Q is a given positive C01 function in ft , ficRn and u°>_0. Consider 

the problem of finding u € K such that 

J(u) = min J(v) 
v £K 

It is proved in [13 that any minimizer u is Lipschitz continuous, and the free 

boundary T = 9{u>0} is smooth if n = 2 (analytic if Q is analytic). 

Further 

uj>c (c > 0) if x £T (non-degeneracy) 
B (x°) r 

Theorem 1.1 [23. There exists a unique solution of problem (1.1)-(1.7). 

Uniqueness is well known [193 and is based on a comparison argument. To prove 

existence, set 

Ix = {(x,b); x>0} 

and denote by ft the domain bounded by Nijlj and IQ. For any y>0 , set 

ft t = ft n {x>-p} , 

321 
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= |v€H1,2(^) ; v = 0 on IQ, v = 1 on NUI^ v = h^(y) on x = -y 

where n^(y) is increasing, np(°) = °, hy = ^ at N n ^x " ' 

Consider the truncated functional 

(1'8) JX,P(V) - L I V V " Xl{v<l}nEe!2dxdy 

where e = ( 0 , 1 ) , E = { (x,y) ; - °°<x < 00, 0 < y < b} . If X > 1/b then we can 

construct a VQ in with 

VQ = min{Xy,l} if x> 1 

For such , J, (vrt) <00. Consequently, there exists a minimizer u, of 0 A,y 0 A,u 

v J\ ,.(v) ' v€K1( * 

Lemma 1 .2 . The minimizer is unique. 

Indeed, suppose u^, u^ are two minimizers and introduce 

u1 (x,y) =u1(x-e ,y) and 

Vl " U1AU2 ' V2 = U1VU2 • 

Denote by J the functional J = J, corresponding to the translation 

x x.+ £ of , K . One verifies that y y 

J£(u^) +J(u2) = je(Vl) + J(v2) , 

which implies that J(U2^ = J^V2^ ' i«e- ' ulv U2 is a niinimizer. Consequently 
£ £ £ û  v is smooth, which implies that either u^^u^ or —U2 everywhere. 

£ £ Since Uj < near the boundary, we deduce that û  < throughout the domain. 

Taking £ •> 0 we get u ^ u ^ , and similarly u^<_u^. 

Taking u^ = in the above argument we get: 

(1 .9) f u. > 0 . 8x X,y — 
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Thus the analytic free boundary r = T, has the form 
A,y 

(1-10) FX,y : x=fX,u(y) * 

Next we have: 

Lemma 1 . 3 . f, (y) is continuous and finite if and only if h < y < b , where 
A , (J 

h = 1/X. 

Lemma 1 .4 . X -> f, (b) continuous. 
A ,y 

Using the Lipschitz continuity estimate on u, and non-degeneracy, we 
A ,y 

establish: 

Lemma 1 .5 . J/ X ¿3 sufficiently large then f, (b) < 0 ; if X > 1/b and X - 1/b 
A,y 

is small enough, then f̂  (b) >0. 
A,y 

From Lemmas 1 .4 , 1.5 we deduce that there is a value X = X(y) such that 
f, (b) = 0 , i . e . , there is a "continuous fi t" at A. For this value of X , A ,\i 
(u, , T, ) "almost" solve the jet problem. In order to complete the A,y A,y 
construction of a solution we le t y 00 , X(y) X and denote the limiting 

uA , by u,T. Then ( 1 . 1 ) - ( 1 . 6 ) are satisfied. Finally: A,y A,y 

Lemma 1 .6 . Continuous fit implies "smooth fit"* i.e., it implies ( 1 . 7 ) . 

The above outline of the proof of Theorem 1.1 is a special case of ACF C2D 

who actually considered the corresponding 3-dimensional axially symmetric je t 

problem, whereby one replaces 

Au by Cu = Au - — u , 
y y 

and 

9u , 1 9u , -r— = A by — -r— = A 

For this problem the classical methods do not apply. 

The variational approach of ACF L2l has been extended to more difficult je t 
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problems. We shall mention a few. In ACF C3D the plane asymmetric jet problem is 

considered, whereby the nozzle N is made up of two curves and N2 , given 

by y = gi(x) (-°°<x<_0) and g1(x)>g2(x). Setting Â  = (0,gi(0)) , one 

seeks two curves V„ , I\ of the form I\ : y = f. (x) (0<x<°°) with 1 2 1 1 ~ 

f (x) >f^(x) , such that, 

f±(0) = g±(0) , 

and, with G denoting the domain bounded by UT̂  , N2 (J Y^ , 

-1 < u< 1 , Au = 0 in G , 

u = 1 on , u = -1 on T2 , 

Эи = X on Tx U T2 , 

lim f»(x) = lim VU) , 
x-*°° x + °° 

and both limits exist, and, finally, there is smooth f i t at Â  and A^. 

In this problem both A and the direction of the jet at x = 00 are not 

given, and are to be found together with u, T ,̂ I^. 

One works with the truncated functional 

.0 lVv-Xl{|v|<l}nEeÌ|2dxd* 

where E = {x>0} , e is unspecified unit vector (e^,e2) with ê  > 0 , and e 

is obtained by rotating e counterclockwise by T T / 2 . 

Notice that the present situation is a 2-parameter problem, with parameters 

X,e ; these must be chosen so as to achieve continuous (and smooth) f i t at Â  and 

A2. For details see ACF 131. 

In ACF C4D a jet in a gravity field is considered. Here, roughly speaking. 
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Эи 
8v : 

on the free boundary, which means that we replace X by X"\/|y| in the variational 

functional. An interesting "threshold" phenomenon occurs: If a<^120° then there 

exists a QQ > 0 such that a solution exists if and only if the flux Q is > QQ 

(for ot> 120° there exists a solution for any Q>0 ) ; see Figure 1. 

x Vyi 

u = 

y axis 
u = Q 

n 

1 

7^ 

r 

u = Q , 3u 
> 

Figure 1 

We turn to the axially symmetric cavity problem past a nose N : x = g(y) 

(0£y<.l) , with g(y) <0 , g(0) = -a. Set l_ = {(x,0), x£ -a} . We seek a curve 

T initiating at (0,b) and lying in {x>0, y>.b} such that, if G is the 

domain bounded by NUT and I_ , then: 

Lu = 0 , u > 0 in G , 

u = 0 on 3G , 
(1.11) 

1 3u , r — ' = 1 on r y dV 
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y- -* (o , l ) if x2+y2+«>, (x,y)€G 

and there is smooth f i t at (0 ,b ) . 

This problem was solved by Caffarelli and Friedman [123 (see also [143 and 

[ 9 3 ) . One f i r s t considers a truncated problem, such as the one obtained by looking 

at the same problem in a channel of width 2H , setting u = Qy / 2 on the 

boundary of the channel. Then, with a suitable Q = Q(H) one can achieve a 

solution with smooth f i t . Finally one takes H 00 and shows that Q(H) -»• 1. 

This fact is used in order to prove the last condition in ( 1 .11 ) for the limiting 

(u ,D . In this manner we obtain a solution of (1 .11) with smooth f i t at (0,b) ; 

further, for large x , T has the form 

T : y = f (x) with f' (x) + 0 if x 00 . 

The above results have recently been extended in ACF [93 to compressible 

flows; the corresponding quasi-linear functional was studied in ACF [ 8 3 . 

We finally mention that axially symmetric cavities for rotational flow in a 

channel were studied by Friedman [ 153 , and irrotational flow in a channel with 

oscillatory wall was studied by Friedman and Vogel [ 163 . 

PART I I : TWO FLUID PROBLEMS. 

Let N1 : y = H , IQ the x-axis, and N2 : y = g(x) (-<»<x<.0) with 

0<g(x) <H , and set A = ( 0 , g ( 0 ) ) . Consider the following problem: Find a 

curve T , 

(2 .1 ) T : y = f(x) (0£x<«>) , f(0) = g(0) , f continuous, 0<f(x)<H , 

and a function u , u = û  in the domain ft^ bounded by and ^(jT , 

u = u2 in the domain ^2 bounded by IQ and N^T , such that the following 

is true: 
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ux = Q on Nx 

ux = u2 = 0 on N2 U r , 

|u2 = -1 on IQ , 

0 < u1 < Q in fì1 , 

-1 < u2 < 0 in fì2 , 

Au. = 0 in fì. î î 

further, 

(2.3) Vu i s bounded in (A) , U T has tangent at A 

for some ô > 0 , and 

(2.4) |VuJ2 - I Vu2 J2 = X on T . 

Here X is a constant which must be found together with u and T. 

The jump relation (2.4) is the new feature of this problem. In ACF ZSl the 

functional 

J(v) = j | |Vv |2 + Q2(x)X2(v)|dx 

was introduced with 

X2(v) 
|X2 if v<0 

|X2 if v>0 

and X̂  - X2 =|= 0 , with the idea of applying i t to study 2-fluid problems, such as 

(2.1)-(2.4). It was proved that any minimizer is Lipschitz continuous, a non-

degeneracy property holds, and the free boundary is in in case n = 2. These 

results are used in order to establish: 
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Theorem 2.1 (ACF C63). There exists a unique solution of the problem (2.1)-(2.4), 

and Y is in C1. 

To prove the theorem we introduce a truncated functional 

JX,U(V) - J |W " ( V { v < 0 } + Xl I{v>0} + X0 1{v = 0})1{x>0}e!2dxdy 
V 

where e = (0,1) , fl = {-y<x<°° , 0<y<H> , 

X2 = F ' Xl = 5^h ' X = X2"Xi ' X0 = ^ " ' W 

and introduce the admissible set 

= |v€H1 '2 (^ )? v = -1 on IQ, v = 0 on N1# -l£v_<0 below N2, 

0<^v<_Q above N # v = h(y) on x = -y 

with h(y) suitable monotone increasing function. The problem 

v min J, (v) , v E K A,y ]J 

has a unique solution u with Uy>.0 (cf. Lemma 1.2). Thus the free boundary is 

a curve 

vx,v -y = *x.^ • 

Notice that h is the asymptotic height of the free boundary at x = 00. 

We now le t h vary and show that for some value of h , say h = h(y) , 

f, (0) = b , that i s , there is a continuous f i t at A. We finally le t u °° in 

order to complete the existence proof; for more details see ACF C6D. 

In principle, a l l the steps in the proof of Theorem 2.1 have their counter

parts in the proof of Theorem 1.1, but they require a more refined analysis. 

A significantly harder problem occurs when the upper fluid is not everywhere 

confined by {y = H> , that i s , ^ consists of {y = H, x£0} and one seeks, in 

addition to Y , another free boundary Y^ ini t iat ing at (0,H) such that 
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3v 

This is a 2-parameter problem (with parameters X, X ) and they must be chosen in 

such a way as to achieve a continuous fit at both A and (0,H). 

This problem was solved in ACF Lll. The proof involves quantitative estimates 

on the location of the free boundaries V and , depending on the relations 

between X and X. Some of these estimates are derived by comparison arguments; 

the flows used in the comparison are constructed by solving one-fluid jet problems. 

Some of the techniques developed for 2-fluid jet problems can be applied to 

other 2-fluid problems. We briefly mention the 2-fluid dam problem (see Figure 2). 

= X on 

liquid 1 

liquid 

x 

W2 

F2 

f 

liquid 1 

liquid 2 

Fiaure 2 

Denote by (j>̂  = p + 6^y the piezometric head of the i - th fluid and assume that 

<̂ 2><̂ 1* We introduce the stream function (that is, 4> - iij> is holomorphic) . 

Then in terms of the problem reduces to 

Ai|; = -r— HO/0 in the dam, dx 
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where 

(O if t < 0 , 

H(t) = (-<52 + 61 if 0< t<Qx , 

|-62 if t>Ql ; 

here i)̂ 2 = -Q2 at the bottom of the dam, and = at the top. On the top 

free boundary T 
u, 1 

3*1 r 3x * " Ql and m 61 9V ' 

and on the intermediate free boundary T 0 : 

*i = 0 ' I S - " ~¥7 = ' W i J • 

i|; also satisfies suitable Dirichlet and Neumann conditions. 

Theorem 2.2 (ACF ClOD). There exists a solution (ty, TQ ^, 2) of the 2-fluid 

dam problem with T , T analytic and c1 respectively > and 
U, 1 1/2 

ro,i = y = fi<x» - ri,2 = y = f2<x> 

where fi(x) are Lipschitz continuous and strictly monotone decreasing functions. 

Partial results are obtained in ACF C103 for general 2-dimensional dams. 
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