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THE NORMAL VARIATIONS TECHNIQUE FOR STUDYING 

THE SHAPE OF CAPILLARY SURFACES 

by N. KOREVAAR (University of Kentucky) 

A capillary surface S is the (equilibrium) interface between two adjacent 

fluids that are also contacting rigid walls. In this paper we study the case for 

which S is the interface between two fluids in a vertical capillary tube, in the 

presence of a downward pointing gravitational field. S is the graph of a 

function u whose domain is the (arbitrary) horizontal cross section ft of the 

tube. Because is in equilibrium i t s mean curvature is proportional to i t s 

height above a fixed reference plane, and the contact angle between (the normals 

of) and the tube 3ft x H is physically prescribed. 

Specifically, for ftcnRn , u€C2(ft) 0 C1 (ft) is a classical solution to the 

capillary problem if (Figure 1): 

div Tu = Ku in ft 

Tu = 
vu 

/ l + |Vu|2 
K > 0 

(1) 

Tu • n = cosy on 3ft , 

0 < y < IT , n = exterior normal to 3ft . 

We often write H(x,u(x)) for div Tu. 

Geometrically H(x,u(x)) is n times 

the mean curvature of , at the point Figure 1: Configuration 

Su: (z-u(x)} 

(n.0j_ 

Tu, A+|Vu|2. 
-1 
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(x,u(x)). 

The equations (1) arise from the energy functional 

(2) E(f) = | [Vl + |Df|2 + | f2) - | uf / P = cosy . 

The aim of this note is to indicate a natural way of studying the steepness 

of S^. (Full details will appear elsewhere C4D) . I t is well understood how to 

estimate the height of by constructing comparison surfaces; studying the 

steepness i s the next logical step. (Actually, several impressive techniques for 

estimating |Vu| are known, developed because of the important role that a priori 

gradient bounds play in regularity theory. The methods involved are fairly 

technical, however, and obscure the geometric content of the problem). 

Intuitively, if a capillary surface is too steep i t won't minimize (2) and 

will seek to reduce i t s energy by perturbing i tself (perhaps as indicated by the 

shaded region in Figure 2). This 

intuition can be made rigorous: Perturb

ing a small (0(e)) amount along 

i t s (downward) normal produces a compar 

ison surface S whose mean curvature v 
can be estimated in terms of the or i 

ginal surface and the perturbation. 

If for appropriate perturbations and 

after raising an amount also 

0(e), one can conclude that the 

lifted S l ies above S (via a v u 
comparison principle), then one is 

in business: as e 0 this yields 

a bound on |Vu| (bottom of Figure 2). 

The formula relating the mean Figure 2: Intuition 
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curvatures of S and S can be u v 

derived in a straightforward way. Let 

f : ]Rn+1 •> IR be the perturbation 

function, V the downward normal to 

Su« Perturb (x,u(x)) €Su by the 

vector efv. For small £ there is 

the correspondence (Figure 3): 

(3) (x,v(x)) = (x,u(x)) +£fV(x,u(x)) . 

Using (3), the inverse function theorem 

(for 3x/3x ) and the chain rule one can Figure 3: Normal perturbations 

differentiate v. Using tangential 

coordinates yields 

(4) H(x,v(x)) 

= H(x,u(x)) -e(f||D2u||2 + ATf-fvH(x,u(x)) + 0(e2) 

D u = "tangential Hessian" = Hessian of the function parameterizing above 

i t s tangential plane 

ATf = "tangential Laplacian" = Af - f 

fv = Vf • v . 

Lifting Sv an amount 0(e) gives a surface which will be compared to 

via the well known: 

Comparison Principle (CP.) ; Let Ocfi y n = exteviov normal to 9©, u,w€C (0). 

Suppose 

(i) Vx€© s . t . w(x)<u(x), H(x,w(x)) < H(x,u(x)) 

(ii) Vx£30 s . t . w(x)£u(x), Yw £ Yu ( i .e . Tw • n >̂  Tu • n) . 

Then, in fact w(x) >. u(x) Vx£0 . 

(x,u(x» 

^ 
\efv 

fíí.v(x)) 
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The easiest gradient estimate is the a priori interior bound for the 

capillary problem: 

Theorem 1. Let u satisfy H(x,u(x)) = Ku in BR = {x € 3Rn |x| <R}, K> 0. Then 

3c = C(R,K) s . t . |Vu(x)I < C . 
R - | x | 

Proof. Pick f(x,z) = f(x) as indicated in Figure 4 and so that | f 1 ^ <_ 1 . 

Perturb S to S . From (4), 3 M s . t . u v 

(5) H(x,v(x)) <_ H(x,u(x) ) + £M . 

(We used the well-known height estimates 

that imply u is bounded in BR so that 

Ku is too). Writing w(x) = v(x) + 

+ £(1 + (M/K)) one verifies that 

H(x,w(x) ) <_ Kw(x) , from which condition 

(i) of CP. follows. Condition (ii) is 

true t r iv ia l ly . Hence w >̂ u in BR : 

w(x) >_ u(x) 

Figure 4: Interior gradient 
bound in gravity 

u(x) - ef 

' l+ |Vu|2 
+ e 1 + M > u(x) + efVu • Vu 

1+ |Vu|2 
+ 0(e2) 

1 + M 
K 

> f |Vu|2 

1+ |Vu|2 

q.e.d. 

For the general prescribed mean curvature equation Cl, 2, 6, 91 f(x,z) must be 

chosen more carefully. After l ift ing Sv a large enough 0(e) to get , the 

only places where (i) must be checked are where |Vu| is large. Hence the tangent 

plane is almost vertical. By introducing exponential growth in f(x,z) in the z 

direction (and making other modifications too) one can make and hence ATf 

large enough to dominate the other terms that arise in comparing H(x,w(x)) to 

H(x,u(x)) . 

r 

_ü.-fifíiii_ 
v 

x 
•"ST* 
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To estimate |Vu| near 3ft f must be non-zero there. Hence Sv may not 

l ie above ft (Figure 5). The fact that 

Tu • n is prescribed, however, forces 

Sv to l ie (within 0 ( e ) of being) 

above ft£ , the domain whose boundary 

3ft£ is gotten by perturbing 3ft an 

amount efcosy along n. Hence by 

following the normal perturbation with a 

change of x-coordinates one can return 

S to S~ , a surface above ft. If one v v 

chooses f and the return transformation carefully the contact angle condition 

(ii) of CP. can be controlled. In order to keep H(x,v(x)) <_H(x,u(x)) + eM for 

condition ( i ) , the return transformation must be chosen carefully (Figure 6). (For 

global estimates f is never zero and one 

can just shove everything back along n ) . 

One gets: 

Figure 5: Normal perturbations 
near 3ft 

Theorem 2 C3, 7, 8, 10]. Let u€C (Oflft) 

3ft n 0 smooth (C3) , u satisfying (1) in 

0 PI ft and x £ 0 n ft . Then there is an a 

priori bound |Vu(x) | _< C(x,3ft fl 0,K,y) . 

Remark. G. Lieberman has recently been 

able to use maximum principle ideas to get 

global (but not local) gradient estimates 

for a class of operators and boundary 

conditions generalizing (1) C5D. 

There are more applications of the normal variations technique for studying 

Vu. Monotonicity results can be proven in domains whose shape leads one to expect 

monotonicity. Lipschitz continuity of solutions in singular domains of the correct 

Figure 6: 
Returning ft£ to ft 
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geometry can be shown. Mean curvature problems other than those in capillarity 

can be studied. 

This work was partially supported by the U.S. Army under contract no. 

DAAG29-80-C-0041 and by the National Science Foundation under grants no. 

MCS-7927062, Mod. 1 and no. MCS-8301906. 
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