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TORI OF PRESCRIBED MEAN CURVATURE AND THE ROTATING DROP 

by R. GULLIVER (University of Minnesota) 

1. ROTATING DROPS. 

Consider a fluid body rotating with constant angular velocity U) and subject 

to surface tension. We assume, for example, that gravity is either absent or has 

no net effect, as would occur if an ambient fluid has equal mass density: p = p. 

In the rotating system of coordinates, the fluid body experiences a virtual force 

directed away from the axis of rotation and proportional to pa) r , where r is 

the distance to the axis. If the fluid is incompressible, then a constant 

additional pressure results within the body. Finally, surface tension contributes 

a force -2HT proportional to the mean curvature H of the surface. A surface in 

equilibrium is therefore described by the condition 

2H = a + br 

where the constant a results from the volume constraint, and 

b = (poo - pO) ) / 2T . 

Here p and ¿5 are the density and angular velocity of the ambient fluid. 

Plateau carried out experiments along these lines, with oil in a solution of 

water and alcohol, such that p = p (C33, pp. 10-16). He observed a family of 

surfaces in the form of oblate spheroids, beginning from the sphere at (A) = 0. In 

a separate experiment, he was able to create a toroidal shape by gradually 

increasing the rate of rotation of a disk to which the oi l had adhered, until the 

oil left the outer rim of the disk. These experiments have been repeated with 
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greater precision by Wang; see his report in these proceedings. 

The mathematical treatment of the spheroidal rotating drop is based on 

el l iptic integrals, and has been studied in detail (ClD, pp. 177-201). To our 
knowledge, however, the existence of tori with prescribed mean curvature 

2H = a+br has remained unproven, despite Plateau's challenge to the geometers 

(C33, p. 19), and the stimulating questions posed by Poincaré (151, esp. p. 124). 

In the present paper, we shall demonstrate the existence of a large family of 

rotationally symmetric toroidal rotating drops (Theorem 1), characterize all such 

tori (Theorem 2), and derive estimates on the possible rates of rotation (Corollary 

2). We shall address the question of stability in a future paper. 

We would like to express our gratitude to Josef Bemelmans for posing, in a 

most inspiring fashion, the questions which led us to begin this research. 

2. THE EXPLICIT SOLUTION. 

Suppose a surface of revolution in euclidean TR is given in cylindrical 

coordinates (r,0,z) by z = u(s) , r = r(s) , O<_0<_2TT , where s is an arc-

length parameter along the generating curve: (du/ds) + (dr/ds) = 1 . It is 

convenient to introduce the variable v = du/ds = sin \p , where \p i s the angle of 

inclination of the generating curve to the positive r-axis. Then the curvature of 

the generating curve is 

d\\) _ dv/ds _ dv 
ds cos dr 

The circle of latitude has curvature 1/r and normal curvature v/r. The mean 

curvature H of the surface is therefore given by the useful formula 

(1) 2 H = f ^ . 
dr r 

We are interested in surfaces having the prescribed mean curvature 
2 

2H = a + br , for two constants a € TR and b>0. Using equation (1) for a 
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surface of revolution, this becomes d(rv)/dr = ar + br3 , or 

(2) v(r) = j + | r + | r 3 

with a constant of integration C. One may solve for u , introducing a second 

constant D : 

v dr 
(3) u(r) = / + D 

This exhibits the two-parameter family of surfaces of revolution with prescribed 

mean curvature a+br , at all points of the generating curve with dr/ds ^ 0. 

At a general point, the parameterization z = u(s) , r = r(s) satisfies a system 

of two second-order ordinary differential equations. 

These surfaces fall into qualitatively distinct families according to the 

sign of the constant C. For C = 0 , equations (2) and (3) determine a surface 

which meets the axis of rotation at right angles, and becomes parallel to the axis 

at the unique value r = r+ with v(r+) = 1 (recall that b>0). Choosing the 

constant D so that u(r+) = 0 , we may describe the complete surface by 

z = ±u(r) , 0<_r£r+. The surface is therefore a spheroid, the integral (3) is 

el l iptic and i ts properties have been extensively studied (for example, Cl3; see 

section 5 below). 

The most interesting case is C < 0 : we shall show that appropriate choices 

of the parameters a and C lead to a one-parameter family of surfaces of the 

type of the torus. By rescaling, we may assume that b = 4/3 , and we write 

C = -y . Then 

4 
(4) v(r) = - + £r + Ì 3 r ' 2* 1 3r ' and 

(5) âv . ] ^ a 2 
131 dr 2 2 

2 2 4 4 3 The significance of y is seen from the formula d v/dr = 2(r - y )/r : r = y 

corresponds to a vertex, or point of minimum curvature, of the generating curve. 
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The range of v(r) for 0< r<00 is unbounded above and below. In particular, 

there are values 0<r < r+ with v(r_) = -1 and v(r+) = +1 ; these values neec 

not be uniquely determined, but for the moment we shall assume r_ and r+ have 

been chosen (compare section 4 below). The generating curve is vertical at these 

points: du/dr(r+) = ± 00. 

Consider the expression 

(6) F(a,y) = u(r+) - u (r j = 
a 

'r. 
v dr 
l - v 2 

A qualitative description of the surface depends on the sign of F. Choose the 

constant D so that u(r ) = 0. If F>0 , then a complete periodic surface is 

described by z = 2NF ± u(r) , as N ranges over the integers. This surface has 

the general appearance of one of the nodoids of constant mean curvature of Delauney 

generated by the roulette of a hyperbola (C23; cf. C4D, pp. 110-126). The apparent 

singularities at r = r+ are regular points of the real-analytic generating curve 

z = u(s) , r = r(s) , as follows from a well-known continuation argument for the 

second-order system of ordinary differential equations. If F<0 , then the 

complete surface may be described as a "reverse nodoid", in the sense that the 

small closed loops of the generating curve l ie on the opposite side from the axis 

of rotation; there is no surface of revolution of constant mean curvature of this 

form (C2D). Finally, if F = 0 , then the surface is in the form of a torus. 

We shall show that for each yj> ( 3 / 8 ) , there is a value a = aQ(y) so 

that F(aQ(y),y) = 0 , and moreover so that the generating curve z = ±u(r) is a 

closed convex curve. Convexity corresponds to dv/dr >_0 for r_<_r<.r , which is 

implied by dv/dr(y) _> 0 , since r = y describes the unique minimum of dv/dr. 

Further, the Four-Vertex Theorem states that a closed convex curve has at least 

four points of local maximum or minimum of curvature. It follows that F(a,y) = 0 

can only occur if r <y<r+. This conclusion is also a consequence of 

Lemma 1. Suppose dv/dr_>0 on Cr_,r+D. If r+£y , then F(a,y) >0 ; if r_>y, 
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then F(a,y) < 0. 

Proof. We rewrite the integral (6) as 

F(a,y) = 
v 

dv v) v dv 
1 - v2 dv (-v) 1 v dv 

rc 

Recall that d2v/dr2 = 2r~3(r4 - y4). If r+£y , then dv/dr is a decreasing 

function on Cr , hence dr/dv is increasing, and therefore F(a,y) >0. 

Similarly, if y£r_ then F(a,y)<0. 

q.e.d. 

The Intermediate-Value Theorem may now be applied to F(a,y) as a function of 

the parameter a alone, to find aQ(Y) such that F(aQ(y) ,y) = 0. However, we 

need to verify the convexity hypothesis dv/dr >.0 for two values a^(y) and 
a2(y) with r+_<y and r_>_y , respectively. Choose a = â  (y) so that 

v(y) = -2y /3 +ay/2 = +1 , and choose a2(y) so that v(y) = -1 . Clearly, 

â  (y) > (y) . A straight-forward computation shows that if >_3/8 , and 

a>.a2(y) , then dv/dr (y) = 2y +a/2_>0 , which implies dv/dr >̂ 0 everywhere. 

Further, the monotonicity of v for a2 (y) <̂ a_< â  (y) ensures that r_ and r+ , 

and therefore F , are continuous functions of (a,y). We have proved 

Theorem 1. Given y_> (3/8) , there exists aQ(y) with |aQ(y) - 4y /31 < 2/y 

and F(aQ(y),y) = 0. TTze corresponding ourve z = ±u(r) , where u -is given by 

(3) and v -£s given by (4) , i s convex and generates a torus of revolution of 

prescribed mean curvature 2H = a + 4r /3 . 

The remaining case is C>0. Here, the function v is convex and assumes a 

minimum value Vq. There is a corresponding solution u only if VQ< 1; in this 

case, there are unique values 0< r (1) <r (2) with v(r (1)) = v(r (2)) - 1. 

Suppose 0<.VQ< 1. Then we may choose u(r+(l)) =0 and observe that 

z = 2N u(r+(2)) ±u(r) , as N ranges over the integers, describes a complete 

periodic surface of revolution, having the qualitative properties of an unduloid 

of constant mean curvature (whose generating curve is the roulette of an ellipse; 

rx dr 
dv (v) - dr 
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cf. Z2l) . If -1 < VQ< 0 , then self-intersection of the complete periodic surface 

may occur. We have not been able to decide whether compact surfaces may arise 

under these circumstances. It may be observed, however, that any such surface 

would be an immersed torus which would intersect itself along a single circle in 

the plane of symmetry. In fact, the unbounded component of the complement of the 

generating curve in the (r,z)-plane would l ie to the left of the generating curve 

at r = r+(l) and to the right at r = r+(2) , where z = ±u(r) is oriented by 

± r. Finally, if Vq£-1 then there exist 0 < r_ (1) <_r_ (2) with v(r_(l)) = 

v(r_(2)) = - 1 . There are now two surfaces, corresponding to the intervals 

r+(l)_<r<.r (1) and r (2) £r_< r+(2) . The surfaces are disjoint if VQ < -1 , and 

externally tangent if VQ = - 1 . Using arguments analogous to the proof of Lemma 1, 

and relying on d v/dr > 0 , one may show that one surface has the qualitative 

form of a reverse nodoid, the other of a nodoid. 

In physical terms, one may think of a finite portion, without self-inter

section, of any of these noncompact surfaces as a rotating capillary surface 

supported by rotationally symmetric solid bodies. For example, an unduloid 

z = ±u(r) as described above, restricted to an interval r+(l)_<r_<R , l ies 

between two horizontal plates z = ±u(R) and forms a constant angle of contact. 

3. VOLUME AND THE CYLINDRICAL LIMIT. 

In physical applications as outlined in section 1 above, a closed surface of 

prescribed mean curvature 2H = a + br occurs as a rotating body of fluid having 

prescribed volume. The constant b is determined by angular velocity, while the 

constant a is a Lagrange parameter. One would like therefore to consider b and 

V as given, and to choose a and C to determine a torus bounding the volume V. 

As we have just seen, a torus without self-intersection can occur only when 

C = -y < 0. If the generating curve is z = ±u(r) , r <.r<.r+ , and u(r).<0 as 

in section 2, then the volume enclosed by a torus is 
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(7) V(a,y) = -4TT r 
r u dr = 2TT 2 

r_ 
2du, — dr dr = 2TT 

.1 
r 

-1 
2dr 

dv 
v dv 

V l - v 2 

Lemma 2. For (a,y) suah that y>_2 and F(a,y) = 0 , there holds V(a,y) <8Try~3. 

Proof. For any value of r in the relevant interval r_<_r<_r+ , we have 

|v(r) | _< 1. For large values of y , we shall show that this inequality and Lemma 1 

force the ratio T) = r/y to be uniformly close to 1. Geometrically, we have a 

very thin torus of large radius y , with cross-section approximately a small 

circle. A series of elementary computations leads from equation (4) to the formula 

r + 1 ) -C3a/(2Y2) -23n2 + 3v(r)Tl Y~3 
n2 + 3 

Now Lemma 1 implies that |v(y)|<.l , so that | a - 4y2/3 | <_ 2/y. Using |v(r)|<_l 

and the Schwartz inequality 2>̂ 3 riiri^ + 3 , we derive the estimate 

(8) |n2~l | <.y"3(3 + /J/2) <4y"3£l/2 . 

We shall use inequality (8) to find an upper bound on volume. Subtracting 
2 

2iTy F(a,y) = 0 from equation (7) leaves 

V(a,y) = 27T (r - y ) dr 
dv ' 

v dv 

Using inequality (8) and y_>2 , we may compute that 

|y~2dv/dr- 8/3 | = | (a/(2y2) - 2/3) +n 2 (1 - n2) 2 | < y~3 + 2y"6 (3 + y/J/2) 2 < 5y~3 < 5/8 

2 
It follows that y dr/dv< 24/49< 1/2. The estimate (8) now implies 

V(a,y) < 47ry"3 r I v l dv 
A - v 2 

» 8Try"3 q.e.d. 

It may be observed that the estimate |y dv/dr - 8/3| < 5y shows that as 

y 00 , the cross-section of the torus tends rapidly in the C sense to a circle 

of radius 3/(8y ) . In particular, the exact asymptotic behavior of volume is 

V(a,y) ^ 9ir2/(32y3) . 
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Corollary 1. There is a VQ > 0 so that given any positive V^<.VQ there is a 

torus of prescribed mean curvature 2H = const. +4r /3 bounding the volume v^. 

Proof. Let V be the smallest value of V(a,y ) for all a with F(a,y ) = 0.  o o o 
Here yQ may be specified by y^ = 3/8 or by a particular choice, y^_>3/8. 

Applying Theorem 1 and Lemma 2, we may find a sufficiently large value y^ so that 

V(a,yl) <.V1 whenever F(a,y^) = 0. Observe that some connected component of the 

zero locus { (a,y) :F(a,y) = 0} contains points of the form ^a0,̂ 0^ anĉ  
2 

(a^,y^). In fact, by Lemma 1, F is positive along the curve a = 4y /3 + 2/y and 
negative along the curve a = 4y /3 - 2/y , for y2LYQ- Ifc follows, for example via 

the Alexander Duality Theorem, that some connected component of the zero locus 

contains points (a ,y ) and ( a . , y j . But the continuity of V now implies that o o 1 1 

the set of values {v(a,y) : F(a,y) = 0} includes the closed interval between 

VCa^y^) and v(a0'Y0) ' and vi in particular. 
q.e.d. 

Numerical evidence indicates a strong likelihood that for each y > 0 there 

is a unique value a with F(a,y) = 0 . If this is true, then the constant Vq is 

simply the maximum volume among all closed tori of prescribed mean curvature 
2 

2H = a + 4r / 3 . After rescaling we find 

Corollary 2. Given > 0 , there exists a stationary rotating drop of the type of 

the torus having volume for any value co of angular velocity not exceeding 

(2v x/Cpvj)172. 
O 1 

4. CLASSIFICATION OF TORI. 

Now that we have found a particular one-parameter family of tori with 

prescribed mean curvature 2H = a + 4r /3 , we should like to classify all possible 

rotationally symmetric embedded tori with this prescribed mean curvature. A simple 

closed curve z = u(s) , r = r(s) must have at least two vertical tangents. If a 

complete solution curve is reflected in the horizontal line z = const, through 
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any point with a vertical tangent, then the reflected curve remains a solution of 

the system of ordinary differential equations. The uniqueness of solutions to the 

initial-value problem therefore implies that the original curve is symmetric under 

this reflection. In particular, any solution in the form of a simple closed curve 

has exactly one horizontal line of symmetry, say z = 0 , and the curve may be 

written in the form z = ±u(r) , r <.r<_r+. By considering -u(r) if necessary, 

we may assume that v = du/ds is a solution of equation (1), and therefore is 

given by equation (2) for some constant C. The arguments of section 2 above now 

show that for an embedded torus, C<0 ; we write C = -y . 

If a + 4y >0 , then v is an increasing function and there are unique values 

0 < r__ < r+ with v(r+) = ±1 ; y must be chosen to satisfy the condition 

F(a,y) = 0 , given by (6). Otherwise, v is not monotone. Nonetheless, there is 

a unique value r+>0 with v(r+) = +1. In fact, one may eliminate the terms of 

indeterminate sign in equations (4) and (5) to obtain 

= v / 2 2 
dr r ^ 2 3 r 

It follows that v is strictly increasing on the interval r > r , where r is 

the first positive zero of v , and that r+ is unique in particular. On the 

other hand, i t may occur that there are three values 0 < ic ̂ < r^<_-r^ with 

v(r^) - v(r2) = v(r^) = -1 . In this case, none of the three intervals Cr^r^ 

corresponds to a closed curve z = ±u(r) , ^^^r <_r+. For the function v(r) has 

a unique inflection point at r = y , so that r̂  < y < r̂  , and dv/dr.>0 for 

r^_<r<.r+. Lemma 1 now implies that the choice r = r̂  would yield F(a,y) <0 , 

corresponding to a nodoid. Further, as we have just shown, r.< r < r and there-

fore v<0 on [r , r J . It follows that 

r -
v dr 
1 - v2 r -

V 

v dr 
1-v2 

0 

This rules out the interval Zr^,r+1. Moreover, in case r2 < r3 ' tiie requirement 

175 



R. GULLIVER 

that | v | <_ 1 eliminates the choices r_ = or r_ = r^. After considering the 

consequences of this analysis for the generating curve (3), we have proved 

Theorem 2. Every embedded torus of revolution with prescribed mean curvature 

2H = a+4r /3 has a plane of symmetry. The generating curve may be written as 

z = ±u(r) , r <_r_< r+ , where u(r) is given by equation (3) and v(r) is given 

by equation (4) for some y>0. The generating curve may also be written as 

r = f̂  (z) , r = f2(z) fov ^b)0 even> veal-analytic functions f 1 (z) <f2(z). The 

outside portion r = f2(z) ^s convex and has positive decreasing curvature for 

z>0. The inside portion r = f 1 (z) , if not convex, has two symmetric intervals 

(z1,z2) and (-z2,-z1) of concavity. 

5. THE SPHEROIDAL LIMIT. 

As y 0 , the inner radius r <y of a torus (if i t exists) tends to zero. 

The curvature of the generating curve at this innermost point is dv/dr(r ) = 

= a+4r /3+ 1/r , which increases beyond bound: the boundedness of the parameter 

a , as well as the existence of the torus, follow from Lemma 3 below. This 

behavior suggests that the tori are converging to a nonconvex, rotationally 

symmetric surface of the type of the sphere which is internally tangent to itself 

at the two umbilic points on the axis of rotation. Our numerical investigations 

confirm precisely this behavior. 

The spheroids of prescribed mean curvature 2H = a + 4r /3 , and the internally 

tangent spheroid in particular, were studied in detail by Beer (ClU, pp. 177-201); 

we give an outline here of one pertinent result. For a spheroid, the function 

v = du/ds has the form v = ar/2 + r / 3 . The integral 

F(a,0) = 
r r + _ 
o ^ 

v dr 
/ l - v2 

now describes half the length of the segment of the axis included inside the 

surface. Here r+ is defined by v(r+) = 1 . By substituting the parameter t , 
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2 2 2 2 
defined by r+t = r+- r , the integral may be written explicitly in terms of r+. 
In fact. 

F(a,0) = rH 
i : 

CD dt 
/u)2 +u) + k 

where OJ = k - t2 and k = 3r~3. It is readily seen that ~-(F (a,0) /r+) >0 , that 

dr+/da < 0 , and therefore that ~-(F (a,0)/r+) > 0. This is one step in the proof oJ 

Lemma 3. There is a unique value a = aQ(0) = -1.39 for which F(a,0) = 0 , and c 

continuously differentiable curve a = aQ(y) /02» 0_< y < e , along which 

F(aQ(y),Y) = 0. These are the only zeroes of F in a neighborhood of the araxis. 

Proof. The existence of a (0) follows from the Intermediate Value Theorem and 

from tables of el l iptic integrals (see Cl3, pp. 182 f f . ) . 

We shall first show that F is continuously differentiable in any region of 

the (a,y)-plane where r_ has been chosen continuously. For convenience, we 

extend F to y<0 as an even function of Y- Now F (a,Y) is defined by the 

convergent improper integral (6), so that i t s differentiability properties are 

greatly clarified by the introduction of a regularizing parameter t as the 

variable of integration. We may choose 

(9) 
t2 

(1 - t)2 

2 2 r - r_ 
2 2 

r+~r 
0<.t£l . 

Recalling equation (4), we may write 1-v = P(r)/9r , where P(r) is an even 

polynomial of degree 8 , having roots r+ , and hence P(r) = (r - r ) (r+- r ) 

(r + otr + 3 ) . The last factor is irreducible, and i ts coefficients a = r++ r -3a 

and 3 = -9Y (r r+) depend smoothly on a and Y - *n fact, one may show 

directly from the definition v(r_) = -1 that r_ = y - ay /2 +0(a y ) , with 

formal differentiation, so that 3 remains differentiable at y = 0. After 

considerable manipulation using the formula (9), the integral (6) becomes 

F(a,Y) = 3 
2 2 

r+~r- C 

v(r) J 2 2 , V r - r -f f~2 2 f r - r 

Vr4 + otr2 + 3 
dt . 
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In the integrand, one understands the nonsingular substitution 
2 2 2 2 2 2 2 r = (rV + r _ ( l - t r ) / ( t + ( 1 - t r ) . 

Considering two points (a,Y) and (a ,y ) , we write the difference of 

values of (r+-r_)F in the form A (a,Y,aQ,Yo) (y - YQ) + B (a,Y,aQ,Y0) (a - aQ) ; we 

need to show that A and B are continuous at (a,y) = (a ,y ) . Continuity 

follows in a straightforward manner from the explicit formulas if YQ ^ 0. When 

YQ = 0 , one unbounded term of the form y /r appears in the integrand of A , 

arising from the difference of values of v. Nonetheless, after integration, the 

absolute value of the corresponding term in A may be shown to have an upper bound 

c Y log(2r+/r ) <_ c Y log(3r+/y ) , for some constant c , which tends to zero as 

Y approaches YQ = 0- It now follows that F is continuously differentiable in 

any region of the (a,y)-plane where r has been chosen continuously, and in 

particular on a neighborhood of the zero locus of F (see section 4 above). 

By continuity, we have -r—(F (a,Y)/r,) >0 on a neighborhood of the a-axis. In 

particular, along each line y = constant < £ there is a unique zero of F in an 

interval about a (0). That F(a (y) ,y) = 0 for an even C* function a (Y) , 

by the Implicit Function Theorem. 
q.e.d. 

Restating Lemma 3 in geometric terms, we find 

Theorem 3. The internally tangent spheroid of revolution of prescribed mean 

curvature 2H = a (0) +4r /3 is the weak limit (in the sense, e.g., of integral o 
currents) of a unique one-parameter family of tori of revolution having prescribed 

mean curvature 2H = a + 4r /3 , with smoothly varying values of a. These tori 

converge uniformly along with higher derivatives away from the axis of rotation. 

Finally, we would like to point out that the extreme cases y < < 1 examined 

above and y>>l treated in section 3 are both unstable configurations, so that 

only the tori in an intermediate range can be observed experimentally. Our 

investigations of stability will appear elsewhere. 
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