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ON THE SPHERICITY OF LIQUID DROPLETS 
by I . TAMANINI (Università Trento) 

Several results concerning the shape of liquid drops, s i t t ing on a table and 

making a constant contact angle with i t , have recently been obtained by R. Finn 

- see the bibliography in L2l. In L2l in particular, a rigorous proof is provided 

for the (on physical grounds) intuitive fact, that the free surface of a droplet 

is asymptotically spherical as the volume tends to zero. 

Finn's proof uses the symmetry of the equilibrium configurations in a sub

stantial way. Indeed, once that property is assumed (or perhaps proved, see 

Section 1 below) one readily observes that the profile of the drop is described by 

a solution curve of the differential equation 

(r sinili ) = k r u (il; = arctanu1) u r ru 

with the appropriate boundary conditions. 

By estimating the characteristic parameters of the solution in terms of the 

enclosed volume, one is eventually led to the convergence of the meridional 

curvature of the solution curve to a (relative to drop's size) constant value, in 

a certain uniform way which is discussed in C2] . This obviously implies the 

convergence of the drops to the spherical shape, as the volume tends to zero. 

What we want to point out with the present note is that a similar result can 

be obtained, even without the need of assuming the symmetry of the solutions: this 

enables us to consider liquid drops si t t ing on curved surfaces, and making a 

continuous (not necessarily constant) contact angle with the supporting surfaces. 

The method we use is based on abstract convergence results of almost minimal 
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boundaries, in a form which appears e.g. in L6l. Roughly speaking, we consider a 

sequence of drops with decreasing volume, a l l s i t t ing on a given smooth hyper-

surface. By means of an obvious transformation, a new sequence of similar 

solutions is produced, a l l with the same volume, now si t t ing however on different 

surfaces, which become flat ter and flat ter under the transformation. In the limit, 

the new solutions are shown to approach a spherical cap, with convergence of both 

the free surfaces and their normals. Details will appear in a subsequent paper. 

In the following, with the purpose of giving the basic ideas of the method, 

while keeping the technical part of the argument at a minimum, we will res t r ic t 

ourselves to the simple case considered by Finn ( i . e . , drops on a plane surface, 

with gravity and constant contact angle): we proceed however as if we were 

considering the more general case, pointing out from time to time the precise role 

played (in this context) by the symmetry of the solutions. 

1. Let's consider f i rs t of a l l the "homogeneous case", when a drop of given 

volume v is at rest on the hyperplane S = {xn = 0}cnn , in the absence of 

gravity and with a constant contact angle y. As we shall see below, this is in a 

sense the limit case of a more general situation. 

The energy of such a simple system can be written in the following form: 

(*) F^(E) = area rE + a • area EE 

where E denotes the region in S+ = {x > 0} occupied by the liquid, Y i t s 
n £> free surface, E_ the contact surface, and a G 3R (see Figure 1). E 

I t is well known that the two areas in (*) can be given a precise meaning in 

the framework of the Theory of Perimeters, see e.g. C53. 

The (unique, up to translations) minimum of (*) in the class £v of 

admissible configurations: 

£ = {EcS+ : area r < + 00 ,meas E = v} v E 
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Figure 1 

i s , of course, a "spherical drop", that i s , the intersection of a suitable n - ball 

with S+. 

Let's spend some words on the proof of this "elementary" fact. Firstable, we 

observe that the really interesting case occurs when a E (-1,1) , since the 

solution is obviously an n - ball when a >. 1 , while no solution can exist when 

a_<-l. Secondly, given F££v > we use Schwarz symmetrization (see [33 and Figure 

2) to construct a new element F of Ev , with lower energy: 

V F * ) < V F ) • 

F * + 
B 

Figure 2 

~ S 
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Next, by considering (see Figure 2 again) B+ = B fl S+ , B an n - ball satisfying: 

meas B+ = v , area E . = area Z * = area E , we get B F F 

FA(B+) <FA(F*) , 

in view of the isoperimetric property of B. Finally, letting y £ CO,TT) denote 

the contact angle of B+ , and putting 

rTT-y 
s (y) = sinntdt , 

we find 

r 1/n (n-l)/n ) , . ..1/n . . . n-1 . . xx(l-n)/n F (B ) = a) • v • ( n(s (y) ) + (a - cosy) • sin y • (s (y) ) a n-1 ] n n 

The last expression is minimized exactly when y = arccos a , thus proving that the 

spherical drops with the right contact angle are the configurations of least 

energy. 

2. Now consider a sequence v̂  4- 0 , and a corresponding sequence of drops of 

volume v_. in a gravity field, i . e . a sequence ^Eĵ  °^ minimizers for the energy 

functional: 

(**) f o(E) = area r + a • area £ + P • x dx a,p E E JE -

(with a € ( - 1 , 1 3 and $>0 ), in the class £ . 
Vj 

The last integral in (**) corresponds to the gravitational energy. Without loss of 

generality, we may and shall assume that the centre of mass of the drops be located 

on the x -axis . Performing a similarity transformation, we get a new sequence n 
{G.} of minimizers of F N in £ , for some fixed v> 0 and with 

3 a,3j v 
B = (Vj/v)2/n4- 0. 

An elementary calculation shows that 

area TG <_ const. (independent of j) 
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and then clearly the area of each horizontal section of G_. is bounded from above, 

uniformly in j . As a consequence of the axial symmetry of the solutions (which 

follows again from Schwarz symmetrization), and of the assumption on their centre 

of mass, an uniform bound on the maximal radial extension of the Gj's is readily 

derived; the corresponding bound in the vertical direction being easy to obtain, 

we find in conclusion that each G_. is contained in a fixed compact set in 1RU. 

The -convergence of (a subsequence of) {G.} toward a certain element G of 

Ev is then assured by known compactness results. 

3. We now proceed to show that (i) G^ is a spherical cap, and (ii) the 

convergence G_. ->• G^ is a "good convergence". To do so, we begin by establishing 

the following semicontinuity result: 

(t) F (G ) = F A(G ) < liminf F Q (G.) . 

The derivation of (t) is almost immediate; see e.g. [ 5 3 , Proposition 1. We deduce 

from (t) that G is a minimizer of F in E , thus proving (i) above, in 

view of the preceding discussion. 

Next we prove that {T^ } is a sequence of uniformly almost minimal 

boundaries in S , in the sense that: 

(tt) area(Tr fl B ) <_area(T flB ) + const, r1 

for every j , every ball B^ of sufficiently small radius r compactly contained 

in S+ , and every variation G of Ĝ  in B^ (with a constant independent of 

j ) . This basic relation can be derived in a standard way, arguing as in C4], see 

also [ 1 3 . 

Once (tt) is established, we may appeal to a general result on the convergence 

of almost minimal boundaries, see in particular Theorem 1 of [ 6 3 , to conclude that 

the whole sequence "fGjJ converges toward the spherical drop G^ , with uniform 

convergence (on compact subsets of S+) of the free surfaces and of their 
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normals. This is to be intended in the following sense: for every e>0 an index 

j £ can be found, such that r G flS^cA^ns^ for every j > j £ , where 

S = {x >e} and A = e - neighbourhood of TC . Additionally, a radius r can 

be found, such that |v_.(z) - ^ (x ) | <£ for every j as above, every x6T G and 

every z € TR DB(x,r ) , where V.(z) and V (x) denote the outward unit normals 

to ? G and TG , at points z and x respectively. 

4. We remark that the convergence of the drops to the spherical shape, in the 

sense explained above, holds for every a£ (-1,13 , or equivalently for every 

contact angle y = arccosa 6 CO,TT) . Using the symmetry of the solutions, one can 

easily show that the convergence TG TQ is uniform on the entire half-space 

{xn_>0} ; see e.g. C53, Section 4 (particularly Theorem 4.5). 

I t is worth noticing however, that a nonuniformity appears in the rate of 

contraction of ZG toward EG , depending on whether a < 1 or a = 1 ; see L2l, j 00 
Theorem 4.5. 
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