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J. LIPMAN

INTRODUCTION

This is a semi-expository account about the role of differential
forms and residues in the duality theory of algebraic varieties over
a perfect field. The main results are summarized in the Residue

Theorem (0.6) stated near the end of §0, and generalized in §10.

In some sense there is little here which cannot be dug out from
other sources: the basic ideas involved were announced by
Grothendieck in [G2]; the foundations of duality theory were then
worked out from a very general point of view (derived categories
dualizing complexes, etc.) by Hartshorne [RD], Deligne [RD, Appendix]
and Verdier [V]; and the "fundamental class", a canonical map from
differential forms to dualizing complexes, was studied by El Zein
and Angéniol [E]. But, fundamental, powerful, and beautiful as
the resulting theory is, the formalism in which it is ensconced and

some lack of detail in the literature(”

have prevented it from
becoming as well-known and understood as it should be. For me at

any rate, reaching even the level of understanding represented by
these notes has been a long and arduous process. And the reactions
of audiences to lectures which I have given over the past twelve
years on this subject have suggested that an exposition in the spirit
of [S, pp. 76-8l] (case of curves, after Rosenlicht) and [K2] (case
of projective Cohen-Macaulay varieties)- i.e. accessible in principle
to someone familiar with, say, Chapter III of [H]- may not be

superfluous.

Various forms of the main results to be presented have appeared
in the literature. In this Introduction, and in §0, we gather
some variants together and point out their interconnections. 1In the

process indications about the contents of the paper will emerge.

(1)

Of course in the writing of any exposition (this one included) the choices
about which details to include and which to leave to the reader are a matter
of taste, judgement, mood,...



INTRODUCTION

Throughout V will be a d-dimensional variety (reduced and
irreducible) over a fixed perfect field k (V and d may vary).

We set
_ 4,1
dy = 4 (QV/k)
the d (= dim V)-th exterior power of the sheaf of Kidhler differential

one-forms.

For V a non-singular projective curve (d = 1) the classical

duality theorem states that for any invertible (or, more generally,

coherent) OV—module 4, the k-vector spaces Hl(V,ﬁ) and
Homo (?,QV) are naturally dual. In fact there is a natural
v

isomorphism
J : mhv, ) - k)
\%

such that for all ¥, the composition

1 1
(%), Homov(?,nv) o> Hom (H™(V,9) ,H™ (V,Q,))

1
————> Hom (H (v,9% ,k)
v1af
\
is an isomorphism. In other words, the pair (QV, j ) represents
the functor v

H'(9) = Hom (B (V,9) k) .

This theorem is sometimes proved in two steps, as follows.
First, by means of certain injective complexes (Weil's "repartitions")
the functor H'(Y) is shown to be representable by some pair (w,8),
which is necessarily unique up to isomorphism. We say then that
the pair (w,6) is dualizing; and in particular that w 1is a

dualizing sheaf. Then, by the theory of residues of differentials,

the canonical pair (QV, is shown to be dualizing.

v)

1 . : . = : .
( )reallzable if k = €, via a 9-Dolbeault resolution of Qv, by integrating

(1,1)-forms.
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More specifically, the residue res; at a closed point v € V

is the unique k-linear map from the meromorphic one-forms

1 e . .
Qk(V) = Qk(V)/k to k (k(V)= field of rational functions on V)

such that, for any local coordinate t at v with differential
§t we have:

res"/(taét) =0 a €2, a#-1

res! (t™1st) = 1 .
v

In particular res& factors as

o1
Qk(V) natural Qk(V)/QV,V - HV(QV) res k

where Hi denotes local cohomology supported at v. The local

~

duality theorem says that the pair [(QV v)A,resV] (where denotes

completion with respect to the maximal ideal m, of the local ring

0. ) represents the functor
v,v

1
Homk(Hﬁv(G),k)

of finitely generated (OV V)"—modules G.
!

Now if is the constant sheaf with sections and

O (v) k (V)

QG is the sheaf whose sections over an open U < V are given by

= _ 1
Qx(u) = @ Qk(V)/QV,v = ng HV(QV)

(sheaf of "differential repartitions") then

natural O*

O (v) v 0

0~ QV -

is an injective resolution of QV;
get the exact row in the following diagram:

and taking global sections we

Q - s ¢ vla) — s utwv,0) —s 0
k (V) v v \Y
veEV v
Ve
®res,, P I
% v
k
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The key residue theorem says that "the sum of the residues of a

meromorphic differential is zero"; which means that ¢ res

annihilates the image of Qk(v)’ i.e. there is a unique map

Hl(V,QV) -+ k making the diagram commute. This map is JV . The
proof that (Qv,f ) 1is dualizing can be found e.g. in [S,p.26].
\%

What we want to bring out here is that for non-singular projective
curves, differentials and residues give us a canonical realization

of and compatibility between local and global duality.

Our principal Theorem (0.6) establishes a similar canonical

compatibility for arbitrary proper k-varieties.

Here are some historical highlights in the development of such
a generalization. In his 1952 thesis, Rosenlicht constructed (in
essence) an isomorphism like (*); for V any (possibly singular)
projective curve and % invertible, with QV replaced by a certain
sheaf of "regqgular" meromorphic differential forms, definable e.g.
through residues (cf. [S,pp.76-81]). Shortly afterwards, Serre
established for any d-dimensional normal projective V an

isomorphism of functors of coherent OV—modules 4

(%)4 Homy, (.‘5,9‘;') - Homk(Hd(v,f),k)
v

where ¥ = Hmno (?,OV) for any Ov—module ¥ (cf. [Z,88]). 1In
A%

3 is a dualizing sheaf on V. Then Grothendieck
showed for arbitrary projective V that the functor Homk(Hd(V,g),k)
is representable ([Gl], [AK], [H,§7]).(1) Grothendieck's method is

other words: Q

to deduce from the fact that QP is dualizing on P = Pﬁ = projective
n-space over k (a fact proved, following Serre, by explicit
calculation), that for a closed embedding 1:V > P, the sheaf

- % n-d . N . .
w, 1 ExtaiP (OV,QP) is dualizing on V. Of course w, is not

canonical on V; but if V 1is non-singular, then using suitable

)

Though we concentrate here on the dual of Hd(v,g), that is only one aspect of
duality theory. For example the isomorphism (*)4 extends uniquely to a
homomorphism of &-functors Extl(g,Qv) e Homk(Hd'l(V,g),k) (i=0), which is an
isomorphism for all i when V is Cohen-Macaulay (cf. [H,§7]; and also
(13.8.7) below for the local case). Moreover the general theory requires the
consideration of dualizing complexes, one of whose homologies is a dualizing
sheaf. All this lies beyond the scope of these notes.
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Koszul complexes Grothendieck shows that w, is isomorphic to QV'
so that the canonical sheaf RV is dualizing. This approach and

its elaborations involve a considerable amount of homological algebra
(cf. §13 below, where a closed embedding 1:V » X of a singular
d-dimensional V into a smooth n-dimensional X is considered, with
the object of constructing an "adjunction" isomorphism of

1*Extg-d(0v,ﬂx) onto a canonical dualizing sheaf of V).
X

There is however a more elementary approach (indicated e.g. in

[H,p.249,Ex.7.2]), which we will follow everywhere except in §13.
Namely, instead of embedding V in Pﬁ, choose a finite surjective
map T:V > P' = Pi. Then there exists a coherent Ov—module W

together with an isomorphism

L i Hmnqb'(ﬂ*0v,%P,).

As above, %P' is dualizing on P'; and it follows easily that W,
is dualizing on V. Moreover, using the trace map for differential
forms, Kunz constructs, in [K1l], [K3], a concrete realization of
such an w, as a sheaf of meromorphic d-forms, which turns out to
depend only on V (not on the choice of w)! Thus we have a

canonical dualizing sheaf the sheaf of "regular differentials",

o,
VI
which (as Kunz shows) coincides with QV at the smooth points of V,

and which is identical with Rosenlicht's sheaf of regular differentials

when V 1is a curve.

. ~
Now since

v is dualizing, there is a map

d ~
GV:H (V,wv) - k

corresponding to the identity map of Gv. This ev is determined,
a priori, only up to multiplication by non-zero elements of k

(which give automorphisms of G&). For non-singular V, where

Wy = QV’ Grothendieck describes a canonical GV'

"fundamental class of a point" ([Gl,p.149-13]). For general V,

via the

the existence of a canonical ev is closely related to a theory of
residues, as in the above discussion of v when d = 1; when
d > 1 this idea is worked out explicitly in [K2], at least for

Cohen-Macaulay characteristic zero V.



INTRODUCTION

Actually a higher-dimensional theory of residues was announced
by Grothendieck in 1958 [G2], in connection with his proof of a
duality theorem for arbitrary proper k-varieties. (Details appear
in [RD].) Most of what we discuss in these notes is implicit in

Grothendieck's theory; but it needs to be brought out into the open.

Our global existence and uniqueness statements (for instance
(0.6) (d) and (0.6) (e)) make use of the following results of
Grothendieck: (i) the representability of the functor
Homk(Hd(V,y),k) of coherent Ov—modules for any groper dédimensional
V; and (ii) surjectivity of the natural maps Hv(g) > H (V,%) (vev)
from local to global cohomology. Fortunately, relatively simple
proofs of these results have been provided by Kleiman in [Km 2]

resp. [Kml].

We will not repeat Kleiman's proofs, but rather concentrate on

defining a canonical dualizing pair for any proper k-variety V. We

will show, first of all, that Kunz's sheaf GV - which can be defined
locally via a finite surjective map to affine space, then globally
by patching - is still dualizing. Note that for arbitrary proper V,
finite maps onto smooth varieties exist only locally; so that for
example if Wy is a dualizing sheaf (for whose existence we refer

to [Km2]), then Kunz's methods give us isomorphisms

only for affine (or quasi-projective) open W < V. Why should these
isomorphisms patch together to give a single isomorphism over all

(1)
of V?

non-projective case.

This problem typifies the essential difficulty in the

Another one of our main concerns is to describe higher-dimensional
residue maps

res;:Hg(QV) > k (v € V).

With these maps we have a local duality theorem (cf. (0.6) (c)), which

(1

( )Following Verdier [V], Kleiman shows in [Km 2, Prop. (22)] that if V is
Cohen-Macaulay, then the restriction of a dualizing sheaf to any smooth open
Vg €V is isomorphic to Qvo. It is not clear a priori that Kleiman's

isomorphism coincides with Kunz's when VO is affine.
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says in particular that Bb v is a canonical OV V—module in the
’ L4
sense of [HK]. Furthermore, residues provide the means for over-

coming the patching problems just mentioned; they may be used to
give a local description of GV (cf. (11.4)); and for proper V
they glue together (as in the above-described residue theorem for
curves) to a k-linear map

4a ~
GV:H (V,wv) -+ k,

giving us the desired canonical dualizing pair (E&,EQ) as well as
a natural compatibility between local and global duality (cf. the

main Theorem (0.6)).

As we are limiting ourselves more or less to the topics already
indicated, we do not go very far into the theory of residues. There
are numerous other treatments in the literature (cf. remarks following
the proof of (7.2) below), each of which illuminates some interesting

facets of the theory, though none seems to be definitive.

In §0 we give a more complete discussion of the main results.
As this discussion will be rather long, a few orienting remarks are

in order.

First of all, as already indicated, the main theorem is (0.6),
which gives a local characterization of residues, and describes via
residues and the canonical sheaf G&
global duality. A generalization to the "relative case" is given

in §10.

the compatibility of local and

The statement of (0.6) should be understood, even if nothing
else is. The reader may wish to begin with this statement,
referring back to (0.23) and (0.4) as needed. The proof of (0.6)
occupies most of §§1-9, and some of §0, proceeding roughly as
follows:

(4.2) === (0.33)

(0.3.2); (0.2) (0.6.1)a (0.6)

§9 B3 8 > (0.3B)
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Theorem (0.1) and the remarks following it are not really
needed in the sequel. They are included to set the mood, and to
indicate one of many possible ways to think about matters related
to (0.6).

Finally, a word about the style in which results are stated.
We are concerned here with concrete realizations of certain aspects
of duality theory. These realizations may not be constructed
directly, but, for example, by non-obvious patching procedures
(which, incidentally, are greatly facilitated by the language of
0-modules reviewed in §1). So it is important to enunciate a
minimal number of characteristic properties which make explicit the
canonicity of the objects in question. When it comes to details,
the subject is not a simple one; and if some statements of theorems
seem lengthy, it is because they compress a lot of information which
seems to me essential for 'a proper understanding. The reader is

therefore encouraged to take the time to absorb these statements.
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§0. Discussion of results

As before, V is a d-dimensional variety over the pverfect field

k, and QV = Ad(ﬂé/k) is the sheaf of holomorphic Kdhler d-forms.

Among our principal results, the easiest to state is the following
portion of [E, p.34, Théoréme 3.1]:

THEOREM (0.1). There exists a unique family of k—linear maps

J : Hd(V,QV) > k
v

indexed by proper d-dimensional k-varieties V, and satisfying the

following conditions (a), (b), (c):

(a) If Vv 1is the projective space Pi, then J is the
\%

well-known canonical isomorphism (defined, for example, in (8.4)
below) .

(b) For any finite surjective map f: V - W with W a proper

d-dimensional normal k-variety, if T 1is the map

(trace ® 1) : f*0V®oWQw —> 0W®0WQW = Q

then the following diagram commutes (trivially if f is not

separable, i.e. if the function field k(V) is not separable over
k(W)):

d d
Y (W, £,0,09,) —222al sy, £00) = 14V, 0)
via T J
v
\'4
1w, q,) > k

10
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(c) If g : V~+W 1is a birational map of proper d-dimensional

k-varieties, then the following diagram commutes:

natural _ Hd(W,g*QV) _nhatural Hd(V,QV)

by Jo

a9 (w, )

Furthermore:

(d) If V 1is a smooth d-dimensional proper k-variety, then the

pair (QV, ) is dualizing, i.e. represents the functor
Pa-- y & —=

J

Homk(Hd(V,j),k) of coherent Ov—modules 4.

Remarks. (i) To introduce some of the ideas which play an
important role in these notes, we sketch a partial proof of (0.1)
(even though this proof is somewhat different than the one we will
use, cf. Remark (i) following Theorem (0.2B) below).

One can reduce (a), (b) and (c) of (0.1) to the projective case
via Chow's Lemma (for (b) this is messy!). For projective V, the
uniqueness of follows from (a), (b), and Noether normalization

v

(Appendix A), which gives us a finite separable (=generically étale)
f:v +2Pd = W. (Note that then f*0v®Qw > f*QV is a generic

k
isomorphism, so that the map in (b) labelled "natural" is surjective.)
As for existence, given a finite separable f: V +.Pg =W it is
well-known that there is a unique map Tt' : f*QV - Qw whose

composition with the natural map f£,0 ®Q - £f,Q is tv (cf. [KI,
*VTW *v

p. 15, Satz 5.5], which uses the "equality of Kdhler and Dedekind

differents"); so we can use T' and the canonical isomorphism
w
£
to define J » which we denote temporarily by J . The crux of the
\Y £ \%
problem is to show that J does not depend on the choice of f£f; and
v

further, (a) and (b) being then straightforward, to prove (c).

1"
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This can be done, roughly, as follows.
For any closed point v € V we consider the composition
J»f
(0.1.1) rest : 14 (a,) % o) — Y ok
T v vV "ty
where Hg denotes cohomology supported at v and Oy is the

natural map. It follows from the results in §8 that if f |is

étale at v (so that V is smooth at v) then resg is the

classical residue map (reviewed in §7). So for any two finite

separable maps fl, f2 HEAYS »ZPi, if v € V is a closed point where

both are étale, then

ffl o = sz o
o - o ’
v v v v

and since Py is surjective (cf. (9.6)), we conclude that

f1 f2 £
J = I , i.e. J does not depend on f. Thus we can set
v v v

[, =], =t -
= , res_ = res_ .
v v M v

Furthermore if v is any closed point where V is smooth, then
there exists an f which is étale at v (cf. Appendix A), and so
res is still the classical residue map. Hence (c) can be proved by
picking a v around which V is smooth and g 1is an isomorphism,

and considering the resulting diagram

®q (v)

d 4 d
Hg(v)(ﬂw) > H (W,QW)

\4

. 4
HV(QV) oo H (V,QV)

(0.1.2) \k

This kind of local-global interplay is one of our basic themes.

12
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Now (d) of (0.1) follows, in the projective case, from the

well-known duality theorem for Pg and the fact that when V is

smooth the above map Tt' corresponds to an f*ov-isomorghism

o~

(0.1.3) £.0y > Homow(f*ov,ﬂw)

(cf. [Kl, Korollar 5.2 and Satz 2.2]).(1)

(d) (and everything else) for arbitrary proper smooth V by

Ultimately we will prove

reduction to the projective case; but there doesn't seem to be any

relatively simple reduction as there was for (a), (b), (c).

(ii) Theorem (0.1) enables us to define, for every closed
peint v € V (smooth or not), a canonical residue map res,

(cf. (0.1.1), ignoring "f"). By means of diagrams like (0.1.2), it
is not hard to deduce from (0.1) (c) that res depends only on the
local ring OV,V (and not on V), cf. §11. 1In fact it then

follows from (a) and (b) and the results in §8 that res depends
only on the completion (OV'V)A.

Such a definition of (local) residues proceeding from the
smooth case via a global theorem to the general case, is not very
appealina, A direct and much more general homological definition
can be found in [HL], [Ho]l. It can be shown that this definition is
equivalent to the preceeding one, where applicable, but there is as

yet no published proof.

We will deduce Theorem (0.1l) from a stronger result, which we

now describe.

In [K3, p. 68], Kunz defines the sheaf ﬁv of regular

differential forms on V, as follows. Consider first an integral

domain C which is a finitely generated k-algebra. Then by Noether

normalization there exists a polynomial ring

B = k[xl,-o.'xd] c C

1
( )In turn, the existence of T' and the fact that (0.1.3) is an isomorphism can

be deduced directly from (0.1).

13
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such that C 1is a finite B-module and the corresponding extension
of fraction fields k(B) < k(C) 1is separable (cf. [N1, p. 152,
(39.11)1; or Appendix:.A). A trace map T for degree d Kahler
differential forms is then given by

d

trace® 1 d _
- ™ & )% B)/k = % (B)/k .

L od _ d
T: Qk(C)/k = k(c)®k(B)Qk(B)/k > k (B)

’
The "generalized Dedekind complementary module" @ is defined as

C/B

4
k(C)/k

© = {v € Q

c/B }o.

d
T(Cv) < QB/k

For any d-dimensional k-variety V, Kunz shows (and this is the main
result in [K1]):

THEOREM (0.2A). There exists a unique Ov—submodule mv of
the constant sheaf Qi(v)/k of meromorphic d-forms on V such that

for any affine open subset

U = Spec(C) c V

and any B < C as_above, we have

r (UI wv) = U)C/B

The Ov—module mv is clearly coherent. In [K1,§5] the

following statements are proved: (i) The image of the natural map

d
Uy > 9 vy /x
equality .at smooth points. (ii) Hence when V is normal, mv, being

of holomorphic into meromorphic forms lies in ﬁv, with

reflexive, consists of those meromorphic forms which are holomorphic
in codimension one, i.e. @ = (Qd)", where ¥° = HOMO (f,OV) for any
\Y

0y~module F. (iii) Also, when V 1is a curve @, 1is the sheaf of
regular differentials in the sense of Rosenlicht (cf. [S, p. 76]).
(Cf. (11.4) in 8§11 below for a higher-dimensional generalization of
(iii).)

In case V 1is projective, it is not hard to see that Wy is a

dualizing sheaf, i.e. there exists an isomorphism of functors of

coherent Ov—modules 4

Homy, (4,0y) ~=—> Homy (1 (V,9) )

14
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(cf. [Kl, Satz 2.2)). One of our main results is that for any V
proper over Xk, ﬁv is in a natural way dualizing, i.e. there is a

natural k-linear map
x d ~
GV : H (V,wv) + k
such that the pair (GV,EV) represents the functor Homk(Hd(V,g),k).

Thus we have a dualizing pair (mv,EV) which is canonical

(not just unique up to isomorphism).

Here, precisely, is what is meant by the "naturality" of EV'

A dualizing structure on T is a family of maps {EV} as above
(i.e.(ﬁv,ﬁv) represents Homk(Hd(V,g),k) for each proper
d-dimensional V) such that, for each birational map f : V + W of
proper d-dimensional k-varieties, the following diagram commutes:

B4, 1,0 —2— 58 w,3)
(0.2.1) canonical gw
\4 A\
d ~
H (V,wv) —-——;———> k
eV

where o is induced by the inclusion map f£,&, < T, (cf. Lemma
(3.2)). (This description of "dualizing structure" is equivalent to
the one given in Definition (4.1)). The dualizing structure is

normalized if for projective space P =P (d 2 0), EP is the

k
well-known canonical isomorphism

1@, ) = 1m,e,) > x
(cf. e.g. Proposition (8.4)). Then our assertion is:

THEOREM (0.2B). There exists a unique normalized dualizing

structure {Ev} on T such that for any finite separable
(= generically étale) map f: V - W of proper d-dimensional

k-varieties, the following diagram commutes:

15
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d o HE) . ~
H (W,f*wv) > H (W,ww)
eW
~ Vv
H (V,wv) % > k
v
where Ef : f*mv > EW is induced by the trace map 1 for

meromorphic forms (cf. example (2.1.2)).

Remarks. (i) Theorem (0.1) can be derived from (0.2B) as
follows: define to be the composition
V ~
0
Hd(V,QV) natural Hd(V,mv) v x

and check ... .

(ii) Just as for (0.1), uniqueness in (0.2B) follows from
Noether normalization and Chow's lemma. (Note that in (0.2.1), o is

surjective since f*mv — B is a generic isomorphism.)

W
As for existence, giving EV is equivalent to giving an OV-
isomorphism EV : mv > wy where Wy is some dualizing sheaf on V

(whose existence is guaranteed by Grothendieck's duality theory, or
also by the simplified duality theory of Kleiman [Km 2]). Kunz's
methods provide a € over any quasi-projective open subset U of
V, but this T is defined in terms of a choice of a Noether
normalization of a chosen projective compactification of U; the

basic difficulty is to show that these local ¢T's actually do not

depend on the choices involved, hence patch together to give a
global EV . In addition, of course, we must show that the
resulting family {EV} does form a dualizing structure as in (0.2B).

We will prove (0.2A) and (0.2B) in an equivalent —somewhat
technical— form, given below as (0.3A) and (0.3B). First we need
some definitions (whose length will be justified by their
convenience).
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In §1, we review the notion of coherent ()-module, which means
(c£.(1.3)) a family {fv} indexed by k-varieties V, with fv a
{Bi} indexed

coherent ov-module for each V, together with a family
by open immersions i: U »+ U', such that for each i, Bi is an

OU-isomorghism

s i* > 4
By + 1%y 7y,
u -t g I gye

and such that for each pair of open immersions

we have the transitivity relation
. (1)
= *
Bji By o 1 Bj
A canonical structure on a coherent f-module {wv} consists of
the data (a), (b) below, subject to conditions (1), (2), (3)

(cf. §2 for an equivalent - and more complete - treatment):

(a) For each smooth d-dimensional variety V an

Ov—isomorphism

Yy ¢ QV > Wy
(b) For each finite separable map f: V - W, an f*ov-
isomorphism
Te : fh0, => Homow(f*ov,mw).
(1) Yy is compatible (in an obvious sense, via B) with open

immersions into V.

(2) Tf is compatible (via B) with open immersions into W
(precise formulation left to the reader).
is finite and

and W are smooth, and f: V > W
(0.1) (b))

(3) I1If Vv
corresponds to the trace map (cf.

étale, then Tf

T £,0, = f*0V®QW —>

(1)

We could also work with the étale topology, i.e. substitute étale maps for

open immersions.

17
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in the sense that the following diagram commutes:

f*QV > f*mv
f*YV
Te
T HOM(f*ovrww)
evaluate
at 1
Oy > Yy
w

The ()-module @ = {mv} (where the sheaves mv of regular

differentials are as before and the Bi are the obvious maps) has a

natural canonical structure (cf. example (2.1.2)). Moreover (2.4)

says that for any coherent ()-module w=={wv}, the canonical

structures on w are in one-one correspondence with (-module

isomorphisms A : w —> %, the structure on w corresponding to X
being obtained by pullback from the natural one on ®. Thus the
notion of canonical structure is simply a characterization of W, up
to isomorphism. And the proof of (2.2) shows that statement (0.23)
above is equivalent to:

THEOREM (0.2A'). There exists a canonical f-module (i.e. a
coherent ()-module together with a canonical structure).

But what is the point of all this elaboration? It's that we
have isolated the properties needed to show how W relates to
existing duality theory, and to prove (0.2), as we shall now see.

We define a dualizing structure {ev} (V proper) on a coherent
{-module w in a manner similar to that used above for W - cf.
Definition (4.1) for a precise statement. Given (0.2B), Remark (4.8)
says that the dualizing structures on ®w are in one-one correspond-

~ ~

ence with (-module isomorphisms A : w —> W.

Thus we have a one-one correspondence between dualizing

18
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structures and canonical structures. We can also describe this
correspondence by the following statements (0.3A) and (0.3B), which
are together equivalent to (0.2A') and (0.2B).

THEOREM (0.327) (cf.(4.2)). There exists a dualizing {-module
(i.e. a coherent {)-module together with a dualizing structure).

THEOREM (0.3B) (cf. §6). Every dualizing (-module ({wv}, {ev})
has a unique canonical structure ({Yv},{Tf}) such that

(a) for projective space P =.Pi (d 2 o), the composition

*p

1% ()

1@, 9,) > 1d@,up) —L—> k

is the canonical isomorphism ; and

(b) for any finite separable map f : V + W of proper
d-dimensional k-varieties, if tf : fLw

> W,

v W is Tf followed by
"evaluation at 1", then the following diagram commutes:

q e
B, £huy) —— > 1, 0)
eW
\%
a
H (V,(L)V) -——-e;——> k

Remarks. (0.3.1) The passage from dualizing to canonical
structures described in (0.3B) respects ()-isomorphisms, in

the following sense. If w, w' are two dualizing modules, and
(vy,T), (y',T') are the corresponding canonical structures given by
(0.3B), then the unique (-isomorphism A : w > w' given by (4.7)

coincides with the isomorphism of (2.3), because by uniqueness in

(0.3B) we see that (y',T') is the canonical structure obtained from
(v,T) by "push forward" via A (cf.(2.4)). It follows that the two
foregoing correspondences between dualizing and canonical structures
(one via(0.2B) and isomorphisms A : w + W, the other as in (0.3B))

are the same.

19



J. LIPMAN

(0.3.2) The equivalence of (0.2) and (0.3) can be seen as
follows. Trivially (0.3A) and (0.3B) imply (0.2A'), and (0.2A) and
(0.2B) imply (0.3A). Given (0.3A) and (0.3B), hence (0.23a),
Corollary (2.3) provides an isomorphism of ()-modules A : w -=—> T
which is compatible with the respective canonical structures; and the
existence part of (0.2B) follows easily (use X to push the
dualizing structure on w forward to ). Similarly, using (4.7)
we see that existence in (0.2B) gives existence in (0.3B). The
corresponding implications for uniqueness can be proved in a like
manner with the help of (2.4) and (4.8).

(0.3.3) We have already noted that (0.2) = (0.1). On the other
hand, (0.2) can be deduced from (0.3A) and (0.1). For if w 1is a
dualizing {)-module, then for each proper V, Wy is torsion-free of
rank one (cf.(4.4)), and so v (which one checks to be non-zero)
corresponds to an 0V—homomorphism QV > Wy which becomes an
isomorphism when tensored with the constant sheaf k(V) of rational

functions. The inverse of this isomorphism takes w isomorphically

A%
~ - d _oas
onto sn OV submodule Wy of the constant sheaf Qk(V)/k (d = dim V),
and EV contains the image of the natural map
Q., > Qd . For an arbitrary variety V, choose a compactification

\% k(V)/k
VcV (cf. 54), and set

~ ~
mv = u)‘-] |V.

Using (0.1) and the defining properties of a dualizing structure, one
can show in a straightforward -if somewhat tedious- way that this

% does not depend on the choice of V, and satisfies (0.2A) and

\Y
(0.28). M)

In summary, we have indicated the following implications:

[t0.38) + (0.1)] « [(0.2a) + (0.2B)] & [(0.3A) + (0.3B)]

1
( )For verifying (0.2A), note that any finite map

f : U = Spec(C)*Spec(B) = W

has a compactification f U, > W (cf. (5.4)), which may be assumed to be
finite (replace U; by Spec(fl* Oul)}
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(0.3.4) Let w be a dualizing module. In [E, p.34, Théoréme]

ElZein defines a canonical map

the fundamental class of V. (The existence of such a map was
asserted by Grothendieck in [G2, p. 114]). This map expresses the
basic relation of differential forms to duality theory. It appears
quite naturally in our setup, because as we have seen w is

canonically isomorphic to @ and, as we have also seen, there is a

natural map

d ~

d .
G/ > By © G (V)/k

Of course if V 1is proper, then Cy corresponds to J . For any
v, if Vo is the smooth part of V, then Cy is the v unique
extension to V of YV , where <y comes from the

o

canonical structure on ®w given by (0.3B). A more complete
discussion (including an explanation of the terminology "fundamental

class") is given in §3.

Statements (0.3A) and (0.3B) are consequences (more or less) of
[RD, p. 383, Corollary 3.4]. However one of our main purposes in
this paper is to provide a proof of (0.3) for which loc. cit. is not

a prerequisite. (We use instead the simpler, though less flexible,
duality theory given by Kleiman in [Km 2].) The other main purpose
is to describe the connection between local and global duality, via
residues (cf. [RD, p. 386, Proposition 3.5]). 1In fact, what was
referred to in Remark (ii) following (0.2B) as the "basic difficulty"
(which becomes for (0.3B) the problem of defining Yy for non-proper
smooth V)(l) will be resolved by means of this connection (cf. §9).

(I)We might like to define Y, via [Km 2, p. 55, Prop. 3.3]; but as far as we
know, a smooth V may not have a Cohen-Macaulay compactification, at least if k
has positive characteristic.
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More specifically, two principal ingredients of our proof are
Theorem (9.1), which asserts roughly that local duality is induced

by global duality, and the following primitive residue theorem,

proved in §§7-8 by means of explicit constructions.

Let %g be the collection of all d-dimensional regular local
k-algebras R whose residue field R/mR is finite over k (mp =
maximal ideal of R), and such that the universal finite differential
module Qé/k exists (i.e. there is a k-derivation R =+ Qi/k which is
universal for k-derivations of R into finitely generated R-modules

cf. e.g. [SSl, §1]). For RG.‘EZ set
_ a5l
Qp = AR(QR/k).
THEOREM (0.4) ("Primitive Residue Theorem"). With preceding

notation, there is a unigue family of k-linear maps

. g °
resp : H,nR(nR) - k (R€Zy)

(where Hi1 denotes local cohomology) such that:
R

(a) If R is the completion of R-—so that Qﬁ is the

completion of QR [sS1, p. 141, Korollar 1.6) and
Hd (Qy) = Hd (.) — then res_ = resz
Mg R g R R ’

(b) If R, R' € %g , and R + R' 1is a k-homomorphism via

which R' Dbecomes a finite étale R-algebra, whence QR' = QRQRR'

and
a 4
H (Q,,) = H_ ()8 R' ,
Mmoo R m.RR
then
resp, = resRo(l®trace).
(¢) If x is a closed point of the projective space P = Pi
and R = QP x ! then the following diagram (with J the canonical
! r
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isomorphism) commutes:

a _ 4 canonical
B () = HY (%) SRl s i, qp)

resp J
1P

¥

k

Remarks. It should be noted that while this result as stated

contains a (global) definition of the (local) maps resR(if P is

assumed known, since every complete R € %3 is étale over some
(QP,X)A), the proof itself begins (§7) with the standard purely local
description of resp. which is then used in (8.4) to define .

P
The above mentioned Theorem (9.1) is proved by reduction to the case
of projective space, where, in view of (a) and (c) of (0.4), it

amounts to the following explicit version of local duality (cEf.
Theorem (7.4)):

If R € %g is complete, then the pair (QR,resR) represents the
Hd

k( me

functor Hom (G) ,k) of finitely generated R-modules G.

The preceding facts are summarized in the following stronger
Residue Theorem, which is the central result of these notes.

(In §10 we will give a more general "relative" residue theorem,
and in §12 some consequences of the form

S residuev(something) = 0. )
vev
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Let %d be the collection of all d-dimensional local domains
R which are localizations of finitely generated k-algebras and whose
residue field R/mR OnR = maximal ideal of R) is finite over k.

As before (cf. (0.23)), we denote by @ the f-module of regular
differential forms. For any R € %d’ R = Cn where C 1is an
integral domain finitely generated over k and ®» is a prime ideal
in C. We define T, to be the localization (T

R C/B)b
is as in the remarks preceding (0.2A); then (0.2A) implies that the

, where mC/B

R-module %, depends only on R. If S o R is a domain which is a

R
finite R-module, with fraction field separable over that of R, then

we define

| t(sv) c ER}

(cf. definitioa of mC/B)’ and check that if Si(l < 1 < n) are the
localizations of S at its various maximal ideals (so that Si € %d)

then wsi is the localization (wS/R)®SSi. Note that if m, = msi ’

then the trace map T induces a map

;| d via T d
(0.5) ® Hp (@, ) = Hp(Wg p) ————> Hy (T)
i=1 ™ 5§ Mg S/R R R
We can now state the
RESIDUE THEOREM (0.6). There exists a unique family of k-linear
maps
resT : HY (B.) » k (R € X))
R moR d
satisfying the following conditions (a) and (b)
(a) (Normalization). If R € %d is_regular, then res}
coincides with the map res of Theorem (0.4) (see also the

R
remarks following that Theorem).

(b) (Trace property). For any R,Si as above, the following
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diagram commutes:

d ~ cf. (0.5) d ~
Hm_(“s') > Hp (wR)
i i R
res res”
Si R
k
Furthermore:
(c) (Local duality). If =~ denotes lnR—adic completion, so
that
d ~ a 2
Ho (W.) = H . (W)
m
. R "% R

then the pair (mR,resE) represents the functor Homk(ng(G),k) of
3 R

finitely generated R-modules G.

(d) (Globalization). There exists for each proper

d-dimensional k-variety V a unique k-linear map

T, Hd(v,mv) >k

such that for each closed point v € V, the following diagram

commutes:

d ~ canonical d ~
Hv(w ) ———————> H (V,wv)

resy ()
9V
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(e) (Global duality). For each V as in (d), the pair

(%V,EV) is dualizing, i.e. represents the functor Homk(Ha(V,g),k)

of coherent () -modules 3.

Remarks. (0.6.1) One can readily derive (0.6) — except for
(c) — from (0.2B), using (0.6) (d) as a definition of re§;, which
makes sense by straightforward considerations following,from the
commutativity of (0.2.1), cf. the proof of (9.1) (a). (For (0.6) (b)
note that finite maps have finite compactifications, cf. footnote in
Remark (0.3.3); for (0.6) (a), use (0.6) (b) to reduce to the case

where R 1is the local ring of a closed point of IPi e .) Then
(0.6) (c) is a restatement of (9.1) (b).
Conversely, in view of (9.6), (a), (b), (d) and (e) of (0.6)

easily imply (0.2B).

~

(0.6.2) The existence of the family resp of (0.6) will be
proved here in a roundabout and indirect manner, via global
considerations. A more satisfying local approach is given, under
restrictive hypotheses, by Kunz [K2]. He defines mS and the map

res

for any complete local Cohen-Macaulay k-algebra S with residue
field finite over k, k being assumed to have characteristic zero.
He has informed me that it is possible to eliminate the Cohen-
Macaulay hypothesis by the use of techniques such as are found in
[K1, §4].

Of course even when (a), (b), (c) of (0.6) are worked out in a
purely local way, proving (d) and (e) is still difficult.

In §§11-13, we give various complements to the Residue Theorem,
as described in their respective introductory remarks. Suffice it
here to mention that §13 gives an alternative approach to the
construction of E, via embeddings and the "fundamental local

26



INTRODUCTION

homomorphism" (Theorem (13.5)); and the essential local property of
residues for this purpose is given in Theorem (13.12). (In the
simpler approach described in this Introduction, the corresponding
principle ingredients were Noether normalization, "evaluation at 1",
and the "trace formula" (0.4) (b) for residues.)

It should be noted that all the main results can be extended to
varieties over non-perfect fields, or indeed over regular local rings.
The main technical requirement for such an extension is an adequate

notion of the trace of a differential, with respect, say, to

inseparable extensions. Such a notion is available (cf. [K3], [A],
[L]); and is treated in great detail in an unpublished manuscript
of Kunz.

Other topics which could have been dealt with are the behavior
of @ with respect to smooth morphisms, and the corresponding local
property of residues (cf. (R4) on p. 198 of [RD]); and an explicit
local description of the relative residue map p of Theorem (10.2)
(cf. [Ke]). I hope to return to these questions - in a more general

context - at a later time; but for now, enough is enough.
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I. CANONICAL MODULES

§1. Zariski sheaves -modules

(1.1) Let k be a perfect field, and let ¥ be the category
of k-varieties, i.e. non-empty reduced irreducible separated
k-schemes of finite type. For fixed V € ¥, we will often consider
data defined in terms of various open immersions V » W, and so it

will be quite convenient to use the notion of Zariski sheaf on 7,

which we now recall.

Let WZar be the subcategory of ¥ having the same objects as
¥ and having the open immersions in ¥ as its morphisms. Let
?:WZar + (abelian groups) be a contravariant functor, and suppose
that for each V € WZar’ F(V) has an Q(V) = I(v,0,)-module
structure, and further that for each open immersion 1i:U - V the
corresponding map ¥ (V) -~ #(U) is a homomorphism of ((V)-modules
(f (U) being an ((V)-module via the ring homomorphism ¢ (V) - {(U)
corresponding to i ). For each V we denote by ?V the
restriction of ¥ to the subcategory of WZar whose objects are
the open subvarieties of V and whose morphisms are inclusion maps.
Then ?V is a presheaf of () ,-modules; and we say that ¥ is a

v
Zariski sheaf of Ov-modules - or, for brevity, that ¥ is an

0-module - if ?V is a sheaf in the usual sense for every V.

We say that ¥ 1is a quasi-coherent (resp. coherent) (-module

if ?V is a quasi-coherent (resp. coherent) 0v-modu1e for every V.

The notion of homomorphism of f-modules is defined in the

obvious way.

Examples. (1.1.1) The functor 0 such that, as above,
OWw) = F(V,OV) and (0(V) + 0(U) 1is the natural map for open
immersions U + V, 1is a coherent {-module. For each V, the

restriction Ov is identical with the usual structure sheaf.
(1.1.2) There is a gquasi-coherent (-module J with
#(v) = field of rational functions on V
(a field which we also denote by k(V)).

(1.1.3) The tensor product % ®0f9 of two (-modules is defined
in the obvious way.

28



CANONICAL MODULES

(1.1.4) For each V let Qé/k be the usual sheaf of

. . . . e _ e 1
relative Kdhler differentials; and for e =2 0 1let QV/k = on(nv/k),

the e-th exterior power. Set

— d im v ” s n - " ] 3 n
Q(v) = F(V,Qv/k ) ("dim" = "dimension").
Then § is, in an obvious way, a coherent {-module. For each V,
we have
- Qdim A4
O = Sy -
(1.1.5) For each V, let &V be the sheaf of regular

differential forms on V, as described in the Introduction

(cf. (0.2A)). Then there is a coherent {)-module ® such that, for
all v,

wv) = F(V,&V) .

(The definition of (V) » w(U) for open immersions i:U » V is
left to the reader.) 1In this example, the two possible meanings of

the symbol "&V" coincide.

(1.2) The main reason for introducing (-modules into this
exposition will not emerge until §4, where we deal with dualizing
0-modules (cf. Definition (4.1)). As mentioned in the Introduction,
one of our principal results will be that the {-module & of

example (1.1.5) is dualizing.

(1.3) The category of f-modules is equivalent to the category

whose objects are: families of (sheaves of) Ov-modules (?V)VEW

together with families of isomorphisms Bi:i*?v - ?U (i:U » V an
open immersion) satisfying the transitivity condition
= 1 *
le Biol Bj

vis-a-vis couples of open immersions U Iy v 5 w.

More precisely (but with some details left to the reader):
If ' 1is an 0-module, and i:U » V is an open immersion,
then there is an OU—isomorphism
veixFr _ 7~ '
Bj:i*Fy — 7

corresponding by adjointness to the obvious map ?& + i,¥'; and for

any pair of open immersions U —3 V —23 W the following diagram
commutes:
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EELYAl —_ s '
el Rt 2 GEOLE S
i*R! v
1y SH!
P kG - Pl
ljv Bl? > fU

And conversely:

Suppose given for each V € ¥ an OV

open immersion 1i:U - V an OU—isomorphism

-module ?V' and for each

Bi:i*?v — ?U

such that for any pair of open immersions U —i% v —19 W the
preceding diagram, with ¥%,8 in place of %' B', commutes. Then

there is a functor ¥%': + (abelian groups) defined by

l”Za.’(‘
Frwy = r(v,?v)

and (for open immersions 1i:U - V) by

FULY T (V,F) > T(U,Fy)

I I

Frwv) F'w)

N ;%
canonical > (U, 1 ?V) via Bi

and this %' has an obvious (-module structure. 1In fact for each

V there is an OV—isomorphism

. ~ []
ay:fy, = 7Y
such that for any open subset U c V, with inclusion map i:U > V,
uv(U) is given by

ay (U) :T(U,7) = T(U,1i*F) —;;;@;~—9 ru,7,) =7'(U) = T(U,F;

and moreover for any open immersion 3j:V > W, the following diagram

commutes: 8
s % J
3*Fy - 7y
*
7% l“v
Sk N ]
"7y B! > Iy
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(1.4) Let ¥ be an (-module, and let R be a (commutative)
local domain with maximal ideal m, such that R is a localization
of a finitely generated k-algebra. We can then define an R-module
., the stalk of ¥ at R, as follows:

There exists a k-morphism

p:Spec(R) + V

where V € ¥, such that the corresponding map

OV,V + R (v = p(m))

is an isomorphism. We order the collection of all such ¢ by
setting o; 2 o, if there exists an open immersion i:V1 >V,
making the following diagram commute:

ooh
Spec (R) l i
Va

o

Such an i, if it exists, is uniquely determined by ¥y and Py

[EGA 01, p.311,(6.6.1)(i)]. Furthermore [ibid, p.312,(6.6.2),(6.6.4)]
shows that for any ¢;, ¢, there exists a P53 with P3 = @y

®3 = p,. Now if ¢; = ¢, then corresponding to 1i:V; -V, we have

1 2
a map ?(Vz) -+ ?(Vl); and thus we have a filtered inductive system.
We can then set
?R = lim ¥ (V)
—
P

The following assertions are easily checked.

(i) Let K be the fraction field of R, and d the

transcendence degree of K over k. Then there are natural

isomorphisms
R —> O
K —> Fx
ed =5 g
R/k R
(ii) 7R is in a natural way an OR-module, hence (by (i)) an
R-module.
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(iii) For any ¢ as above, with v = p(m), there is a natural

isomorphism of R-modules

R@o 7 — fR

§2. Canonical {-modules

DEFINITION (2.1). A canonical 0-module is a guasi-coherent

0-module w together with the following data - which we call a

"canonical structure" on w:
(a) an isomorphism of functors
Y:Q|”0 > wIWO

where ¥, is the full subcategory of ¢ whose objects are all

0 Zar
the smooth k-varieties, and Q is as in (1.1.4);

(b) for each finite surjective map £:V > W (in ¥) which is
separable (i.e. the corresponding function field extension
k(W) < k(V) is separable), an f*Ov—isomorphism

Toifu, ———> Homow(f*ov,ww)

> W,

whose composition with "evaluation at 1" we denote by tf:f*wV W

these data being subject to the following condition (which states,

roughly speaking, that tf is generically identical-via y-with the

trace map Tt for differential forms):

(2.1.1) Let £f:V

¥

W be as in (b). Let v be the generic

point of V, set k(V) = OV v (the function field of V), and
4
Qk(V) = QV,V' Let V0 c V be the open subvariety consisting of all
the smooth points of V, and set
Yo T Ty, vitkw) T Y,y

Similarly define (with w the generic point of W)
Y Ok (W) > Oy

Then the following diagram commutes:
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= ._.._—__) =
k() @y () S (w) 2 (v) Yy wy,y = Feuydy
T= trace ®1 tf,w
==
k(W) ®y (1) U (w) w T, YW, w

Remark. Of course the f*OV—isomorphism T¢ and the

Ow-homomorphism t determine each other; we can specify a

canonical O—modulefby (w,Y,T) or by (w,Y,t).

Example (2.1.2). The (-module & of regular differential forms
(cf.(1.1.5)) has a canonical structure. For V smooth we have
&V = Qv (cf. [Kl, Korollar 5.2], whose proof holds in the present
context) so that Yy may be taken to be the identity map. As for
tf, we have, by [K3, p.69, Korollar 3.7], with the sheaf of

meromorphic forms Q = Q ®0 7 (cf.(1.1.2),(1.1.3),(1.1.4)), that

the image of f*&v c f*ﬁv under the trace map T:f*ﬁv > ﬁW is
contained in ., so that we can take t. = T[f*(ﬁv). To see that
the corresponding map Tf:f*wV +fwm0 (f*OV,ww) is an isomorphism is
a local problem, easily settled by c“oosing (locally) a Noether
normalization of W and applying [K3, p.56 Satz 2.2 and p.6l, Satz

2.12].

Remark (2.1.3). If w is a canonical {-module then w is

coherent, and for any V € 9, w

v satisfies the Serre condition (Sz).
{In particular, Wy is a torsion-free Ov—module.)

Proof. The question is local, so we may assume that there
exists a finite surjective separable map £f:V - W = Spec(B), where
B = k[xl,...,xd] is a polynomial ring; then (a) and (b) in (2.1)
give an f*OV-isomorphism

fruy — Hm%%(f*O U
and we see easily that Wy is coherent and that f*wv satisfies
(Sz), whence [EGA IV, (5.7.11)] Wy satisfies (82). Q.E.D.

We shall now see that any two canonical (-modules are
canonically isomorphic.
Let w be a canonical (-module, and set
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w = w®0 A
(cf. (1.1.2),(1.1.3)). Similarly set
Q = Q@o z

(sheaf of highest order meromorphic forms).

Clearly vy induces an isomorphism

QIWO e wIWO

which extends to an isomorphism

?:Q 5w .
We have canonical maps Q - ﬁ, w + w. Moreover for any V,
Wy * GV is injective because Wy is torsion-free (2.1.3). We
consider then the composed map
=-1

)\:w->a>——y-—)f_2

which gives an isomorphism of w onto an f-submodule of .

LEMMA (2.2). Let V = Spec(C) be an affine k-variety of
dimension d, and B = k[xl,...,xd] a polynomial k-subalgebra of C

such that C is a finite B-module and the corresponding extension
of fraction fields k(B) < k(C) is separable. Then

(2.2.1) M) (V) = (v € 8g gy s lTiov) € 9g )

where Tt . is defined by

d
k(B) /k°

d trace ®1

(2.2.2) T:Qd —_—

x(c)/k =K©8 gy U (m) sk a

d _
k(B)®y (g) % (B) /k~

Remark. What this says is that A(w) = & (cf. (2.1.2)).
However we avoid using ® because we want to make clear that we do
not need here the main result of [K1l] to the effect that the right
side of equation (2.2.1) depends only on C. In fact the Lemma
shows that any proof of the existence of a canonical (-module implies
that result.

Proof. The proof is essentially a matter of unravelling
definitions. Let £f:V - W = Spec(B) correspond to the inclusion
B c C. The right hand side of (2.2.1) is the C-module of global
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sections of the image of
Homow(f*ov,ﬂw) < Hom %w(.f*.%vlﬂw )
under the isomorphism
Homy{W(f* v ) L.y

corresponding to 1. So it suffices to show that the following

diagram (in which unlabelled maps are canonical) commutes:

fhuy T, > Homow(f*ov,ww)
l l \\\:iayw
fhuy via T, > Hom%w(f*%v,ww) Homow(f*OV,Qw)
--1
o | ? via Wvll /
£, — ) Hom%w(f*%  8y)

The only problem is with the subdiagram labelled ?; but this
is easily disposed of by means of condition (2.1.1).

COROLLARY (2.3). If (w,v,t), (w',Y',t') are two canonical
0-modules, then there is a unique (-isomorphism A:w — w'

compatible with Yy and vy', i.e. if V is smooth, then

AV = y&oygl. Moreover this A is also compatible with t, t', i.e.

for each finite surjective separable £f:V - W the following diagram

commutes:
t

f
f*wv > Wy
(2.3.1) f*Av AW
] '
f*wv —————E;———~—9 Wiy

Proof. The first assertion follows from Lemma (2.2) and the
remarks preceding it. The commutativity of (2.3.1) can be checked
at the generic point of W (since wh is torsion-free), where it
follows at once from (2.1.1).
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Remark (2.4). Let w' be a canonical f-module, and let w be
any 0-module. It is easily checked that for any ()-isomorphism
A:w —=> w' there is a unique canonical structure on w such that
A 1is an isomorphism of canonical modules (as in (2.3)). Hence, and

by (2.3), the canonical structures on w correspond one-one to the

0-isomorphisms A:w —= w'.

§3. The fundamental class
Notation remains as in §2.

PROPOSITION (3.1) (cf.[E,p.34]). If w is a canonical

0-module, then there exists a unique (-homomorphism

c =c(w):Q2 > w

whose restriction to WO is y. Moreover c satisfies the

following trace property: if f:V - W 1is finite surjective and

separable, with W normal, then the following diagram commutes:

Q f.*cv

£ v > Lyly

canonical f

% = =
£ (0y) 8% —racoer” Ow®y =% % 7 Uy

Remark (3.1.1). If w' is another canonical {-module,
c':Q > w' is the map given by (3.1), and A:w —> w' is the

canonical isomorphism of (2.3), then

c' = Xoc.
(Since w' 1is torsion free, this need only be checked on WO' where
it is clear.)

Proof of (3.1). This is a straightforward consequence of
Lemma (2.2) and [Kl,p.l15,Satz 5.5]. For completeness we give a
proof which is basically that of loc. cit., dressed up in the

terminology and notation of this paper.

We note first that since Wy satisfies (Sz), cf.(2.1.3), we

have by [EGA IV, (5.10.2) and (5.10.5)1]:
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LEMMA (3.1.2). Let U be a non-empty open subset of V € 7,
with inclusion map i:U > V. Then the canonical map Ppiuy > i,i*uy

is injective; and if V - U has codimension =2 2 in V then ¢

is bijective.

Now the Lemma gives an injection
n:HomOV(QV,wV)<_—9 Homov(ﬂv,i*i*wv)
= i * i* =
Homou(l Qv,l wv) HomOU(QU,wU)

from which we see (taking U to be any non-empty smooth open

subvariety of V) that there is at most one c¢ as in Proposition
(3.1).

To show that such a ¢ exists, suppose first that V is
normal and U < V is the open subset consisting of all the smooth
points, so that V - U has codimension > 2 in V. Then the above

n is bijective, so there exists a unique OV-homomorphism

whose restriction to U is If W 1is any open subset of V

Y.
U
then cV|W and ¢, both restrict to

W YUﬂW on U N W whence, as

above,

For arbitrary V, let m:V > V be the normalization, and let

Cy be the composed map

3 s —_— S A e
(3.1.3) Cy QV canonical TT*QV TxC5 Tx W5 t‘n Yy

Let us show that for any smooth open U c V, Cy restricts on U to

Yg* As above, it will follow that for any open immersion i:W - V,

we have a natural identification i*cv = cyi and then we can define

an (-homomorphism c:02 » w restricting to y on 7
for each V ¢ 7,

0 by setting,

c(V) = Tlcy):T(V,q,) - FﬁY'wV)
[

Q(V) w (V)
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Let 1i:U - V be the inclusion. Apply i* to (3.1.3) to obtain
a factorization

i * ik = i* - 1 * -
i*cy:i QV i W*QV i*ﬂ*CG i*m, g —I;E;——é Wy

[

Uy

So it must be shown that i*tnoi*n*cﬁ =Yg+ Since Wy ’is torsion-

free (2.1.3), this need only be verified at the generic point of U,
where it follows easily from (2.1.1) because, V being normal, we

have
-1
calm T(U) =y _ .
v . l(U)
It remains to prove the trace property. Again, since Wiy is
torsion free, this need only be checked at the generic point of W,
where it is nothing but (2.1.1). Q.E.D.

LEMMA (3.2). Let (w,Y,t) be a canonical {-module, and let

f:Vv - W be a proper surjective map such that the corresponding

extension of function fields k(W) < k(V) is finite and separable

(i.e. f 1is generically étale). Then there is a unique map

tf:f*wV > Wy which localizes (modulo y) to trace ®1 at the generic
point of W (and hence is injective if f 1is birational).

Proof. There is a cartesian diagram

v j )

4

W' ————T———~9 W

with f' finite, i and Jj open immersions, and W - i(W') of

codimension > 2. By (2.1.1) and (3.1.2), the map tf, extends to
the desired tt.
because w is torsion free. Q.E.D.

Uniqueness and birational injectivity of tﬁ hold

#
Remark (3.2.1). If f 1is finite then tf = tf.

The following variant of (3.1) is more general in appearance.
COROLLARY (3.3). With f:Vv » W, (w,Y,t) as in (3.2), there is
a unique map
= cf(w):f*QV > W,

Ce W
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generically equal (modulo y) to trace ®1, namely Ce = tﬁof*c In

v*

particular, if W is smooth we have a unique map f*QV - Qw

generically equal to trace @1 (hence independent of w, if w exists),

namely y;locf.

Remarks (i). Of course the trace map t:£,Q, » O, of §2 gives
rise to a map T':f,Q; > ﬁw; and (3.3) tells us in particular that

' 1lies in Qw if W is smooth. This is well-known

(e.g. [K3,p.69,Korollar 3.7] and [Kl, Korollar 5.2]), but not trivial.
(It depends classically on the "equality of Dedekind and Kdhler

the image of

differents".) Here we have exhibited it as a consequence of the

existence of a canonical (-module.

(ii). (Not used elsewhere). The map Cy is called the

fundamental class on V for the following reason. One of our main

results will be that there exists an {-module w which is both
canonical and dualizing (cf. Introduction). Suppose then that V is
a closed subvariety of a smooth proper (over k) variety X. With

d = dim V, N = dim X, it is well known that (w being dualizing)
there is an isomorphism

~ N-d
Wy ——4>Extox (OV,QX)

(cf. [H, p. 242]). Hence c gives rise to a canonical element via

N-d
Hom, (Q,Ext (0,0, 9,))
OV \'4 ox v tx

N-d
EXtOX (QVI QX)

N-d,.d

N
EXtox (Qy /@0y s Oy /1)

¥

N—d)
X/k

N-d
Ext (0.,, 0
OX

¥

N-d N-d
Hiy| %8 )
N-d

[V]
with supports in V. This way of associating a cohomology class to

where the arrows are canonical maps, and H denotes cohomology

V < X, was introduced by Grothendieck in [Gl]. It will play no

role in this paper; but it is important e.g. in Angeniol's theory
of Chow schemes [A].
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II. DUALIZING MODULES

§4. Existence and uniqueness of dualizin -modules

DEFINITION (4.1). Let w be a quasi-coherent (-module, and for
e wy be the natural

each open immersion i:U » V let Bi:i*wV
isomorphism. A dualizing structure on w is a family of k-linear

maps
d .
BV:H (V,wv) - k (d = dim V)

one for each proper k-variety V, such that:

(i) for each such V the pair (wv,ev) represents the functor

Homk(Hd(V,g),k) of quasi-coherent Ov-modules J; and

(ii) for each commutative diagram

with i, j open immersions and V, W proper over k, the following

diagram commutes:

i*(ef)
. -
i f*wv > i Wiy
(4.1.1) canonical Bi
j *wv BJ > wU

where ef:f*wV > Wy is the map (whose existence and uniqueness is

guaranteed by (i)) such that, with 4 = dim U = dim V = dim W,
el
H (6.)
1 d
B (W, £0) ———F> B (W,0,)

(4.1.2) canonical W

~

d
H (V,0,) ————>
v GV

commutes.
A dualizing f-module is a quasi-coherent {-module together with

a dualizing structure.
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We will see below (Remark (4.4)) that a dualizing (-module is

necessarily coherent.

THEOREM (4.2). There exists a dualizing (-module (essentially

unique, cf. (4.7)).

Proof. We define a quasi-coherent OV-module Wy for each
Vv e? as follows:

- if V is proper over k, of dimension 4, choose an Wy which
represents the above functor Homk(Hd(V,y),k) [Km 2, p.43,Theorem 4];

in particular w, comes equipped with a k-linear map

d
Gv(w).H (V,wv) + k;

- for arbitrary V, choose a compactification, i.e. an open

immersion eV:V + V with V proper over k, cf. [N2] (choose
ey = identity if V 1is already proper), and set
(1)
= K ()=
Wy efug -

In view of (1.3), it clearly suffices for proving (4.2) to find

isomorphisms
B, ri*uy - Wy (i:U = V an open immersion)
such that
(4.2.1): for any couple of open immersions U —iv \Y% 3 W we have
Bji = Bi°i*8j H

and such that moreover

(4.2.2): condition (4.1) (ii) is satisfied.

This will take up most of the rest of this section.

We need the following preliminary version of relative duality

which will be used in this section only in case f' = identity, but
which will also form the basis for §5.

(l)It is possible to bypass Nagata's compactification theorem by first defining

wv only for quasi-projective V (via a projective compactification), then

for arbitrary V choosing an affine covering {Va} , and with the following

results pasting the Wy together to obtain wv.. Then one must verify...
o
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PROPOSITION (4.3) (Deligne). Given a commutative diagram

v' C j }

w' (@ LN

where V and W are proper k-varieties, i and j are open
immersions, and f' is proper, surjective and with all its fibers
of the same dimension, say d, set r = dim W (so_that

dim V = r + 4d), let

d
ef:R f*mv > Wy
be the OW-homomorphism corresponding by the defining property of Wy
to the composed k-linear map
r d r+d
H™ (W,R f*wV) canonical —> H (v'wV) Gv > k
(w, 6 as above, and cf. Remark (4.3.1) below), and for any quasi-
coherent Ov-module 7 1let
_ . d d
e = ®f’?.f*Hom0V(?,wV) _na_tu_rél—) H0m0w (R f*?,R f*ulv)
——— Hom, (RO£,%,u.)
via 6 14 * T W
f w
be the induced f*Ov-homomorphism. Then, with %' = j*¥, we have
that
i*@:f) Homa (F',3*w,) > Hom (RI£1F", i*w )
sL, 0 , ’ v ow' * W
i*f Hom p (F,0,) i*Hom (Rdf*?,w )
* OV v Ow W
. . : (1)
is an isomorphism.
Remark (4.3.1). Since dim W = r, we have, for all q = 0 and

any quasi-coherent (,-module g,

1
(l)i.e., with the notation of [Km 2,p.42], j*wv = f"i*ww.
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8P (w,r¥,9) = 0 (p > r)
and hence the Leray spectral sequence gives rise to a canonical map
w1t (w,R¥, 9 - 85 9(v,%) . Moreover RIf,Y is supported in the
subvariety of W over which the fibers of f have dimension 2= g
(use [EGA III, (4.2.2)] and the fact that § is a direct limit of
coherent sheaves [EGA 01, p.320, (6.9.12)]), a subvariety which, if
g > d, has dimension at most r +d - g - 1, so that

® (w,rIE,9) = 0 (if g>d and p+q =21 + 4d);

and the spectral sequence shows then that the canonical map
v (w,r%,9) - ute

(v,% is surjective.

Proof of (4.3). Note that, £f' being proper, 3Jj(V') is open

and closed in - hence equal to - f-l(i(W')). In particular
(R3£1) e % = i%o (rRYE,).

Now the question is clearly local on W'; so it suffices to
show that i*@ induces an isomorphism on global sections over W',

i.e. that T(i*®) 4is an isomorphism. Also, we may assume, since %

is a direct limit of coherent Ov-modules, that ¥ itself is coherent.

Let I be a coherent Ow—ideal defining the reduced closed
subscheme W - i(W') of W, so that IOV defines a (not necessarily
reduced) subscheme of V whose support is V - f_li(w') =V - j(v").
Then for any n = 0 we have 3j*(I"f) = %', and there is a natural
commutative diagram

H n r‘(('31'1) d n
om, (I"F,w,) ———> Hom (RT£,T°F,u,)

l |

Homv.(?",j*wv) _— Homw.(Rdf;?',i*ww)

I (i*@)
where @_ =0 . For some n and all n = n,, the image of the
n n-n n
natural map wn:Rdf*In? - Rdf*I O is 1 0Rdf*I 07 (cf.
[RD,p.412]); and the kernel Kn of Py is supported on W - W',

whence
Homw(Kn,ww) ~ Homk(Hd(W,Kn),k) = 0;

it follows that ¢ induces a bijection
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Ho (In-nondf Inof ~ dg on
me * ru) — Hom (RT£,I°F,uwy).

In view of this, and of [EGA 01,p.323, (6.9.17)], we see that applying

lim (over n) to the above diagram makes the vertical arrows into
-

isomorphisms. Furthermore the following natural diagram commutes:

N d d d
Hom (I'F ) ——— Hom (R°£,I'F,R°£,u) —p 7 Hom, (& £,17,0,)
& | G

r+d
Hom (H' * (1"f),u"*? w,)) Homk(ar(ndf*x"?) JH (Rdf*u)v) ) 5> Hom, (5" (RO, 1) 0" @)

N f

a

6,|@ Homk(Hr(Rdf*I??),Hr+d(wv)) @ |ow
\\gz\ﬂ |
Homk(ur+d(19?),k) > Homk(ﬂr(Rdf*Iq?)rk)

Here the top row is F(@n); (:)o(:) is an isomorphism by the

definition of and similarly (E>°(:> is an isomorphism. We

Wt
VI
conclude: it suffices to show that the canonical map

(4.3.2) lim Hom, (5*%(1°F),k) + lim Hom (8" (R%£,17%) k)
> >

n n

is an isomorphism.

We remarked in (4.3.1) that the canonical map
A EE (R, 1) > 5T (1)

is surjective; hence (4.3.2) is injective. Surjectivity of (4.3.2)
amounts to the following: if Kn is the kernel of An, then for

some N > 0 the natural map Kn > Kn is the zero map. Again

+N
using the Leray spectral sequence, we see that it suffices to show

that

’Rf, 1"y . R, 17%

is the zero map for g >d and N large. As above, if n is

sufficiently large the image of this map is INqu*In? for any N;
and since qu;In? = 0 (the fibers of f' being of dimension g,
cf. (4.3.1)), we have I'RYf,1"F = 0 for large N. Q.E.D.
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Remark (4.3.3). At the end of the preceding proof it would have
been enough to show that
#P w,’R%, 1""VF) - BP (w,r%E, 17F)
is the zero map for g >d, p+gq=21r +d -1, and N large; and
so it would suffice for such p, g, N that

#P w, 1VR9E,17F) = o,

which is certainly so if for p < r - 1 the generic fiber of £
over any p-dimensional subvariety of W' has dimension
<r+d-1-p (so that for q > d the support of qu;In? has
dimension < r +d - 1 - q). Hence we can weaken the assumption in

(4.3) on the fibers of f' to the following assumption:

if E cV' 1is a closed subvariety of codimension one, then

f'(E) ¢ W' also has codimension one (in other words, the subvariety

{v e v'|dim (£'7L1£'v) > 4}

has codimension > 2 in V').

Remark (4.4). We can see that any dualizing module w is
coherent as follows: the question being local, we need only show
that wy is coherent wgen V 1is projective, so that there exists a
finite map f:V > W = Pk (d = dim V); by the duality theorem on

Pi ([H,p.240], [Km2,p.55]), we know that there is an isomorphism

Wy — Qw;

i = identity, j = identity, ¥ = OV] of (4.3), we have an isomorphism

and then by the simple case [d = 0, £ = f£' finite,

feuy —> HomoW (£40y 0 94)
whence wy is indeed coherent.

* * *

Next, to define Bi and prove (4.2.1) and (4.2.2) we need a

few remarks on compactifications. Given two compactifications

i:tVv > X, j:V > Y we say that j = i if there exists a map £f:Y » X
such that f4 = i. Note that such an £, if it exists, is uniquely
determined by i and j, since j(V) is dense in Y and

OY -+ j*OV is injective. Finally any two compactifications i, j
have a least upper bound, namely the map eij:V + Z where 2 is

the closure of the image of the composed immersion

diagonal iXxj
—_— 3 VX,V ——————3 XX
Y \ ] X ) Y
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and eij is the obvious map.
Now given two compactifications 1i:V =+ X, j:V > Y, we define an
isomorphism
« g% ~ 1 %
uij.j Wy —> 1 wx

as follows:
first, if j = i, then, applying Proposition (4.3) to the
commutative diagram
\% ——i——é Y
0 It

we set

= i* = i*
(4.5.1) uij 1 ®f’0V 1 ef
(notation as in (4.3));

second, for arbitrary i, j, let e = eij (see above) and set

(4.5.2) Miy < uieo(uje) .

The definitions (4.5.1), (4.5.2) agree when Jj = i; in fact
in (4.5.2) we can take e to be any compactification such that

e =21 and e > j, and this does not affect uij’ Indeed:

LEMMA 4.6. (i) For any three compactifications i:V » X, j:V »> Y,

h:V >~ Z, we have

Hij°¥3h T Hin

(ii) Given compactifications 1i:V »+ X, j:V - Y and an open

immersion £:U - V, we have

= *
Mig, g2 = "My -

The (slightly tedious) proof is left to the reader. (The basic

point is that for a composition V —£9 w <> X, with Vv, W, X all

proper and of dimension d, we have egf = egog*ef.)

Finally we can define Bi for an open immersion 1i:U » V. Let

eu:U - U, eV:V + V be the compactifications chosen as at the

beginning of this section, so that
= * )= = * ()=
wU eUO)U wv evwv .

Then evi is a compactification of U, and we set
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B. = u .2 (e,1) *ws

— > e*w=
i eU,evl \Y \Y U'u

i*w, w
v

(4.2.1) is now a direct consequence of Lemma (4.6):

B., = M =

ji e.,e ji ~ Ve ,e i’Ve_ i,e ji
U'"w u’'-v VW
= .*
Biol BJ .
As for (4.2.2), it simply amounts to “ij = B;lij, which again
follows from (4.6) because V and W are now proper, so that ey
and e, are identity maps:
-1
. 0 = . o . = . . .
Bl OBJ Ul’eU ueU'J “13

This completes the proof of the existence of a dualizing 0-module.

Finally, for uniqueness,we have the following analogs of (2.3)
and (2.4).

PROPOSITION (4.7). Let (w,{ev}), (w',{eé}) be two dualizing

0-modules. Then there is a unique ({-isomorphism A:w =5 w'

compatible with 6 and 6', i.e. such that for each proper V, the

following diagram commutes;

d
H (AV)

| d '
H™ (V, wy) > H (V,wg)
(4.7.1) M\ A
k

Proof. For each proper V 1let )\ —=3> w! be the unique

Tw
OV-isomorphism making (4.7.1) commute (XV Vexistsvbecause w and
w' represent the same functor). For arbitrary V, choose a
compactification i:V+ V and set Av = i*AG; that this AV does
not depend on the choice of i follows in a straightforward way

from the definition of dualizing structure and the fact that any two
compactifications have a least upper bound. It is then simple to
verify that the family {Av} gives an (-isomorphism, as asserted.

Remark (4.8). Same as (2.4), with "canonical" replaced by
"dualizing", and (2.3) by (4.7).
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Exercise (4.9). Generalize the results of this section by
using Kleiman's notion of dualizing pair [Km 2,pp.41-44].

(Caution: the proof of [ibid, p.58, example (viii)] is globally,
but not locally, correct.)

§5 Relative duality

As a first step toward the proof of Theorem (0.3B) of the
Introduction, we want to define, for a given dualizing module w and

a finite surjective map f:V - W, a natural Ow—homomorphism

t f*wv > w

£f W

such that the corresponding f*OV—homomorphism
Te:f,ug > HomCh(f*OV’wW)

is an isomorphism.

With a little extra effort, we can deal with arbitrary proper

surjective maps, and prove the following relative duality theorem.

THEOREM (5.1). Let (w,{ev}) be a dualizing (-module; and

for each open immersion 1i:U > V 1let Bi:i*wv > wy be the natural

isomorphism. It is then possible, in just one way, to assign to

each proper surjective map f:V > W of k-varieties an

0. -homomorphism
W———

d . .
9f:R f“”V > Wy (d = dim V - dim W)

so that the following conditions (i) and (ii) hold:

(i) If W (hence V) is proper over Kk, then 6 is the
unique map making the following diagram commute (r = dim W):
r
H (6,)
f
1 (W, R ) HY (W0,
cf.(4.3.1) j/ lew
r+d N
H (VICUV) .ev k

(ii) For any commutative diagram of maps
v e d sy
fl £,
1

w;iaw
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with £, fl both proper and surjective, and i, j both open
immersions (so that Jj(V) is open and closed in - hence equal to -
fIli(W), i.e. the diagram is cartesian), the following diagram

commutes (d = dim V - dim W):

s xpd .
* S *
i*R fl*wvl i*efl > 1 wwl
canonical
N
Rdf*j*wV Bl
1
d
R E£,B.
B
\
\' 4
d
R f*wv ef > Wy

Furthermore, if all the fibers of f have the same dimension

d,(“ then for any quasi-coherent OV—module 7, the f*OV—

homomorphism
d
®f:f*HomaV(?}wv) > Homow(R f*?,ww)

induced by ef is an isomorphism.

Remark (5.2). In case f:V—»> W is finite and surjective, we
set tf = ef, and then taking ¥ = 6V in the last assertion of the
Theorem, we have that the f*Ov—homomorphism

f*wv > Homow(f*ov,ww)

corresponding to tf is indeed an isomorphism. So we have, for w,
condition (b) in Definition (2.1) (without any separability

assumption).

Later on, in the proof of (9.1), we will use the following

trivial case of (5.1):

Exercise (5.3). Let £f:V » W be an isomorphism, so that we
have the canonical identification of functors £, = (f-l)*. Then

(l)cf. (4.3.3) for a weaker assumption.
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= (e Ly *
= Bf-l'(f YRy > ey .

Proof of (5.1). The underlying idea is gquite simple - we will

observe that any proper surjective £f:V - W can be compactified,
i.e. embedded in a diagram as in (5.1) (ii) with Vl ang wl proper
over k. Then efl is uniquely specified by (5.1) (i), and hence
ef is determined by (5.1)(ii); and the last assertion of (5.1) is
given by (4.3). The problem then is to show that:

(5.1.1): ef, as just described, does not depend on the chosen

compactification of f.

So let us begin with some further remarks on compactifications.

A compactification of a map f:V - W is a commutative diagram

jl
vV — Vl
(5.4) £ £1
W—7-—->W
i 1

with Vl' w1 proper over k and il, jl open immersions. Such
compactifications always exist: for example we can first choose
compactifications il:w > Wi j:v > V' of the varieties W, V; and
then we can take V1 to be the closure in V'Xk wl of the graph

of the map ilof (j1 and f being then the obvious maps ).

1
We say that a compactification
3
2
_
\% V2
(5.5) fl lfz
_
W 12 W2

dominates (5.4) if there is a commutative diagram
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/ N

1
(5.6)

/\

>
7

i

rd

]

Note that for commutativity in (5.6), it suffices that gj2 = jl and

h12 =1y for then flg = hf2

0V2 > jz*ov is injective, and

Any two compactifications

because jz(V)
£193, = hf,3,.

(5.4),

that there is a commutative diagram

(for example, as in 84 we can take

image of the composed immersion

W

(5.5) of

a third one: we first choose a compactification

is dense in V

f

13 3

2'

are dominated by
W > W

such

to be the closure of the

: ' _— ;
w Wy W R WXy Wy)

diagonal

2

similarly, choose a commutative diagram
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and finally take V3 to be the closure in Véka3 of the graph of
the map i3of (so that we have obvious maps V3 > W3, V3 > V2,

V3 b Vl...).

We return now to (5.1.1).

We need to consider two compactifications (5.4) and (5.5) of f£;
and since these are both dominated by a third compactification, we
may assume that (5.5) dominates (5.4). The problem becomes then to
show, with reference to (5.6), that the following diagram commutes:

i*p
rRde g2y — 5 ixrs A T
*J oWy 27 Loy 2%
B‘j_l 2 2 2 8
i
2
a . . \
LE A0 318 ® iyl © Tuy
-1
1 RIf 5xp. —— 5 irrdE 0. s it 1
* 1%, 17 F1xtv, Ti¥e. 1%,
1

The commutativity of subdiagrams (:) and (:) is given by (4.1) (ii).
This leaves us with subdiagram (:}, which can be modified and
expanded to:

6
ixgde. o ——— 5 isn,r% L0 f2 i%h,w
2 2%V, 17* 2*7V, 177w,
/[ @ canonical © l eh
a a a "ne,
. s —_ 3 i *
R f*ngV —> ijR (hfz)*wv 1iR (flg)*wV — ijuy
2 2 2 1
6
l canonical| @ I fl
d_ .  epd L epd
R f*jig*wvz > 1IR fl*g*wV2 o > 1{R fl*wvl

The commutativity of @ and . is left to the reader (wV can be
replaced by any OV'-module). As for (:), after dropping the

initial ii's, applying the functor Hr(wl,-) (r = dim Wl) and
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chasing around the commutative diagrams which define eh,ef , and
ehfz, we end up having to show the commutativity of the following

natural diagram (where, again, wV2 can be replaced by any

0V2—modu1e F):
; ® .

r r
H (W) ,h,R fz*wvz) " (W,, R fz*wV2

® ©)

v

)
2

r+d
H (V2,wV

\'4

r d
H (W,,R (hf,) ,w, )
SN ©

This is a technical exercise, (1) best carriedout with the language

of derived categories (cf. remark (5.8) below). Having forsworn

such a luxury, we outline the argument as follows:

For any complex of sheaves

n-1 n
C't ver a8 5 e S, Ll

and any integer e, let oe(C') be the complex

e—l) e+l e+2

e++ > 0 > 0 » coker (§ > C + C > e

For simplicity, write f for f2. Given an Ovz—module 7, let I°

be an injective resolution. There is an obvious map of complexes

odh*f*I' > h*odf*I‘, and taking homology Hd, we get the canonical

map Rd(hf)*? > h*Rdf*?. Hence there is a commutative diagram of

complexes

(0, R, 7) [-d] > hyo f, (I°)
(5.7)

(R4 (hf) ,PU-4] > 0ghef, (1°)

(where, for an object G, G[-d] is the complex which is G in
degree d and 0 elsewhere). Replacing each complex in (5.7) by
an injective complex with the same homology, we obtain a homotopy-

1 : . . :
( )only the simple case d = 0 is used in subsequent sections.
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commutative diagram, from which, applying sections over W, and

then homology Hr+d, we derive the commutative diagram

®

Hr(wl,h*Rdf*?) > Hr+d(v2,?)

® |

Hr(wl,Rd(hf) 5

> w4, 7) :

@

It remains to show that @ = @o. For this, consider a
homotopy-commutative diagram

45,17 [-a] = (RAE,7) [-a] & > 0. f,1°

where o 1is the obvious map, J° and K° are injective complexes,

and B and Yy are quasi-isomorphisms (i.e. they induce isomorphisms

on homology). From this we derive a homotopy-commutative diagram
d . .
(h R £,%) [-d] h,oqf,T
7:\\$ u
L. N NO
| [
M* > N°®
e A
h,J° h,K*

where L°, M*, N° are injective complexes, and «k, A, 4, Vv are
quasi-isomorphisms. (Note that, odf*(I') being flasque, h,y is
a quasi-isomorphism.) Finally, apply sections over Wl to the

. r+d . _

inner square and then take homology H to obtain () = <>(><>.

This establishes the commutativity of the above subdiagram ().
Subdiagram (:) is treated similarly. Q.E.D.
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Remark (5.8). In the language of derived categories, the

basic point in the preceding proof of @ = @o@o® is the
commutativity of the following natural diagram:

d a
(h,RO£,%) [-d] Rh, (R™£,¥) [-d]

’

(8% (hf), ) [-d] ——> o R®hREF —> Rh,o0, REF

(to which one applies Hr+QRF(W1,-)...).

§6. The canonical structure on a dualizing module

We proceed with the proof of Theorem (0.3B) of the Introduction.
So, given a dualizing module (w,{ev}), we want to construct
a canonical structure ({Yv},{Tf}) satisfying conditions (a) and
(b) in (0.3B). The dualizing property of w gives the uniqueness
of t; - or, equivalently, of T - satisfying (b): it must be the
t of Remark (5.2). What is needed then is an isomorphism

£
vielf, < ul9,

satisfying (2.1.1), and such that Y is the canonical isomorphism

when P = Pi (d 2 0). (This canonical isomorphism over P is
well~-known, from numerous points of view, e.g. [Gl,p.149-13,
Théoréme 2], [K2,pp.186-187], [RD,p.204, Corollary 10.2],

[Km2,p.55, Proposition 22]; we will realize it via the residue map

at the vertex of the projecting cone over P, cf. (8.4) below.)

As mentioned before, Yy can be derived from the general duality
theory of Grothendieck, Hartshorne, Deligne and Verdier. But as we
want to avoid using this theory, and anyway wish to bring out
relations between the foregoing material and residues and local
duality, we will rely ultimately on local considerations to be

developed in Chapter III.
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We will now give a local description of Yy which is forced by

the above requirements (so that Yy is unique, if it exists globally);
and then in the remainder of this section reduce the existence
problem to a question of patching (Proposition (6.3)).

Let, then, V be a d-dimensional smooth variety, so that V is
covered by open sets Va each of which admits an étale map h = ha
into P =1Pg [EGA IV, (17.11.4)]. By Zariski's main theorem there is

a commutative diagram

(6.1) 1\ /=ha

A . . = s 1
where 1 1is an open immersion and h is f1n1te.( )

We have an

qp—homomorphism
tracetﬁ;;l:}_l*}_l*f%‘p = 5*0\7®QJP > O e = 9
whence a composed E*OG-homomorphism
hyh*q, —> Hom%(ﬁ*o‘_"%)

_%E; Homqpth*og,gp)

—_— S how=
(1)L W
h

(with Yp the canonical isomorphism). Correspondingly we have an

Ov-homomorphism

h* -
(6.2) h QP > wg
and finally, restricting to Va:
. = h¥* = i*h* i k-
YV .QV h QP i*h QP > i wg _579 Wy
o o i o

(Bi being the natural isomorphism). This Yy is actually an
o . ,

isomorphism, as can be seen for example by completing, i.e.

making the base change

(1)

Such diagrams can also be obtained via Noether normalization, cf. Appendix A.
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Spec(%?,h(v)) - P, (v € Va)

and using the fact that since S = 6 v is a finite étale algebra
’

over R = QP,h(v)’ therefore the map S -+ HomR(S,R) corresponding

to the trace map S » R 1is an isomorphism.

In §9 (following Corollary (9.2)) we will prove:

= a r .- a
PROPOSITION (6.3). If Va, VB' ha.Va >P, hB.VB -+ P are as

above, then the corresponding maps Yy and YVB agree on Va n VB'
o

This enables us to complete the proof of (0.3B), as follows.

YV:QV - wy by

patching together the Ve If j:vV' » V 1is an open immersion, then

Given a smooth V = U Va as above, we can define

Yyr = j*yv: to check this we may assume V = Va and use the diagram
v! J v I,
P
(cf. (6.1)) to define YV" It follows that there exists a unique

{-isomorphism y:Q|W0 —> w|¥, whose restriction to each smooth V
is the above (which coincides with the canonical isomorphism
when V =1).

It remains then to verify (2.1.1) for a finite surjective

Yv

separable map f:V + W. Using (5.1) (ii) (with d = 0) we may

replace W by any open subvariety, so we may assume that there exists
an etale map h:W »> P = Pi
and that furthermore f is étale. Starting as with (6.1), we get

(so that W is smooth, of dimension 4d),

a commutative diagram

v J v
£ lf
W i W
h /E
P
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where i is an open immersion, h is finite, W can be taken to be
normal, ¥ is the normalization of W in the function field of V,
and j 1is an open immersion; and we can use this diagram to
calculate the maps YV' YW'

A little reflection shows then that (2.1.1) (for £f) is
equivalent to the commutativity of the diagram

3 (6.2) ~ F

£, Erh*qp fLog
(6.4) tracef®l tf
h*ap 6.2 > ey

which follows from the (readily proved) commutativity of subdiagrams

@,@, and @ in




III. RESIDUES AND DUALITY

§7. Residues and local duality for power series rings

In this chapter III we develop some local theory - and its
relation to global duality - and use it to prove Proposition (6.3),
which is all that remains for the proof of (0.1), (0.2) and (0.3) of
the Introduction (cf. (0.3.3)).

The "primitive residue theorem" (0.4) is proved in §§7-8. The
connection between local and global duality is then given in (9.1).
As pointed out in (0.6.1), the Residue Theorem (0.6) follows from
(0.2) and (9.1). Finally, in §10, we give a "relative" generalization

of (9.1), and hence of the Residue Theorem.

To begin with we need some notation for specifying elements of
local cohomology modules. Let R be any d-dimensional noetherian
local ring with maximal ideal m, and let U = Spec(R) - m. We
assume d = 1, leaving the trivial case d = 0 to the reader. For

any R-module M, let M be the corresponding quasi-coherent sheaf on

Spec(R). We have a canonical surjective map (bijective if 4 > 1)
(7.1) 17, i) > 1w
If t = (tl,...,td) is a system of parameters in R, and

U, c U is the open set where t. does not vanish, then {U,}, .
i i . i‘l<i<d
is an affine open covering of U, giving a Cech complex which can be

used to compute Hd_l(U,ﬁ). We denote by
m/(tl,...,td) or m/E (m € M)

the image under the map (7.1) of the cohomology class of the Cech
(d-1)-cocycle

0
m/t1t2"'t € H (Ul nu

a ﬂ...n‘Ud,M) =M .

tltZ"'td

Thus any element & € Hg(M) can be represented as a "generalized

2

fraction", in which the denominator is a system of parameters (for
example the system Eé = (ti,...,tg) for some a > 0 depending on
£). The map m p m/E is clearly R-linear, i.e. fractions with a
given denominator can be added and multiplied by elements of R in
the obvious way. To say more we need rules for determining when two

generalized fractions represent the same element of Hi(M).
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LEMMA (7.2) Let R, t, M be as above. Then:

(a) m/E = m'/E (m,m'" € M) if and only if for some n = 0
(n =0 if M has depth d) we have

n,___, n+l _n+l n+l _ ,n+l
(tltZ"'td) (m-m') € (tl ,t2 ,...,td M = E M;
(b) if t' = (ti,té,...,té) is a system of parameters in R,
with
d .
' =
t Zj=1 rijtj (1 <i<d, iy € R)

then, denoting determinant by "det", we have

- '
m/E det(rij)m/g .

Remark. To see whether p/g = q/x, where now p, g are any
elements of M and u, v are any two systems of parameters, choose
a system of parameters t such that tR < uR N VR, wuse (b) to
write p/B = m/t, Q/X = m'/z, and then use (a). Similarly (b)
allows us to fi;d the sum p/g + q/x, viz. (m-+m')/£.

Proof of (7.2). (Cf.[SZ] for an alternate treatment.) We first
recall the Koszul complex interpretation of local cohomology. Let

K, (t) be the Koszul complex determined over R by the sequence E
(cf. e.g. [EGA III, §1.1]). As a graded R-module, K. (t) 1is the

exterior algebra A(Rd); and if €pr---r8y is the standard basis of

Rd, then the differential

s: AP (rY) » AP71(rY) (0 < p = d)
is given by

- -1)i-1 a
6(e; Ae; A...ne, ) = § (-1) t; ey Ac..Aep Aloohe, .

1 2 p j=1 71 J p
We let K'(E,M) be the complex

K'(E,M) = HomR(K,(E),M)
and denote the cohomology of K®(t,M) by

H® (t,M) = H" (K*(t,M)).
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The map cp:Rd > Rd given by

@(ei) = Z?=l rijej (1 < i< 4d)

extends to a map A(p) of exterior algebras
ko9 =AY 25w = ko),

which is moreover a map of complexes. Hence we obtain a map of
complexes K°(t,M) - K°(t',M), and the corresponding cohomology map

M/eM =~ 9 (e,M) > B9 (£, M) ~ M/t'M

is induced by multiplication by det(rij) in M. In particular we
see that the R-modules

1 (7, M) = M/tPM (n > 0)
form an inductive system, with maps

Vop M/tPM > M/t3M (a = b)

given by multiplication by (tltz...td)a_b. As in [G4,p.20,
Proposition 5] we have then a canonical isomorphism

(7.2.1) 1im B (£, ) > w3 00)

-> ~

n
under which m/t is the image of the cohomology class in Hd(t,M) of
the map in Kd(t,M) = HomR(Kd(E),M) which takes the generator
e, Aey, Ao A ey of Kd(E) = Ad(Rd) to m. In other words, after
naturally identifying Hd(E,M) with M/tM, we have that m/t is

the canonical image of (m+ tM) € M/tM.

The assertion (a) of (7.2) should now be clear. (It is well-
known - and not hard to show - that wab is injective if the
sequence t is M-regular, i.e. if M has depth d.)

Now we prove (7.2)(b). 1In case d = 1, set tl = t, ti = t' = rt.
Then HO(U,H) is the module of fractions Mt = Mt" H#(M) is the
cokernel of the natural map j:M -~ M and

tl
m/t = m/t + 3N € M /30N = Hi(M).
So (7.2) (b) follows from the equation (in Mt)

m/t = rm/rt = rm/t"'.

Suppose then that d > 1. We have to show that the diagram
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M/t ————> Hd(E,M)
~N
(7.2.2) det(r, .) l gl = 897 (o, M)
a X
M/t'M —=——> H (t',M)

(with maps as described above) commutes. For this, we look more
closely at the map o. Let §° be the Cech resolution of ﬁIU
associated with the covering {U }. (cf. e.g. [H,p.220, Lemma 4.2]).
If §° is an injective resolutlon of MIU then there is a homotopy-

unique map of complexes ¢° » f°, whence the canonical isomorphism
B ({U;},M) = B (T(U,6)) —=> B (T(U,f")) = H (U,M).
Next let %° be the complex of guasi-coherent sheaves (on Spec(R)):

0 —> K- (E,M)" —_— KZ(E,M)N —_ > ...

l l

%0 %l

(k' (t,M) as above). There is a canonical commutative diagram
(cf. EGA III,p.86])

Pl —s o — .-
~ 7
M|U\ l l

g° gt — ..

and o is the resulting cohomology map

Yroam » 8w, - 18 rwg) - 1w, )
| !

1 (£, 14 w,m) .
Replacing t, ¢°, 4 by t', §'", %'*, we get a similar description
of a'.

As above, we have a map of complexes % - %'* which is
multiplication by det(rij) in degree d - 1. Since EOU = 0U’
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therefore % °|U is a resolution of ﬁIU, and so the diagram

%.U%
I
%‘l' Uvia/g"

is homotopy-commutative. The commutativity of (7.2.2) now follows.

Now we can move toward the definition of the k-linear residue
map

d
resp: Hm(QR) - k
where R 1is a complete reqular d-dimensional local k-algebra with
maximal ideal m such that the residue field R/m is finite over k,
H% denotes cohomology with supports in the clased point m of
Spec(R), and QR = Qg/k is the d-th exterior power of the universal
finite differential module Q;/k (i.e. there is a k-derivation

1 : . . . . . cos
§:R =+ QR/k which is universal for k-derivations of R into finitely

generated R-modules).

This residue map was mentioned by Grothendieck in [G4,pp.59-60],
though it appears to have been around in analytic garb for a long
time [GH,Chapter 5), and might have been known in some algebraic form
to Macaulay (always with R regular). There exist various algebraic
treatments in the literature, for example [RD,pp.195-199], [V,p.400]
and, more explicitly, [B,84] (R regular), [SS2] (R a complete
intersection), [K2,8§2] (R Cohen-Macaulay), [HL] and [Ho]

(R arbitrary); and, from an intriguingly different viewpoint, [L].

Since the residue field R/m is assumed finite over k, and

k 1is perfect, therefore if K is the integral closure of k in R
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then K 1is a finite separable field extension of k, and if

t= (tl,...,td) is a regular parameter system in R (i.e. m = tR)
then R 1is the power series ring K[[tl,...,td]]. Moreover the
universal finite differential module Q%/k is free over R, with basis

étl,...,étd. We define a k-linear map

d
rest. Hm(QR) > k

as follows: as above any x € Hi(QR) can be written as

x = v/t* = (] agter) /e
1

for some Vv € QR and some integer a > 0, where I = (il,...,id)
runs through d-tuples of non-negative integers, o € K,

1t iy i
tT = tl t2 ...td , and 6t = thétz...étd; and we set

rest[x] = trace

~

k/k ®a-1,a-1,...,a-1""

By (7.2) this definition does not depend on the choice of the
representation x = v/E? (note that QR ~ R has depth d). Moreover
we have, with v = ZaItIqs as above,

a a

1 d _
res'g[\)/(t1 ,...,td )]l = traceK/k(a ) (ai > 0)

al—l,...,ad-l

LEMMA (7.3). If t = (tl,...,td), u = (ul,...,ud) are regular

parameter systems in R, then rest = resu.

~ ~

Proof. Since res is k-linear, and since (7.2) (a) implies

L
that
a I a
v/t" = §(a) a t St/
where the sum Z(a) is taken over those I = (il,...,id) such that

0 < iA <a for x=1,2,...,d4, therefore it is enough to show, for

any o € K, that

(7.3.1) resu[aGE/E] = traceK/k(a)

~
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and that for any d-tuple of positive integers (al,...,ad), at least

one of which is = 2, we have
a; ag
(7.3.2) resg[a&;/(tl ,...,td )] = 0.
To prove (7.3.1) it is clearly enough to show that
(7.3.1)" st/t = Su/u .

We can write

d
u, = r..t.

Z‘j=1 1] 3]
with elements rij € R such that det(rij) is a unit in R. Then

a a
fu, = Sr..)t. + .ot
vy Zj:l( T30y Zj=1 Fi3°%5

SO that
6[1 - t(r t £t
de ( . .)6 G R

and hence, by (7.2),

det(rij)ds/:_ = 63/3 = det(rij)GE/E.

Since det(rij) is a unit, (7.3.1)' follows.
For (7.3.2) we use the map

dm ¢ Hm(0%4) > Hm (05,0 = Hm(0p)

induced by exterior differentiation considered as a map of sheaves of
abelian groups over Spec(R). Working over U = Spec(R) -m, we find
that, for g € K,

A b b
(7.3.3 3 1 d
{ ) m[Béul...ﬁui...éud/(ul peeerug]
i b b,+1 b
= (=1)% 1
(-1) biBSul...dud/(ul ,...,uil ,...,udd )
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and it follows easily that

- d, d-1
(7.3.4) resB[%ﬂy] =0 for all y € H““QR/k) .

Replacing u by t in (7.3.3), we see with 0 < p = characteristic
of K that if a; Z 1 (mod. p) for some i then for any a € K,

a a

1 d

othl...étd/(tl ,...,td )

In particular this completes the proof when k has characteristic

is 3ny for some vy, so that (7.3.2) holds.

zZero.
Moreover, we have an induced map

d, d-1

Tes, : H%(QR)/amHuﬁQR/k)

=d
t = Hm(QR) + k.
To treat the case a; = 1 (mod. p) for all i (where now we may

assume p > 0) we consider the exterior algebra Q° as a

= ot
®n>0"r/k
complex via the exterior differentiation 3, so that the homology

H' =@ H™@Q")
n=0

is a graded anticommutative @Z-algebra, with gz = 0 for all & € Hl.

Since exterior differentiation is Rp-linear, we may consider H® to
be an R-algebra via the Frobenius map F : R ~» RP (F(r) = r?  for all
r € R). Then there is an R-derivation y : R ~» Hl given by
p-1
Y(r) = homology class of r §r ,

whence a homomorphism of graded R-algebras (the "inverse Cartier

operator")

In particular we have an R-homomorphism

-1
c : QR > QR/SQ

da-1
R/k
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inducing

-1, .4 a a-1, _ =d
m ¢ Bm(Qp) > Hm(Qp/30771) = Hm(2q) .

(For the last equality, use the fact that 3 is Rp-linear, and that

+ .
H% 1 vanishes on RP-modules.) One checks, for B € K and for
non-negative integers el,...,ed, that

e.+1 e.+1 e.p+l e p+l
-1
(7.3.5)  Cp(8u/(a, b ,...,u @ )1 = BPew/(t L u )

(mod. image of 9py)

and consequently that

(7.3.6) ?EEE(C;}[z]) = (resE[z])p for all z € Hp(2p) -
Now set

vy = sup{n|p" divides ai-l}
and

V = min Vv,
l<i<d
so that v < » if some a; >1., If v = 0, then some a; is Z1
(mod p), and as above (7.3.2) holds. Then, using (7.3.5) with t in
place of u, and (7.3.6), we see by induction that (7.3.2) holds for
any value of v
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It makes sense now to define
res_:HY () > k
R MR

by resp, = res, for any regular parameter system t.

We have then the following form of local duality:

THEOREM (7.4). Let R be a d-dimensional complete regular
local k-algebra, with maximal ideal m, such that [R/m:k] < « ;

’

_ od .
and let QR = QR/k be as above. Then the pair (QR,resR) represents
the functor

H'(G) = Hom, (Hm(G), k)

of finitely generated R-modules G.

Proof. Since H' 1is left exact, we have a natural functorial
isomorphism

H'(G) -=—> HomR(G, H'(R))

(cf. [G4, p.44, Proposition 1.1]). 1In particular, corresponding to
resp € }P(QR) we have an R-homomorphism

o:QR ——> H'(R) ;

and by running through definitions we find that (7.4) simply asserts
that o is an isomorphism.

If t 1is any regular parameter system in R, then one checks
that o is the inverse limit (cf. (7.2.1)) of the maps

n n
On'QR/E QR > Homk(R/E R, k) (n > 1)
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associated with the pairings
n n
pn.QR/E QR x R/E R + k

given by

n n _ n
P (VIE Qp, T+E'R) = res (rv/th).

~

Using the k-bases

3,2 aq

{tl ty ety 6t16t2...6td} 0<a; <n
b. b b

{tllt2 ...tdd} 0 < bi < n

of QR/EnQR’ R/EnR respectively, we see at once from the definition

of resx that the pairing °n is non-degenerate, i.e. %n is an

isomorphism. Q.E.D.
As a formal consequence of (7.4), we have a more general

appearing version of local duality:

COROLLARY (7.5). Let R be any d-dimensional complete local
k-algebra, with maximal ideal m, such that [R/m:k] < . Let S

be a d-dimensional complete regular local k-subalgebra of R, with

maximal ideal n, such that R is a finite S-module. Let w = w
be the R-module

R,S

w = HomS(R,QS)
and let e:w -+ QS be the S-homomorphism given by "evaluation at 1".
Let p =p be the composition
—_ R,S
E3(w) = 13w —— 13 ——> &
m n d n''s res :
Hy (e) S

Then the pair (w,p) represents the functor Homk(HgJG),k) of

finitely generated R-modules G.
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§8. The residue theorem for projective space

In this section we establish the "primitive residue theorem"
(0.4). For this, we will define the canonical isomorphism (for
projective space P =:Pi)

~

d
: H@®P,Q) — k
LP O

using the residue map at the vertex of the projecting cone over P
(Proposition (8.4) below), and then the theorem will come out of
Lemma (8.6) which describes a canonical cohomology map via éech
cocycles. 1In essence this proof is closely related to the one
sketched in [RD,p.200,Proposition 10.1]. Another proof, based on
the Cousin complex, can be found in [K2,pp.186-187].

Using res, as defined in §7 for local rings of the form
R = K[[tl,...,td]] € %g, and then (a) of (0.4) as a definition
of resp for non-complete R € %g, we can reduce (b) of (0.4) to
the complete case, which is readily handled (details left to
the reader), because any étale K[[tl,...,td]]—algebra is of the form
K'[[tl,...,td]] with K' finite and separable over K, and the

trace is transitive:

traceK./k(a) = traceK/k(traceK./k(u)) a € K'.

The rest of this section is devoted to a proof of (0.4) (c). We
begin by recalling some explicit descriptions of differentials and
cohomology on d—dimension?l projective space P = Pi (d = 1), leading

up to the definition of LP.

For any graded module M over the polynomial ring
k([X] = k{xo,xl,...,xd], let M be the corresponding quasi-coherent
sheaf on . 1In particular we consider the module of Kdhler
differentials Qi[x]/k’ graded so that the free generators Dxi
(D = universal k-derivation, 0 < i < n) have degree 1. There is
a canonical exact sequence of qp-modules [AK,p.11], [H,p.176]

1 ~]1 N
(8.1) 0 — % —> Yxyx > b 0
where £ comes from the derivation of QP = (k[x])™ into

~1
Qk[x]/k
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1
k[X1/k
homogeneous, of degree zero); and n is induced by the "Euler

induced by the universal derivation D:k[X] -+ Q (which is
derivation" of k([X] into itself, i.e. the derivation taking any
homogeneous f of degree n to nf. If Y € k[X] is a linear
form, and AY = k[Xo/Y,...,Xd/Y], then over Spec(AY), the comple-
ment in P of the hyperplane Y = 0, we can describe (8.1) as
follows: we continue to denote by D the natural extension of D
. . 1

to the ring of fractions klxly, and let G.QP > Qp/k be the
universal derivation; the module of sections

1 _ ~1

() = P(Spec(AY),Qk[X]/k)

consists of elements of degree zero in the graded k[X]Y—module

1 1 -1 1 -1
Q =Q _ = (A, [Y,Y "]l®, Q )eA Y,y “IDY,
k[X]Y/k Ay ¥,y 1]/k Y A, AY/k

and hence is the direct sum of the A -module generated by

Y
{D(Xi/Y)}OSisd and the (free, rank one) A,-module generated by
Y'lDY; and, over A

Y
v’ (8.1) corresponds to the split exact sequence

of A,-modules

Y

(8.2) 0 anlxy/k_TYaal(Y) A >0

given by
EY(Sf) = Df (f € AY)
Ny (D(X,/Y)) =0 (0 < i< d)
nY(Y-lDY) =1 .

From (8.1) and (8.2) we obtain a canonical isomorphism

(8.3) vty = Mgpendng > A e = T e

which is given over AY by

(1) 1 )
F/k
cohomology class of qp(l) [H, p.367, Ex. 1.8].

The equivalence class of (8.1) in Ex\';(%,ﬂ = HlGP,%:;/k) is the
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1

w(6f16f2...6fd) =Y DYDlef ...Df

2 d

Now let R be the localization of k[X] at the maximal ideal
m= (XgrXyrew-sXg)k[X] and let m=MR be the maximal ideal of R.
For a graded k[X]-module M, let M* be the quasi-coherent sheaf
on A* = Spec(k[X]) - M} corresponding to M. There exist

canonical surjective homomorphisms

1% P ~ p+l
6¥: @ H (P,M(n)) —— H (M) (p =2 0)
nez m Mg

(bijective if p > 0), arising as follows: any finite sequence

£ = (fo,fl,...,fm) of positive degree homogeneous elements in k[X]
such that k[X]/(fO,...,
over k defines an affine open covering ¥* = (U*,...,U;) of A¥*,
with

fm) is a finite-dimensional vector space

U = {x ¢ J?Ifi(x) # 0} (0 <1< m);
and an affine open covering ¥ = (Uo,Ul,...,Um) of P, with

Uy = ly €P|£;(y) # 0} (0 <i=<m.

Then there is a natural identification of Cech complexes

€ (U, & M(n)) = €7 (U, M%)

(cf. [EGA III,§2]). So we have an isomorphism

61: © H' (@,M(n)) —> H' @*,M¥).

~ NEzZ
This % does not depend on the choice of f: for if
g = (90791,...,gm,) is another such sequence, and

£2 = (figj)lsism,lsjsm‘

is the product sequence (ordered in some way), then the coverings
of »mA* and P associated to Eg refine those associated
respectively to f and g, and the standard way of mapping the
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v
éech cohomology of a covering to the Cech cohomology of a refinement

(applied over both A* and P) gives

6L = 6% =8’ .
£ 83 ¢
Composing the isomorphism 6' with the natural surjective maps
+1
HP (A%, M%) > Hp'~ (M)

(bijective if p > 0) we obtain the above oF

Ordinarily one would compute 6 by taking f to be a "system
of coordinates" on P, (i.e. the fi are linearly independent forms
of degree 1, and m = d). The point to note is that 6 1is then

independent of the choice of coordinates.

In particular (cf. (8.3)) there is a natural isomorphism

~ +
® HdGP,%P(n)) —> Hﬁ;’l(nd 1) (d 2 1).
R/k
nez
Moreover, we have
d ~d+1

1, q, (n))

11}

H GP’Qk[x]/k(n))

z wl@, 4 g, (-1 )

i

1,0, (n-a-1))

which vanishes when n > 0, while for n < 0, following through

definitions, and with notation as in §7, we find that

HdGP,%P(n)) c Hﬁfl(ng;i) is the k-vector space with basis consisting

of all elements of the form

a
d

a
DX DX ...DXd/(XOO,...,X d)

0771

where a; >0 (0 <ix<d), and
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Now the completion ﬁé/k is naturally isomorphic to the universal
finite differential module Qﬁ/k , so that

HEL (g8*1) _ ydl o+l

(QR/k (QA/k)

and as in §7 we can set
_ . pdtl d+l
res, = resp: Hy (2 /k) - k .
From the definition ¢f resp = res(XO,Xl'...’Xd), we conclude that:
PROPOSITION (8.4). With preceding notation, the residue map

resp annihilates HdGP,%P(n)) for n # 0, and induces a canonical
isomorphism

~

d
:H CPI )_)k-
[N

Remarks. We do not of course actually need the residue map to

define LP: we can simply say that is the unique k-linear map

under which the generator

DXO...DXd/(XO,...,Xd)

of the one-dimensional k-vector space HdGP,%P) goes to 1 € k.

This description of LP is independent of the "coordinate

system (XO,...,xd)"; because if YO'Yl""’Yd are linear forms
such that
k[xo,...,Xd] = k[YO,...,Yd]

then (cf. (7.3.1)'):

(8.4.1) DX ...DXd/(XO,...,Xd) = DY

0 ...DYd/(YO,...,Yd).

0

By the way, the equality (8.4.1) is equivalent to the following
statement, which is also a corollary of (0.2B): if f:IP -1 is a
k-automorphism, then the map HdGP,qP) - HdGP,f*%P) induced by the
natural 1somorphlsm %P > £ is inverse to the natural map
Han*rzn,)»HaPn]P)

* * *
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For any closed point x € P, H; will denote cohomology
supported at x. As at the end of §7, we define the k-linear map

4a
res : HX(QP) + k

by passing to the completion of the local ring QP <* Then part (c)
’
of the "primitive residue theorem" is:

PROPOSITION (8.5) (Residue theorem for P). For any closed

point x € P, the following diagram commutes:

d canonical d
HX(QP) > H (P, ;)
res [
x
\/P
k

Proof. We first reduce to the case where x 1is a k-rational
point.

Let K be the residue field of qP %’ SO that K/k 1is a
’
finite field extension, of degree, say, e. Let K' D K be a finite

Galois extension of k, and let

e =8, =Bkt o Bl =

be the projection map. Then the fibre n-l(x) has e members

XyreeosXgy each of them K'-rational; and for i =1,2,...,e, the
natural map of completions QP,x - QP',xi is etale.
Consider the following diagram, where j:k €—— K' is the

inclusion, and the unlabelled arrows represent canonical maps.
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d d
HY () 1@, )
res ~
x
X e EP
y
Hd('ﬂ*%,) Hdapl’n*%l)
]
g
e 4 a,.,
® HS (%) > 1@, e,
i=1 i

K'

The rectangles in this diagram are clearly commutative. Once (8.4)

is known for the K'-rational points X, then the lower triangle
commutes, and one can deduce (8.4) (details left to the reader)

from the following two statements:

(8.5.1) If ¢t = (tl,...,td) is a regular parameter system in

QP,x’ so that the image t; of t in QP’,xi is also a regular

~

parameter system, if a is a positive integer, and if v € O has
. . X
image vi in QD',x.ﬂ then
: a $ a
j(res_[v/t%1) = ] res_ [v./t5] ;
x = i=1 x; i<

and:

(8.5.2) For any U € HdGP,%P), with image wu' in HdGP',%P,),
we have

J u'=j(Ju).
' i

Proof of (8.5.1). To find resx[v/Eé], work in the completion

A
s ={ and proceed as in §7: write
P,x
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v=7 aItIGt '
I

so that resx[v/ta] is the coefficient of ti_l...tg_lst in

_ I
traces/k[[t]](v) = % traceK/k(aI)t St.

Now just note that "trace" = "sum of conjugates": more precisely,
using the fact that trace is compatible with base change, and that,
with S' = K'[[t]],

e A

ey [e115' = Sok' = Il a.IP',xi

i=1

with 0, x, & 8' for each i, one finds that
J X
i

traces/k[[t]](v) = trace(s®k[[t]]S,)/s,(v®l)

e
Eim1 Vi

(where Qk[[t]]/k is naturally identified with a subgroup of QS'/k)'

From these observations, (8.5.1l) follows.

Proof of (8.5.2). Check that if u is the canonical generator
of HdGP,%P), then u' 1is the canonical generator of HdGP',QP,)...

It remains now to prove (8.5) when x 1is k-rational. The maps
involved do not depend on coordinates, so we may choose a coordinate
system (xo,...,xd) on P such that x is the point (1,0,0,...,0).
Let Ui (0 < i <d) be the complement of the hyperplane Xi = 0.

Then i = {Ui} is an open covering of P,

O<i<d
x}=2- U U, ,
i>0
and

4 = {uy n Ui}i>0

is an open covering of U0 - {x}. set ti = Xi/xo, which is a

rational function on U An examination of the definitions of

0"
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res, and J shows that it suffices to do the following : consider
r

in the Cech complex €°(%',QP) a (d-1)-cocycle of the form

a a

- 1 el
E = 8ty...6tg/t vty € r((U,nu)n...n (UyNU4) ) (a; > 0);
the corresponding cohomology class in H (U - {x1, %P) has a
canonical image in HX(%P) and hence in H GP %P)’ thén prove

that this last image is represented by the d-cocycle & in 8‘(%,9P)
given by

o~ 41 L%
£ = th...otd/tl ceety € r(UO nu;N...n Ud,qp)
(which maps, under the canonical isomorphism (8.3), to the d-cocycle

+l-a,-...-
d+1 al a. a

a
d, 1 d ~d+1
onuxl...Dxd/x0 X3 ---Xq € r(U N...n Uy [x]/ﬁ
which is a coboundary if 4 + 1 - a; —...-ay < 0, so that its
cohomology class vanishes unless a; =a, =...=ay = 1, in which

case the cohomology class is the canonical generator of HdGP QP)).

Thus we need to explicate the canonical map H () ~» H P, )
in terms of Cech cohomology. This is carried out in a more general
context in the following discussion, whose principal conclusion

(Lemma (8.6)) provides a solution to the preceding problem.

Let U be any topological space, and let ¥ = {Ul}1€I be an

open covering of U. We assume without loss of generality that the

index set I is totally ordered, and has a least element 0. Set

Y=0- U U
i>0

then Y C U0 is a closed subset of U, and

' = 1uy nuglo,

is an open covering of U0 - Y.

Let 7 be a sheaf of abelian groups on U, and consider the
alternating Cech complexes

g? g (%lf) gé,’ = g.(%'r ?'UO - Y)
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so that for any p =2 0 we have

@ = I  Fw, nu, n...nug)

10<11<...<1p 0 1 P
with the usual differential d:¢P - €p+l' and similarly for
g @, fIU0 - Y). Recall that for any complex C:

e — > gl _d  m_d ol

C[l] is the complex such that for all integers n

(S[l])n - E'n+1

’

and whose differential d[l] is -d. We define a homomorphism of

complexes
P = 9y gf —> €111
as follows:

For any & € gép, let

T =gt € (Eg111)P = gBH

be given (for i, < i; < ...< ip € I) by

0 1
T. . .= E, . (e F(U_ nU, N...nU, )) if i.=0
1011...1p ij...i 0 i, lp 0
=0 if i0 >0.

That ¢ is a homomorphism of complexes, i.e.
(@g)~ = -at

is easily checked. Passing to cohomology we deduce a homomorphism,

functorial in ¥:
oB: v, Flu, - v) = W6y > WP (Egp1]) = PTL(@,F).

LEMMA (8.6). The following diagram - in which unlabelled arrows

represent canonical maps, and H; is cohomology with supports in y-
commutes:
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P
o
B2 (@, Fluy - Y) 7 > B2 (%)

| l

HP(UO-Y,“f) SN Hgﬂ(?) - #P(,)

Proof. Let

0 F—5p=p0 25 pl 8. g2 > ...

be a flasque resolution of ¥. As in [Go,p.213] we can describe a
p-cocycle &* in F(UO-Y,Fp) representing the canonical image of

the homology class of a p-cocycle £ € Z%P as follows:

[ . - p-1
eg €¢ g is the coboundary of some £° % € & g
F F

(-1)p'2agp'l € 8'?'1 is the coboundary of some Ep-Z € 8'?‘2
F F

(-1)P‘3agp'2 € @'5—2 is the coboundary of some Ep_3 € 8'?'3
F F

1 P
E" €¥'l _ is the coboundary of some Eo € glo
Pl p-1

o .
of is a 0O-cocycle in 3'2 + hence the image of some E&* ¢ T(UO -Y,Fp).
F

Operating similarly with E € g;*l , we find that we can

actually take

€p+l—1 = - i-lgp-l € gpziil l<i=x<p.
F F

To get &%, we still need EO € gop , which we construct as follows:
F

let £ € Fp(UO) be such that

Eluy - ¥ = g*

(£ exists because FP  is flasque); and define EO

by
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20y, _ % -
(& )i = i=20
=0 i>0
Then we check that 851 € 81p is indeed the coboundary of Eo.
F
Thus E* € F(U,Fp+l) is such that
N* =_
Ex|u, = 8¢
~ _
glui 0 i > 0.

On the other hand, calculating the canonical map

2. WP u - v,%) - i2YHE) - wPth,7)
¥ 0 Y
by applying the exact sequence of functors
0 —> FY —_— I‘(UO,°) > I‘(UO-Y,-)

to the flasque resolution F°, we find directly that W; takes the
cohomology class of &* to that of the above E*.

This completes the proof of Lemma (8.6), and hence of (8.5) and

the primitive residue theorem.

§9. Compatibility of local and global duality.

The main result of this section, Theorem (9.1), shows how a
dualizing {-module induces local duality. This result may be viewed
as a special case of [RD,p.386, Proposition 3.5]. The proof is by
reduction to the case of projective space, where the results of
§§7-8 are immediately applicable. Theorem (9.1) enables us to give
in (9.3) a quick proof of Proposition (6.3), thereby completing the
proof of (0.3) (cf. §§4,6) hence of (0.2) (cf. (0.3.2)); and then
- as indicated in (0.6.1]) - the Residue Theorem (0.6) follows.

As in (1.4), we consider a d-dimensional local k-algebra R
which is a localization of a k-algebra of finite type having no non-

zero zerodivisors. We assume furthermore that, m being the maximal
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ideal of R, the residue field R/m is a finite extension of k.
Let V be a proper k-variety, and let

®: Spec(R) » V

be a k-morphism such that the corresponding map

Oy y > R (v = 9(m))

is an isomorphism (Spch V, ®, with say V projective, clearly

exist.) Note that v 1is a closed point of V, since OV v is
4

residually finite over k. Let w = ({ww},{ew}) be a dualizing

(-module (cf. §4). Define (w) to be the composition

PR

0
Hd(wR) P Hg(wv) N Hd(V,wV) —V 5k

~

where u 1is defined via the isomorphisms () —> R,

R®0 = w

v,v
w induced by ¢ (cf. (1.4)(iii)), and v is the
V. v v,v R

4

natural map from local to global cohomology.

THEOREM (9.1) (a) The map
(not on ).

Pr depends only on w and R

(b) If ~ denotes m-adic completion, so that in particular

d _ od A . ~
H“JwR) = Hﬁ(wR)' then the pair (w represents the functor

R’ PR)
Homk(H%(G),k) of finitely generated R-modules G.

Proof. (a) Suppose we have maps wi: Spec (R) - Vi (i =1,2) as
above. By [EGA 01, pp.311-312], there exist open neighborhoods Vi
of wi(m) in Vi’ and an isomorphism w:vi - Vi such that

2° Let V3 [ Vl Xk V2 be the closure of the graph

r cv! x vicv, x V

of w(lk Then, as is easily seen, there is a commutative diagram

(1)
V3 is also the join of Vl and V2, i.e. the closed image of the canonical

map Spec(K) - Vl xk V2, where K is the fraction field of R.
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Spec (R) v

such that the map 0 —> R induced by @3 is an isomorphism.

Thus we may assume w1%ﬂguémioss of generality that there exists a

map f:V2 > Vl such that f@z = wl. For convenience we set V = V2,
W = Vl’ v = ¢2(m), w = wl(m), so that f 1is a local isomorphism at
v and f(v) = w. We have then the map Gf:f*wv > Wy of (5.1), and
the assertion (8.6) (a) results from the commutativity of the following

diagram (where the unlabelled maps are the obvious ones):

H(w)—————-éH(Vw)

t

5 f*wv)———>H(wa) @

J/VLa 0 via 0 l/ T V’
f
\ g /e/

H (u) ) — ——— (w,ww)/ W

The commutativity of (:) follows from (5.1) (i), and of (:) from

(5.1) (ii) and (5.3); the commutativity of (:) and (:) is left to
the reader.

(b). We can choose @:Spec(R) +~ V as above, with V projective,

and then by Noether normalization choose a finite map f:V - P =‘Pg.

Let x = f£(v). Then we have the map ef:f*wv > up and the
i hi = o f Ho f £ (4. d
isomorphism @ ®f'0v x0y > qu( *Ov'ﬁp) of (4.3), and as in §6,

the isomorphism HP:%P = Yp corresponding to the canonical

isomorphism f of (8.4); and there is a commutative diagram
P
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d a ; d
HO(wy) —> @,  Hi(w,) — H(V,u.)

, uef ~(x)
i
! T

Hi(f Wy,)

. : *Vy >
i
Y 1
@/ | \
ef ef \

(9.1.1)

e

v | N\

d d
o Hom (£,0yup)) —g—> H, (up)

-1 - -

. vt v J
a a, L ud P
Hy Hom (£,04, %) —(—> H (%) B, )

where the maps labelled "e" are induced by evaluation at 1. With S

the completion Q@ <! Ve also have a commutative diagram
’

a n d,~ _ d ~
@, ) ©, H @ ) = H ((fu) )
—— uef " (x)
"~
(9.1.2) —
on @ 6 ) —— ©. Ko (€ L4 7= 1 om_((£,00°,6_ 1)
v S V,v'uf[P,x wer L x) u (] V,u'w_fP,x X S *Vix'TIP,x

where the broken arrows in (9.1.1) and (9.1.2) represent the same map.

In view of (8.5) we deduce from (9.1.1) and (9.1.2) the
following commutative diagram (where n is the maximal ideal of S):

o

HO () R Sk
IresS
Hay (Homg (R, ) - > HJ ()
and the conclusion follows from (7.5). Q.E.D.

84



RESIDUES AND DUALITY

COROLLARY (9.2). With notation _as in (9.1), assume further that
R is regular, so that v has a neighborhood Va which admits an

. d . . .
étale map h to Pk. If Yva is _the isomorphism of (6.3), then the

following diagram commutes:

H (Q ) via Vo] and H (w

S

Proof. 1In (9.1.1) we can put V = V, f=h (cf. (6.1)). From
the definition of

Yy o and in view of (8.5), we obtain a

commutative diagram

d d
H_ (Qy) > H (wy)
t €f.(9.1.1) o
, OV,V
d
Hx(%P) res, >

where t is induced by the trace map for differential forms. Since

OV,V is étale over QP,X , the inclusion qP,x<;——é 0. v can be

identified with the inclusion

k'[[X -,Xd]] c k"[[Xl,...,xd]]

17

where k' c k" are the residue fields at x and Vv respectively.
It then follows easily from definitions that

res._ = res_ot ,
v X
and (9.2) results. Q.E.D.

Now, finally we can give:

(9.3) Proof of (6.3).

In (6.3), for any v €V NV with R = ( we see by (9.2)

B! )V
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(for o and B8 both) and by (9.1) (b) that the germs at v of Yy
and YV have the same composition with the (injective) o

N

complet%on map  Wwp > Wpi YV

o
of v, hence everywhere on Va n VB' Q.E.D.

so and YVB agree in a neighborhood

Remarks (9.4). We may now consider Theorems (0.1), (0.2), (0.3),
(0.4) and - above all - (0.6) of the Introduction to be proved.

(9.5) We know now that @ has a natural dualizing structure

(Theorem (0.2)); and'from Remark (0.6.1) we see that
resp = pR(w)

(notation as in (9.1)).

(9.6) Let v be a closed point on a proper d-dimensional
k-variety V, and let ¢ be a coherent Ov-module. Then the natural

map

1) - 1w, 9)

is surjective. This follows at once from (9.1), since the dual map

Hom, (%,w.,) - Hom (9_,6.)
Oy v ov,v vy
is clearly injective. (Cf. [G3,p.100,Theorem 6.9]; and also [Kml]

for a simpler proof which avoids duality theory.)

§10. A relative residue theorem

In this section we prove an expanded relative version (10.2) of
Theorem (9.1). In view of (9.5), this gives a generalization of the
Residue Theorem (0.6).

Let £ = U %d (cf. (0.6)) be the collection of all local

d=0
domains R which are localizations of finitely generated k-algebras,

and whose residue field RﬁnR ﬁnR = maximal ideal of R) is finite
over k.

DEFINITION (10.1). We say that a k-homomorphism ®:R > S
(R, S € £) is admissible if ¢ is injective and if for every height

one prime ideal p in S the localization R _, satisfies the
o ~(d)

Serre condition (Sz).
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Examples. (i) If R itself satisfies (Sz) (in particular if
dim R < 1) then every injective @ is admissible.

(ii) If dim R =2 2 and for every height one bd in S, m—l(b)

has height <1 in R, then ¢ is admissible. In particular if
¢ 1is flat then ¢ 1is admissible.

THEOREM (10.2). Let w = ({wv},{ev}) be a dualizing {-module.

There exists a unique family of R-linear maps

p :HS (ms) > HE

o My M

indexed by admissible maps ¢:R + S, with R, S € ¥, r = dim R,

(wR)

s = dim S, and satisfying the following conditions (a) and (b):

(a) If R=k and ¢ 1is the obvious map (which is admissible)
then - after naturally identifying Hgk(mk) with k - we have

DCp = Pg (cf. (9.1)).

(b) If ¢:R > S, y:S > T, and Y are all admissible, then

Pup ~ PPy -
Furthermore:

(c) With ¢:R + S, r, s as above, if ~ denotes completion,
so that

S = HS
Hm (ms) = Hg

(®g) »
S g S

then the pair (&S,pw) represents the functor HomR(H;s(G),%iR(wR))
of finitely generated S-modules G.

(d) Let £f:V - W be a proper map of k-varieties, s = dim V,

r = dim W, and suppose that f is "equidimensional in codimension 1",

i.e. the subvariety

v € v|din (£1£(v)) > s - r)

of V has codimension =2 2. Let w € W be a closed point. Then

> ov,v

for each closed point v € E = f—l(w), the map o, V:O
D — ’

wW,w
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induced by f is admissible; and there is a unique ()

-linear ma
W'w______E

s r
e[f,w]:HE(wV) > Hw(ww)

such that for each such v the following diagram commutes:

s canonical S
Hv(wv) > Hp (wy)
0
. [£,w]
r
Hw(mw)

(e) With assumptions as in (d), if G is the formal completion

of Vv along E, then the pair (aV'elf w]) represents the functor
4

- s r
H*(9) = Homow w(HE(.‘ﬁ) H (0))

of coherent 0G-modu1es % (cf. following explanation).

Explanation. We define H%(?) by

S - ; S Do
HZ(9) = lim ExtoA O5/m 0G:9)
n>0 \

where m is the maximal ideal of ( Then if 4 = 7 for some

W,w’

coherent OV—module ¥, we find, using [EGA III, (4.5.1)] and
[G3,p.30,Th.2.8] (= [G4,p.22,Th.6]) that
s .y _ . s n _ .S
HE () = ii‘é‘ Extov(ov/mwov,“f) = H (F).

In particular we can consider the map

.uS o ut
Ore,wy g (0y) > Ho(wy)

to be an element of H*(d,).
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Proof of (10.2). We consider a k-homomorphism ¢:R > S

(R,S € %), which, for the moment, need not be admissible. Set

_ . n
IR = 1lim Homk(R/mR,k) c Homk(R,k).
n>0

By local duality (cf. (9.1) (b)) the map

s .
PatH. (W) — k (s = dim S)
S mg S

induces an isomorphism of functors of finitely generated S-modules G:

N ~ s
(10.2.1) Hom§(G,ws) —_— Homk(HﬁS(G),k)
_ s
= HomR(HA (G),Homk(R,k))

_ s
= HomR(HﬁS(G)’IR)

where the last equality holds because each element of H& (G) is

annihilated by some power of m , hence by some power ofS me.

S
(Note that w-l(ms) =m,, since S/mg is finite over k.) So

there is a unique R-linear map

s s
o :H_ (w.) = Hr (w.) — I
) “% S n% S R

corresponding to the identity map of @ i.e. such that the

S'
Ds-
identity map R =+ R gives us an R-homomorphism

composition (evaluation at 1) o 0cp is In particular, the

c’R:H']:‘R(wR) > Ir (r = dim R);

and then a), b), and c) of (10.2) follow easily (details left to
the reader) from:

LEMMA (10.3). The preceding map oRr is surjective. Moreover

if @:R + S 1is admissible and J is the kernel of

ORr’ then for

any finitely generated S-module G,

HomR(H?nS(G),J) = Ext;(H;S(G),J) =0,
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whence o induces an isomorphism of functors

Homp (H (G) ,Hy (wp)) —=> Homp (H3 (G),Ip).
S R S
The proof of (10.3) will be based on Corollary (10.5) below.

LEMMA (10.4). Let B be a normal noetherian domain with
fraction field K, let L DK be a finite field extension, and let

C DB be a module-finite B-subalgebra of L. For any B-module M,

set M* = HomB(M,B). Then, with C*, C** considered as C-modules

in the obvious way, we have a natural commutative diagram of

C-linear maps

cC—— HomC(C*,C*)

l “

C*x* — HomB (C*,B)

with o injective, and for any prime ideal ¢ in C, the

localization a, is an isomorphism if and only if the local ring

C satisfies (Sz).

q

Proof. Only the last assertion is not straightforward. First
of all, since B satisfies (Sz), so therefore does the B-module
C** = HomB(C*,B). Hence [EGA IV, (5.7.11)] so does the C-module
C**, as does the C(g-module (C**% . So if % is an isomorphism,
then Cq satisfies (Sz).

Conversely, suppose that Ca satisfies (52)’ Since C is a

torsion-free finitely-generated B-module, we may identify C, with

a Cq—submodule of (C**% c L. Since is a discrete

B
valuation ring for every height one prim: nBa' c C, it follows
easily that (C**/C),, = (0), so that the annihilator I3 of
(C**% /Ca is not contained in any height one prime of C . Hence,
by (SZ)' there is a Cg-regular sequence (x,y) contained in I .

So if & € (C**% , then x& € Cq y& € Cq , and yx& € xCa .

whence x§& € xCq and & € Cq- Thus (C**% = Ca . Q.E.D.
COROLLARY (10.5) (cf. [Hc], Proposition (4.1)). Let R € %,
and let R# = Hom(wR,wR). Then the natural injective map aR:R > R#
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localizes to an isomorphism precisely at those prime ideals q < R

such that R, satisfies (Sz).

Proof. From (4.4) and (1.4) we see that Wp is isomorphic to
a localization of a C-module C* (for suitable B,C); so (10.5)

follows immediately from (10.4).

Proof of (10.3). With R# as in (10.5), local duality (9.1) (b)

gives an isomorphism

(r*

N ~ n
)t —— Homk(HmR(wR),k) .

We also have the natural isomorphisms

A~ . n
R = ;1m Homk(Homk(R/mk,k),k)

&~

n

—~5 Hom, (lim Hom, (R/m>,k),k)
k k N/ Mg

n

= Homk(IR,k) .

One checks modulo these isomorphisms that the map o of (10.5)

completes to the k-dual of OR:

(ay,) = Homk(oR,k),

R

~ . . . . . . . 03
whence, (aR) being injective, © is surjective (as asserted in

R
(10.3)); and there is a natural isomorphisms of R-modules

(R#/R)A = Hom,_(J,k) .

Clearly, then, for a € R, we have that

[a(R#/R) = (0)] = [Hom (aJ,k) = (0)] « [ad = (0)].

Hence, by (10.5), the prime ideals @ c R containing the

annihilator of J are precisely those for which Rq does not

satisfy (Sz).

We can therefore choose 0 # a€R annihilating J. For

Su

convenience we will write "H for "Hﬁb". If ¢ is admissible,
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hence injective, then G/aG has support of dimension < s, and it
follows that multiplication by a in B (G) is surjective, i.e.

we have an exact sequence

0 5 p > B%(6) —2 > 8%(6) ——— 0

Applying the functor HomR(-,J), and using aJ = 0, we find that

1
o

HomR(Hs (G),J)

1, s ~
ExtR(H (G),Jd) = HomR(P,J) .

It remains then to show that HomR(P,J) = 0. If Ga is the

kernel of multiplication by a in G, then from the exact sequence

R }
0 > Ga G > aG 0

we obtain an exact sequence

E3(G) —> P —>P' — 0

where P' is the kernel of the natural map 1% (aG) » B%(G). Since,
as we have just seen, HomR(HS(Ga),J) = 0, therefore there is an
isomorphism

~

HomR(P',J) 1 HomR(P,J) .

Since P' is a homomorphic¢ image of Hs-l(G/aG), it will suffice
to prove that

HomR(Hs-l(G/aG),J) = 0.

Arguing as above, we need only show that there is an element b € R
with bJ = 0 and such that G/(a,b)G has support of dimension

< s - 1. But this follows from the admissibility of ¢, which
implies that any height one prime ideal of S containing a$§ has
an inverse image (say @) in R such that Ry satisfies (82), so
that, as noted above, @ does not contain the annihilator of J; and
since a§ is contained in only finitely many height one primes,
there is a b € R with bJ = 0 and such that (a,b)S is not
contained in any height one prime; this b is as desired.
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This completes the proof of (10.3), and so of (a), (b) and (c)
in (10.2).

We proceed with the proof of (d). We have the map

s-r
ef.R f*wv >y
of (5.1), whence a map
r, . s-r . T
wiH (R feoy) > H (0))
Now if p > r then H&(qu*wv) =0 for all g; and if q > s - r

then, as in (4.3.3), the support of qu*wv has dimension
<s-1-gq, whence for p + g =s - 1 we have again HS(qu*wv) =0.

Therefore the Leray spectral sequence gives a natural isomorphism

S-r

r ~ S
(10.2.2) V.HW(R f*wv) —> HE(wW),

and we set

_ -1
Ore,w) T MY T
As in (4.3.3), f takes codimension one closed subvarieties
of V to codimension one subvarieties of W, and therefore the maps

P v in (d) are all admissible (cf. example (ii) following (10.1)).
’

In view of the preceding proof of (a), (b), (c) (Lemma (10.3)
plus the uniqueness of Ow)' to complete the proof of (d) it will

suffice to show that for closed v € E the composed map

s s r
-
Hv(wv) _ HE(wV) e[f o Hw(ww) —6—————9 k
! W,w

is equal to po .
v,v
For this purpose, choose a compactification fl:Vl > Wl of £

(cf. (5.4)), and consider the diagram
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S S . S
—_—..____;
H_ (wy) Hp (wy) > H (Vl,wvl)
g BV
r S-r r S-r
HW(R f*mv) H (Wl,R l*le) k
u
9w1

r r
_— 5
Hw(mw) H (Wl,wwl)

where unlabelled arrows represent natural maps. Using (5.1), we
see that this diagram commutes; and the desired conclusion then
results from the definition of p (cf. (9.1)).

The uniqueness assertion in (d) follows from Proposition (10.6)
below.

As for (e), we recall from (5.1) (and (4.3.3)) that Sf induces

an isomorphism

S-r

(10.2.3) £, HomOV(T,wV) =5 Homo (R fj,mw)

W

for any quasi-coherent OV—module f¥. We need a similar result after

making a base change to the completion R of R = Ow w ' i.e. after

A ’
replacing W by W' = Spec(R), V by V' = VXWW', f by the
3 3 ' . ) L} 1 = 1]
projection f':V' > W', and Wy (resp. ww) by wy wV®VV (resp.
wh = ww®WW'); and this can be established in the same way as (i)

in [Km 2, pp.44-45, Theorem (5)], once we note that

S=X_.,qg
Homow'(R £adrwg)

coherent (), ,-modules % (as follows readily from (3.1.2) and the
fact that for all % the support of gS~r+l
22 in W' [EGA III,(4.2.2)]).

is a left-exact contravariant functor of quasi-
f£i1# has codimension

Suppose now that # is a coherent OV.-module. Completing
along E' = ExVV' and applying [EGA III, (4.5.3)] we deduce from
(10.2.3) (for f£') isomorphisms
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(10.2.4) HomO (f,w ) = HomA(Rs Tes 17, (ww w )

~. r ,S-T_,q r
— Homp (Hg (R f;f),Hw(Qw))

o

(cf. (10.2.1) and (10.3), with S =R = )

W,w

—~5 Hom (HE.(f) H ()

(via v - for f' - cf. (10.2.2) noting that f' 1is also
equidimensional in codimension 1 [EGA IV, (13.3.8)]). As in the
"explanation" following (10.2), we have a natural identification

S, 7\ _ S ¢
Hﬁ(f) = Hp, ()

and via this, we can check that the composition of the isomorphisms

(10.2.4) is equal to the composition

A

HomO (?,GV) ———» Homp (HA(I) H (w ))

— 5 Hom,_(H (?) H (wiy))
via e[f w] RE
This proves (e) for ¢ = 7, and hence, by [EGA III, (5.1.6)],
for every coherent §. Q.E.D.

PROPOSITION (10.6). Let V be an n-dimensional separated

scheme (not necessarily reduced or irreducible) over a field k
(not necessarily perfect), and let E be a locally closed subset

of V. Then there exists a finite set E' c E consisting of

closed points and depending only on the pair of reduced schemes

ECV g such that for any quasi-coherent 0V-module 4 we have

n -
HE"E'(Vlg) =0 ’

i.e. the canonical map HE,(?) - Hg(g) is surjective.
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Proof. This is basically a corollary of [Km 1]. First of all
it is enough to consider coherent Ov—modules %, since every quasi-
coherent Ov-module is the direct limit of its coherent submodules
[EGA 01,p.319,(6.9.9)], and cohomology with supports commutes with
direct limits (the proof of [H, p.209,Prop. 2.9] carries over).
Next, if Vi (1 < i <m) are the irreducible components of V,
considered as reduced k-schemes, Ei =E N Vi and Ei cE; is a
closed subset of V, such that HE _.,(§;) = 0 for every coherent

i7i
m

- i (-
Ovi module 5i, then with E L&=l

[Km 1], that HE_E.C§)= 0 for every coherent Ov-module 4. (Note

Ei we see, using Lemma 1 of

n _ N . C s
that for any 91, HE_E.(gi) = HEi-E'nEi(gi) is a homomorphic image

of Hg -E'(gi)') Thus we may assume that V is reduced and
i 7i

irreducible.
Now if dim E = dim V, then we can let E' be a finite set of

closed points, one from each component of E. Then

n — gl pop !
Hp_p. (V,9) = B (E-E',9|E-E")

which vanishes [Km 1, Theorem ]. So assume dim E < dim V, and
induct on dim V, the case dim V < 1 being trivial. Let U be
any affine open subset of V - E, with inclusion map 1i:U » V,
and set Y =V - U. Both the kernel J# and the cokernel ¢ of
the natural map ¥ » i,i*¥Y are supported in Y. Therefore by

induction there exists E' < E (not depending on &) such that

n-1 _
Hp_z (V,€) = 0. Also, we have
HE_EI (Vr%) =0
and
n Lok - n . -
Hp_po (V,1,1%9) Hyn(g-g') (Urd 9 0

since i 1is an affine morphism and U N E is empty. It follows
easily that HE_E.(f) = 0. Q.E.D.
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§11. Reformulation via holomorphic differentials

In this section we first give a weaker version (11.2) of the
Residue Theorem (0.6), in terms of holomorphic differential forms.
The nice thing about this version is that it lends itself to
generalization, say to the "relative" situation of flat morphisms of
‘D' tnlike (0.6),

it does not contain (0.3A) (existence of a dualizing {-module); but

noetherian schemes, where & may not be definable.

together with (0.3A), it does imply (0.6), as we will see in (11.3).

We then give, in (11.4), some intrinsic local descriptions of @

via holomorphic differentials and residues.

We keep the notation of (0.6), and as before set

_ d
Qp = AZ(%

R (R € %d).

Lo
R/k
As in [Kl,p.l5, Satz 5.5], if R 1is regular and S D R is a domain
which is a finite R-module, with fraction field separable over that
of R, then there is a unique R-homomorphism

,od a

:QS/k -> Q

T fp/k = R

whose localization at the prime ideal (0) of R 1is the trace map

d d _ . . _ . .
T.QL/k - QK/k (L = fraction field of S, K = fraction field of R).
Hence if Si (1 s i s n) are the localizations of S at its

maximal ideals, m, is the maximal ideal of Si' and my of R, then

we have the map

n d d via T' d
. =
(11.1) f H (QS.) HmR(QS/k) _— Hp, (QR)

R

THEOREM (11.2). There exists a unique family of k-linear maps

d
resR:HmR(QR) > k (R € %d)

satisfying the following conditions (a)' and (b)':

(a)' (Normalization). If R € %d is regular then res is as
in the "primitive residue theorem" (0.4).

(I)We will not deal with such generalizations here, but cf. [E].
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(b)' (Trace property). For any R, Si as above, with R

regular, the following diagram commutes:

H]C:‘ (Qs ) cf. (11.1) S Hd (QR)
i Si "R
ress. resR
k
Furthermore:
(c)' (Local duality). If ° denotes mR—adic completion, so
that
d d 2
He (R,) = H. (Qy) ,
mR R mp R

and if R 1is regular, then the pair (ﬁR,resR) represents the

functor Homk(Hg (G) ,k) of finitely generated R-modules G.
R

(d)' (Globalization). There exists for each proper d-dimensional

k-variety V a unique k-linear map

jV:Hd(V,QV) >k

such that for each closed point v € V, the following diagram (with

res_ = res ) commutes:
v 0 —
v,v

canonical d

d
HV(QV)

res J
\

(e)' (Global duality). For each smooth V as in (d)', the
pair (QV,J ) is dualizing, i.e. represents the functor
v

Homk(Hd(v,g),k) of coherent Ov-modules g.

Remarks. (i). The uniqueness statements are easy consequences

of Noether normalization and the fact that Hg(QV) > Hd(V,QV) is
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surjective (cf. (9.6)). 1In particular, if V 1is projective space

Pi, then is the canonical isomorphism.
v

(ii). Existence in (11.2) follows at once from (0.6): Jjust let

res be the composition

R
a d . resy’
Hm (QR) natural > H (wR) ——"L% k
R
f
and let J be the composition
V ~
[}
t d ~
pdv, ) —mtral s ydw,q) —Y > k.

Incidentally, since the kernel and cokernel of - @ are
supported on the singular locus of V, therefore the corresponding
local or global cohomology maps in degree d = dim V are surjective,

and even bijective if V is smooth in codimension one.

(iii). 1In the same way that [(0.6) without (c)] and (0.2B)
imply each other (cf. Remark (0.6.1)), also [(11.2) without (c)'] and
(0.1) imply each other.

(iv) . Analogues of (7.3.4) and (7.3.6) can be established for
any R € %d’ basically because 1' commutes with exterior
differentiation and with the inverse Cartier operator. Details are
left to the reader.

(11.3). Deduction of (0.2A) and the Residue Theorem (0.6) from
(11.2) and (0.3A).

First of all, let B c C be as in (0.2A), let R =Cy (b a
prime ideal in C), m = bCy, = pN B, and let Gﬁ/B be the
localization

~

c/B)o *

@ (

Yr/B ©

~ . d _ . .
Then wR/B is an R-submodule of nK/k (K = fraction field of R),
and (0.27A) 1is equivalent to the assertion - which we will now deduce

from (11.2) - that wR/B

From (11.2) and the trace map for differential forms we obtain

depends only on R (not on C or B).

a composed map
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e~ L .d,.d _
.Hm(wR/B) —_— HQ(QB/k) resB k H
q

resR/B

and, after completing, we deduce from (c)' of (11.2) that the pair
Ft ~ d c s
(wR/B'reSR/B) represents the functor Homk(Hﬁ(G),k) of finitely

generated R-modules G (cf. Corollary (7.5)). Moreover from (b)' we
see that
d natural d, ~
(11.3.1) Hm(QR) > Hpl R/B)
resR resR/B
k

commutes. Hence if B, C are replaced by B', C', then there is a

~
unique R-isomorphism

R/B R/B'
such that
res. ,. = res. ,_ o Hd(a)
R/B R/B m

and the resulting natural diagram

wR/B c 3> 3

R/B

QR o

N\ A

“Rr/B' > Up/pe

commutes. But clearly
v/r € 8 (v € @ 0#r €R)
K/k R’

lies in Gk/B if and only if the canonical image of Vv in Gﬁ/B
is divisible by r, i.e. (by faithful flatness of completion) if and
only if the canonical image of v in Gh/B is divisible by r; and

similarly with B' in place of B; whence
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4

R/B - Yryp' = (Saylup

This proves (0.23).

Furthermore, since Q - @, being bijective at smooth points, has
cokernel with support of dimension < d, the natural map

H%(QR) - H%(GR) is surjective; so in the commutative diagram

Hﬁl(GR) = Hg(ﬁR) res';/B
HO (92p) ng‘(a) k
: H;(GR) = Hgl(é}R) e
we have Hg(a) = identity, whence o = identity and
res;)B = resR/B, (say) resg .
This gives (a), (b) and (c) of (0.6).

Now for the global statements (d) and (e) of (0.6), we let

{w,6} be a dualizing module (cf. (0.3A)). Then we have the
composition
. 6
Hg(wv) canonlcaIA/ Hd(V,wv) v > k
whence, by the local dualizing property of &, an bV v—homomorphism
(11.3.2) Wy v —)-wv,v

This map depends only on the local ring OV v (not on V). To see
’

this, note that we have a map of sheaves c.:0, + w. corresponding

v'v v
to the map of (d)', whence (cf. (11.3.1)) a commutative
v
diagram
H(ﬂ) > H(V,Q)

o, \
O AN l/

H(w) >H(Vw)
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(Note that by the dualizing property of @&, commutativity of (:) can
be checked after composing with res™.) It therefore suffices to

check that the cokernel of cy has support of dimension < d (since
d d . . . a d, ~ .

then HV(QV) > Hv(wv) is surjective, so the map Hv(wv) > Hv(wv) is

uniquely determined, and hence, by the dualizing property of &, so

. d 4
is (11.3.2)). Now we remarked before that HV(QV) - Hv(wv)

surjective, and res = resoV y # 0 (otherwise the palﬁ (wvlv,resv)
’

is

would represent the zero-functor, and Gv v would vanish), hence
’
J # 0 and therefore Cy is not the zero map; but using (e)' we
V 1
see as in (4.4) that Wy is generically free, of rank one; and the

conclusion follows.

Next one shows that for each affine open U < V there exists an
isomorphism AU:wU —y Gﬁ inducing (11.3.2) for every closed point
v in U. This can easily be done (details left to the reader) by
choosing a projective closure U of U, and a finite separable

m:U >~ P =2Pi , and using the natural isomorphisms

T g —> HOMQP("*Oﬁ’%P) (cf.(4.4) and (e)")
T 40 -~ HOMQP(“*Oﬁ'%P) (via trace)

Basically, this argument is just a variant of (9.3).
Finally, by the uniqueness of (11.3.2), we can patch all the

isomorphisms A, to obtain a natural global isomorphism Azwyg = GV'

Defining 8, to be the composition

\%
-1 0
1 v, @) —2— 1w, —Hx
we obtain (d) and (e) of (0.6). Q.E.D.
Remark (11.3.3). In the preceding argument, we needed (11.2) (e)'
only for V =1,
* * *

(11.4). Some descriptions of @ via res.

From (0.6) (c) we obtain, for R € %d' an isomorphism

A~
~
W

A 2 ~ d,a _ d
R = Homﬁ(R,wR) E—— Homk(Hﬁ(R),k) = (say) Hp(R)',
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whose composition with Qg - Gh > by

e

is, in view of (11.3.1), just
the map
£:0p » HR(R) '

corresponding canonically to the bilinear form

d
resR:Q Hp(R) ——> k

R®R
I

d
Hm(QR) .
As in (11.3) (proof of (0.24)), we conclude that:

(11.4.1) &, = {v/r|v e q

R 0#r €R, and E(v) is

Rl
divisible by r}.

We can rephrase this description as follows: since multiplication
by r # 0 in R has cokernel with support of dimension < 4,
therefore the map

w = {multiplication by r in Hi(R)}
is surjective, whence X € H%(R)' is divisible by r if and only

if A vanishes on the kernel of My Thus:

(11.4.2) O, = {v/r|v € Q 0 #r € R, and for every

R’
h € HG(R) such that rh = 0, we have
resR[\) ®h] = 0} .

In particular (cf. (7.2(a)):

(11.4.3) If R is Cohen-Macaulay, then

GR = {v/r|v € Qps 0 #r € R, and for every

system of parameters t = (tl,...,td)
and every s € R such that
rs € tR, we have resR[sv/t] =0}.
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Finally, for any R € %d:

PROPOSITION (11.4.4). With notation for local cohomology as in

§7, we have (for v € QR and 0 # r € R) that (v/r) € Wy

only if, for every sequence Tyreeerly such that (r,rz,...,rd) is

if and

a system of parameters in R and for all s € R:

resR[sv/(r,rz,...,rd)] =0

. . e d d
Proof. After canonically identifying Hu“QR) and QR®R Hm(R),
we have
sv/(r,rz,...,rd) = V®[s/(r,r2,...,rd)] = (say) v@h.

But by (7.2)(a) rh = 0, so (11.4.2) shows that

v/r € Gk = resR[sv/(r,rz,...,rd)] =0

For the converse, we may assume that r 1is a non-unit, and
choose Toreessly such that (r,rz,...,rd) is a system of parameters.
Let h be as in (11.4.2). Then for some integer n > 0 and some
t € R, we have

n _n n
h =1t/(r ,rz,...,rd) .

Since rh = 0, (7.2) allows us to assume (enlarging n if necessary)
that

rt € (rn,rg,...,rg)R y

say

Then, (cf. (7.2)):

veh = rtv/(rn+1,rn,...,rn)
2 d
= (slrn + Zsirril)v/(rn+l,rg,...,r3)
= slv/(r,rg,...,rg).
Hence
resR[v ®h] = resR[slv/(r,rg,...,rg)] = 0. Q.E.D.
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§12. Sums of residues; Koszul complexes of vector bundles.

The basic result in this section is (12.2), which is just a
reformulation of (11.2)(d') (or (0.6)(d)). Examples (12.3), (12.4)
and (12.5) are special cases of (12.2), giving some more familiar
statements which have gone by the name "residue theorem". Example
(12.6) relates some recent results of Akyildiz and Carrell to the

formalism developed here.

(12.1) As always, V 1is a d-dimensional variety over the

perfect field k. To avoid annoying trivialities, we assume d = 1.

Let

c:0>-C, > C > ... > C

a” Ca-1 >C >0y~ 0

2

be a sequence of OV-modules and let F cV be a finite set of
closed points such that the restriction C|(V-F) is exact. Suppose

further that we are given an OV—F homomorphism

Y:Cql (V=-F) » @, o

Then the exact sequence C|(V-F) represents an element

da-1

- d-1
v-p Oy_prCql (V-F)) = H “(V-F,Cq) ,

[C]F € Ext

from which we obtain an element
d-1
VelClp € H (V=-F,Q)
by applying the map ¢, = Hd_l(v-F,W) induced by .

Note that when 4 =1,
[Clp € Homy o (0y_p,Cy|V-F)
is the inverse of the isomorphism ClIV-F —> OV—F given by C.

We denote by

d
[v/C]l € @ H_(Q,)
VEV vV

the image of w*[C]F under the natural map
1t w-r,e) Sl ¢ o wla,.
v FV vev vV
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If we consider two pairs (wl,Fl), (wz,Fz) as above to be
eguivalent if wl and wz agree outside a finite set F3 o (Fl Uré),
then it is easily checked that [y/C] depends only on the equivalence
class of (y,F).

[The point is that if C is exact at v € F, and if Yy extends
across v, say to ¥, then the component [w/c]v € HS(QV) vanishes
since y,[Cl, 1lifts back to the element ﬁ*[C]F_V eHd*l((V-F)U{vLQVL]

We set
res [v/C) = res ([y/C] )

where, again, [w/c]V € H:(QV) is the v-component of [y/C], and

res._ = res (cf. (11.2)).
v OV,V

PROPOSITION (12.2). If V is proper over k then

L res [y/C] = O.
VeV
Proof. The natural composition

Hd-l

(12.2.1) (V-F), Q) —=> Hg(nv) —£ Hd(V,QV)

is the zero map, whence (cf. (11.2)(d"'))

l res [y/C] = I Bav,[Clp = 0 .
VEV A

Remarks (12.2.2) Throughout, we can replace QV by B&, res
by res™, and (11.2)(d') by (0.6)(4d).

(12.2.3) Conversely, (11.2)(d') can be deduced from (12.2).
For, in view of (9.6), (11.2)(d') Jjust says that for any £ in the
kernel of the natural map @ Hd(Q ) -+ Hd(V,Q ) we have

veEV V \Y% v

Zv resv(Ev) = 0. But this map is the direct limit of maps B = BF
as in (12.2.1) (where the finite sets F form a directed system
under the order relation given by inclusion); and since (12.2.1) is
v-p'fy) 1S
of the form [C]F, where C 1is a sequence as before, with Cq = QV

exact, we need only see that every element n¢€ Extd_l(O

(and y = identity). Now, with U =V - F, n corresponds to an
exact sequence of OU-modules

0+ Qy»Chy > «ee »Ch>Cl>0y>0,

to which we can apply the functor i, (i:U - V being the inclusion),
then replace-
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148y —> 1,C}

a-1
by its composition with the natural map
QV E— l*QU
and replace ®
1*C' > l*Ci 1*0U

by

. (%,0) . :

L] [4 1
1*C2 —_— l*cl xi*ouov 4 OV

to get the desired C (which is, in fact, a complex).

Example (12.3). Let V be a proper curve (d=1), and let
vV € Qi(v)/k be a non-zero meromorphic differential. Let F c V be

the finite set consisting of zeros and poles of v, so that with
U=V - F there is an isomorphism QU = OU taking v to 1. Let

i:U » V be the inclusion, and let C, be the sequence

- 3 . projection .
0 > Cp = 1,8, xl*OUOV RS 0, 0
Straightforward checking verifies that
resv(v) = resvll/cv]
is the good old-fashioned residue of Vv at v; and (12.2) becomes

the classical residue theorem:

I res (v) =0 .
VeV

Example (12.4). Let ¢ be a locally free Ov—module of rank d,

and let o be a global section of ¢, having isolated zeros. We

can identify o with an OV—homomorphism
o:g* = fwmav<&,ov> > Oy

which is surjective outside a zero-dimensional subset F of V, and
then build the Koszul complex

cyi0 » a%r - a8l o s ater - S50, 0

where the maps ol:Alz* > Al‘lg* are given locally by
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i _ _14J-1 ~
o (el Ae2 Ao Aei) = ; (-1) o(ej)el AeooA ej ARERVSH

Il 0~ -

1

(where e),...,e; € g*, and "e." means "omit ej"). Then each v € V
has a punctured neighborhood on which ¢ 1is surjective and Cy is
exact.

Now if €1s€5s.--084 is a basis of the stalk Z;, and we set

o(ei) =0 then OV'V/(cl,...,od) has dimension < 0, and from the

il
definitions in §7 we find that the natural image of

[c,)p € m47 (v-r, 0%

in B2(2%*)  is
e AeeoA ed/(ol,...,od)

). Thus if we

(which we define to be 0 if (01""’0d)ov,v = Ov,v

have an Ov—homomorphism

dy*x
Y ATET > Qv
and if, at v,
(12.4.1) w(elA... Aed) = héol...éod € QV,V ’
then
(12.4.2) [w/co]v = hdol...dod/(ol,...,od);

and (12.2) becomes the residue theorem for vector bundles [GH,p.731]

(with no assumption on the singularities of V).

Example (12.5). As a special case of (12.4), let Dl”"'Dd be

effective divisors on V such that Dl n D2 Neoa Dd is zero-

dimensional; let
& = 0y(Dy) @05, (D) @...® 0, (Dy);

and let o:é* -> OV be the map whose restriction to OV(—Di) c OV
(l<is<d) 1is just the inclusion map. We have then

29¢* = 0, (-D; =D, ~...-Dy)
and any

de* _ .0
/= Homov(/\ & ,QV) =H (V,QV(D1+... +Dy))

can be identified with a meromorphic differential d-form with poles

no worse than Dl-+..u+Dd. With CO the Koszul complex of (12.4),
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we can set
1
(w/Cql = 4/ (Dy,+nn D)1

and rewrite (12.2) as
} res_[y/(Dy,...,D;)] = 0.
vev 7 1 d
When d =1, [w/Dl] depends only on ¢ (not on Dl), and we
have, again, the classical residue theorem for (possibly singular)

curves.

Example (12.6). This example is inspired by [AC], where a

particularly interesting application to Gysin homomorphisms is given.

Let &, o, ¥y be as in (12.4), so that for any closed point
. d
v € V we have in HV(QV)

[IJJ/CO]v = w(e1 A...Aed)/(cl,...,od)

(cf. (12.4.1), (12.4.2)), an element which is annihilated by
(01""'0d)0V,v (cf. (7.2)(a)). Thus for any A € (coker 0)v , the
element
d
ALW/Cyl, € Ho(9)
is well-defined.

Now suppose we have a map f:V - '/ with W smooth. Let

1

Ty > Oy

be an Ow—homomorphism which is surjective outside a finite set of
closed points (i.e. T is a vector field on W, with isolated zeros).

There is then a corresponding element

[1/c.] € @ H.(2,) (r = dim W).
T w W
wWEW
As before, if XyrXgreeosX is a regular system of parameters in

r
Ow’w, then

— r .
[1/CT]W = le...er/(del,...,TGXr) € Hw(ﬂw),

and for any u € (coker T)w , the element
ull/c_1, € HL ()
W w W

is well-defined.

Assume further that there exists an Ov-homomorphism f*“€Vk)'+g*
such that

va-
(1) coming from the image in §é l({V-Di},QV) of the Cech cocycle ¥, cf. §7.
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£4 (9 ) — &

£* (T.\ /
OV

commutes. Let w = f(v). Then £ induces a k-algebra homomorphism
(coker T)w + (coker o)v; and for each A € (coker o)vi we have a

k-linear map

r .
T.: = 1 = -5
)\-{h€Hw(QW)I(T5Xi)h 0,1<is<r} Qw’ /(Téxl,...,Téxr)QW’ k

given by
uil/c 1) = res (uAly/C l) (b € (coker 1) ).

From the proof of (7.4) (local duality), we now find easily that:

There exists a unique 0W w~homomorphism
’

t: (coker c)V + (coker r)w

such that for each A € (coker o)v, we have

res (t (X [1/C 1) = res, (A[y/C ])
Remark (12.6.1). If the map @:OW w OV y induced by f is
4 ’
admissible (cf. (10.1)), and if p 4is the composition

d d, ~ Y ~ r
% =
HV(QV) Hv(wv) —*——3;——9 Hw(ww) HW(QW)

natural

(with pw as in (10.2)), then (cf. (9.4) and (10.2))

= res
resv e wop

and consequently the above map t is the unigque one for which

t(R)[l/CT] = p(k[w/CO]) (A € (coker o)w).

§13. Adjunction

A common strategy in studying duality on a k-variety V is to
relate V to a non-singular variety X, and then to deduce results
on V from corresponding results on X via this relation. (The
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main problem usually is to show that what is obtained in this way is
intrinsic to V.) Up to now we have used Noether normalization to
get such a relation. 1In this section we use instead a closed
immersion V =+ X. This is the approach used by Grothendieck in [G1],
by El1 Zein in [E,part III], and by Kunz in a recent preprint on
regular differentials.

We consider, then, an n-dimensional variety X, a d-dimensional
closed subvariety V of X, and the (prime) Ox—ideal P of
functions vanishing on V. We assume throughout that V is not
entirely contained in the singular locus of X (i.e. X is smooth

almost everywhere along V).
The main result (Theorem (13.5)) connects Gk and G& via the
fundamental local homomorphism (([Gl,p.149-05])

n-d ~ — n-d 2 ~
(3.1 ot Bty ©(0y ) —> &y y = Homp (1759797, B/ 70)

which can be described locally as follows:

If Y = Spec(A) is an affine open subset of X, and P c A is
the prime ideal corresponding to V N Y, then, with w = T(Y,Gk) we
have a natural map

n-d

ExtA

(A/P,w) -+ Extg—d(A/P,w/Pw)

> Hom, p (Torﬁ‘_d (A/P,A/P),w/Puw)

[the second arrow being given by the natural maps

4 7 Hom (R, ,w/Pw)) —> Hn_d(Hom p (B §,A/P,w/Pw)) —> Hom

N n/ n/p (B _ g (B @yA/P) ,0/Pw)

where F, 1is an A-projective resolution of A/P ...] which can be
combined with the natural map

824 (2/p?) + Tor®_, (a/p,a/P)

[arising from the canonical isomorphism P/P2 = Tor?(A/P,A/P) plus
the natural anticommutative graded A/P-algebra structure on

. a .
=0 Torm(A/P,A/P)] to give (13.1l.) over Y.

@

We need to identify %V X (modulo torsion) with a module of
’
meromorphic d-forms on V.

There is a natural exact sequence of OV-modules
2 Y 1 1 1
P17 — 2 /P —> Ky —> 0 -

1M1
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Over the open subset U of V where X is smooth, Qi/k/?ﬂi/k is
locally free of rank n and mk/?mk = Qx/?ﬂx is invertible;
moreover on the open subset U0 of U where V too is smooth,
?/?2 is locally free of rank n-d and vy is injective. It
follows that there is a natural map (over U)

. n-dg, ;a2 _ @
Yy - HomOU(A PP 'QX/?QX) = ”V,X]U
such that, locally,

L NN

(13.2) W(valévxz...vad)[fi Af2 n—d]

= GXfl...6 f §,x ...Gxxd + PQ

X"'n-d X1 X

where the x; are functions on X with respective restrictions Xy

to V, the f. are functions vanishing on V, with natural images

f' in ?/?2, and 6V (resp. dx) is the universal derivation. (y 1is
well-defined because, on the smooth part of X, if f € $ then

n-d+1
§fy...8f _46f € ?Qx/k '
any open set whose intersection with V is UO') It is easily seen

as can be seen by restricting further to

that ¢y is an isomorphism over UO' Hence there is an isomorphism

of constant sheaves

d ~
. P
(13.2.1) wk(v)'Qk(V)/k —92,V'x®0vk(v)
via which the image (= %V X/torsion) of the natural map
’

%V,X > %V’X®k(v) gets identified with an Ov—submodule %V,X of
Qd
k(v)/k*®

For example, at any v € V where X is smooth, the stalk
(%’V’x)v can be described as follows:

We can choose (Xl’x2""’xn) € R = OX,V such that

(8x,,0%x5,...,6x_) 1is a basis of Ql , the subscripts being
1 2 n° - R/k 1
arranged so that le,...,éxd form a basis of Qk(V)/k' Let
fl,...,ft be generators of the stalk ?v < R, and let Jv be the
0. -ideal generated by the restrictions to V of all the (n-d)x(n-d)

v,v
minors of the +t x (n-d) matrix

(afi/axj)lsist,d+lsjsn

n
(where Bf/axi is defined by the equation &f = .Z (af/axi)Gxi in

1 i=1
QR/k)‘ Then
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(13.3) Ty gy = g tex) ... 8%,

S - 39
{h6%) 6%,. 0. 6%g A € k(V) AT Oy )

2

In any case, we have the composed map

. -1
n-4d ~ _ via V) a
(13.4) E"’tox Oy 0y) 1317 #v,x —m320 > v,x © wyx

s9

THEOREM (13.5). The image of the map (13.4) is contained in CV;
and moreover at any point where X 1is locally Cohen-Macaulay, (13.4)

maps Extg-acw,ﬁk) isomorphically onto &,.
X

Remark. The statement is essentially local. In fact it will be
transformed below into Theorem (13.12), which is a generalized local
version of the property (R3) of residues given in [RD,p.197].
Lacking, however, a good local theory of residues (cf. remark (ii)
following (0.1.3)) we will argue, as in 8§86, in a roundabout way,
using a global statement (13.8) to reduce the proof of (13.12) to the
easily disposed of case of smooth points (the only case, by the way,

covered by (R3) of loc. cit.)
But first here are some corollaries of (13.5).
COROLLARY (13.6). If at v € V, X is smooth and V is locally

a complete intersection, ?V being generated by fl’fz""'fn—d’
then, with notation as in (13.3) we have that GV v is invertible,
’

generated by

6xl...Gxd/[B(fl,...,fn_d)/a(xd+l,...,xn]

(where the denominator is the restriction to V of a Jacobian

determinant).
Indeed, using the Koszul complex on (f;,...,f _,) to calculate
Ext's and Tor's, one shows that (13.4) is an isomorphism at v,

whence by (13.5)

(l)It follows that GZ"'X) depends only on 1] o in fact if A is any
commutative domain, with fraction field F, M dny finitely generated A-module,
and €1/€3,...,83 a linearly independent sequence in M such that

M/(Ael+...+Aed) is a torsion module, with O-th Fitting ideal J, then the

submodule J'lell\ezA...A eq of Ag04®AF) depends only on M (cf. [LS, p.211,
Proposition]).
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uy,y = @y x)y

and then (13.3) gives (13.6).

COROLLARY (13.7). Suppose that X is smooth everywhere along V.
Assume further that V is locally (Sz), and that moreover V is

locally a complete intersection outside a subvariety of codimension

two in V (these conditions hold for example if V is normal).

Then
Uy =&y, x T Ay x -
Proof of (13.7). As in (2.1.3), we see that both Gv and %V,X
satisfy (Sz) (in particular, %Q,X is torsion free, i.e.

~ ~ f 0] ] ~ -
%V,x = ile). Thus (cf. (3.1.2)) in checking that Ty %;,X’ we
may remove from V any subvariety of codimension = 2, and so we

may assume that V is a local complete intersection and argue as in
(13.5). Q.E.D.

The proof of (13.5) will occupy the rest of this section.

PROPOSITION (13.8). (a) There exists a unique OV-homomorphism

n-d ~ ~
n:Ext 0, T,) » &
Oy VX \

such that for each closed point v € V, the following diagram commutes

(where R = Ox,v' S = 0V,v' and m is the maximal ideal of R):

d n-d ~ vian | .4/~
HV‘EXIOX (0vrwx)) HV (wvlv) resg
| X
13 (S) o Ext279(s,B, ) ——> BA(T, ) 4
m S R 'YX, v Yoneda m X,v
(b) If Ox v is Cohen-Macaulay, then n is an isomorphism at v.
- ’

Recall: Extg(S,G) is d@ universal d6-functor of R-modules G
(cf. [H,pp.205-206]), and the Yoneda pairings

a q d+q
Hp(S) @gExtg (8,G) ——> Hpy = (G) (@ 2 0)
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can be defined by the following condition:

(13.9) For fixed u € Ha(S), the family of maps

q, q d+q
Yu.ExtR(S,G) > Hpy  (G)

given by
YE(A) = Yoneda (u®X)

is the unique homomorphism of ¢é-functors such that

0 d
Y, () = [Hp(A) 1)

(i.e. the image of u under the map H%(S) . Hi(G) induced by
X € HomR(S,G)).

We will prove (13.8) below. Given (13.8), it is clear that
(13.5) follows from:

PROPOSITION (13.10). The following diagram commutes:

_ n-d ~ (13.4) .
5 = EXItOX (OV'wX) ’%};,X
n linclusion
~ d
C >
Yy inclusion Qk (V) /k

If Proposition (13.10) is true at one point v € V, then it is
clearly true everywhere. If X is Cohen-Macaulay at v, so that
n, is an isomorphism (cf. (13.8) (b)), it follows then from defini-
tions that to prove (13.10) at v (hence everywhere) it suffices to
show that the following diagram - with x € X the generic point of

V (x smooth on X), and ¢ the natural map - commutes:

-1
n
c o~ v (13.1) »
Oy, v ? Wy,v > &y > oy x)v
natural inclusion natural
(13.10.1)
d N n-d 2
Y% (v) /k w2 Homy vy (A T2 /P50y /P8 )
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We proceed then as follows.

As before we denote by % the collection of all local domains
R which are localizations of finitely generated k-algebras at
maximal ideals (so that the residue field R/mR is finite over k).
We will prove below:

LEMMA (13.11). Let R € £ be Cohen-Macaulay, of dimension n;
let P be a prime ideal in R such that RP is regular, of
dimension n - d; and set S = R/P. Let g = (91’92""'gn—d) be
an R-regular sequence of elements in P such that gRP = PRP (such
sequences exist - cf. e.g. [LS,p.213, Lemma (3.8)]). Set & = GR.
Then there is an isomorphism

a:Extg_d(S,G) —> HomR(s,Gng) = (gW:P) /9w

such that, if for any Vv € g:P ¢ @ we set

Ve = (v + gd) € Exth %(s,®)

then:

(a) with the "fundamental local homomorphism"

w:Extg—d(S,U) > HomR(An'dP/pz,m/Pm)

as in (13.1), and

3; = (g; +P%) e p/p?
we have
m(v*)[§l Aaz A...Aan_d] = v + PQ;
and
(b) for any sequence s = (sl,...,sd) in R whose image in

R/gR is a system of parameters, if

S; = 8§ + P € R/P =8 (1 <1i<d)

then the Yoneda pairing

- ~ n-d ~ n ~
Hy(Exth 3(s,8)) = HR(S)egExth O(S,H) > Hp(®)

(where m 1is the maximal ideal of R) satisfies
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Yoneda[v,/(sy, ... s54)] Yoneda ([1/(51,...,S4) 1av,)

v/(gl,...,gn_d,sl,...,sd)

(For notation cf. beginning of §7.)
Now supposing (13.11) to have been shown, look again at (13.10.1),

and set R = OX , (assumed to be Cohen-Macaulay), o = GR' and S==0V v
r ’
Let cp:fp > @, cgiftg > Gé, be the natural maps. For each
- . ) ) a
vV € QR/k let v be its natural image in Qs/k = Qv,v’ and choose
v' € g @W:P such that
-1 -
ng cg(v) = vy .

Then for (13.10.1) to commute it is, in view of (13.2) and (13.11) (a),

necessary and sufficient that for all v, v' as above
[ ~ ~
(13.12.1) v' = cR(Ggngz...ng_d/\v) (mod. PwP nw) .

Moreover, with "res" as in (11.2), and notation as in (13.11) (b),

we must have, in view of (13.8):

resS[G/(El,...,Ed)] resg[cs(G)/(El,...,Ed)]

resE[Yoneda([l/(El,...,§d)1®v;)]

i.e.

(13.12.2) resglv/(sy,-..,84)] resR[v'/(gl,--.,gn_d,sl,.--.sd)]

In summary, (13.8), (13.10) and (13.11) imply:

THEOREM (13.12). With notation and assumptions as in (13.11),
for any Vv € Qg/k there exists a V' € gWi:P satisfying (13.12.1)

above. This V' is unique modulo gw ; and it also satisfies
(13.12.2) (where Vv is the natural image of v in g, and
(sl,...,sd) is as in (13.11) (b)).

Remarks. (i) The uniqueness of Vv' (mod g&) results from the

equality
(gid:P) n (PTJP nao = (gid:P) N gmp = g

which holds because the natural map
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(g@:P) /9@ ~ Gé/gﬁb = [(gﬁ:P)/gﬁ]@Sk(V)

is injective, the source being isomorphic to mé (cf. (13.11) and
(13.8) (b)) which is torsion free (cf. (2.1.3)).

(ii) Conversely, (13.8), (13.11) and (13.12) (for R = OX v’
’
S = OV’V) imply that (13.10.1) commutes. For (13.12)(q) gives us an

S-homomorphism
B:Qg > (9:P) /9B

(viz. B(V) = v' + g®), such that
B ~ ~ ot n-d,, ~ (13.1) n-d_, 2 ~, ~
Qs —> (gW:P) /g® Extp (S,w) ———4———HomR(A P/P°,0/PW)

l .1

d N n-d 2 ~ ~
Y vy /x 13.2.D Homy () (A "PRp/P Ry Up /Py)
commutes. (Note that mf = QR since RP is regular. Note also

that 8 is well-defined, since if v = 0, then we have (via (13.2.1))
that Sgl...dgn_d ANV E PG} , whence - by the uniqueness in (13.12) -
v' = 0.) So we need to show that a_lB = n;lcs. But, since the pair
(Gs,resg) is locally dualizing (cf. (0.6) (c)), therefore, by (13.8)
so is the pair (Extg-d(s,ﬁ),resgo
a_lB = n;lcs by first applying the functor H%, and then
using (13.11) (b) and (13.12.2) to show that

Yoneda); and we can verify that

lB n-l

_ _ ~ d
) = res, = resR°Yoneda°Hm( v Cg)

~ d, -
resRoYoneda ° Hn“a S

where the last equality comes from (13.8).

(iii). Now, given (13.8) and (13.11), we can prove (13.10) and
(13.12) as follows. First note that (13.12) is practically trivial
when both X and V are smooth at v, g is part of a regular
system of parameters (gl,...,gn) in R (so that gR = P), and for
some integer a

- a ;
s; = (9p-g+i) (l=six<d).

(Just take v' = Ggl...sgn_d A v, and use the definition of res

given in §7). As in remark (ii), (13.10.1) then commutes at such a
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v, and hence (13.10) holds, and hence, as we have seen, (13.12)

follows in full generality!

It remains to prove (13.8) and (13.11).

Proof of (13.8). The uniqueness of n follows easily from
local duality ((0.6) (c)).

For the existence of n, we may replace X by a compactification
X and V by its closure in X; so we may assume that X and V
are proper over k.

Consider then the standard spectral sequence
PqQ _ 4P 9 ~ b+gq ~
E, H® (X, Ex/tox(ov,wx)) = Extox (0, By) -
Since qu =0 for p >d = dim V, we have edge homomorphisms

d q ~ d+gq ~
H (X, Ext, (0,,,3,)) + Ext (O, 0y) (g =2 0)
OX v’'X Ox v'rX

which compose with the natural maps

d+gq ~ d+gq ~ _ 4d+g ~
EXtOx (OV'wX) > EXtox (OXI(UX) = H (lex)
to give maps
. d ~ a ~ a+ ~
(13.8.1) H (v,Extgx(O B)) = H (x,Engx(O By > E X, B (g2 0.

X being proper, of dimension n, we can take q = n - d and obtain
a composed map

~

d n-d n eX
H (V, Extov (Ov,wx)) -~ H (X,wx) —> k.

Since . is dualizing, we have then a corresponding map

v
n-d ~ ~
n.ExtOX (OV,wx) > Uy -

Now for any closed point v € X consider the cube
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d n-d ~ d n-d ~
HV(EX/tOX (Ovrwx)) -——‘> H (VIEXIOX (CV'UX))

n J
Yoneda (13.8.1)
d ~ d
Hv(wv) > H (V,uv)
N res™ \'% E
n n
H, (Gy) > H (X, 0y)
~ g
res
Jl v
k k

with horizontal arrows representing natural maps. It is clear that
the four faces which do not have "Yoneda" as an edge commute. The
assertion in (13.8) (a) is that the face on the left side commutes;
to prove this it will be enough to show that the rear face commutes.

For this purpose, in the construction of n replace the functor
T'(X,*) by its subfunctor Fv(-) (sections supported at v € X) to
get a composed map

d n-d ~ n ~
B:Hv(Extox (0V,wx)) -+ Extv(Ov,wx)

n ~ L _ oD~
» Bxty (Oy,0y) = H (D)

(where Extg is the derived functor of TVOFMm). Clearly the rear

face will commute if "Yoneda" is replaced by "B". So we need only

show that

(13.8.2) B = Yoneda
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The question is local, so we replace X by R = OX v and V
4
by S = 0V v* Also, in the construction of £, we can replace “R
’

by an arbitrary R-module G, and we get G-functorial maps

89(c) :uG(Extd(s,6)) » Hy (c) (g = 0)

(where m is the maximal ideal of R). We can then prove (13.8.2)
by showing that the conditions in (13.9) hold with "£" in place of
'lyll .

First of all, then, we have to show that

8% (6) 113 (Homy (5,6)) > H(G)

R
is the map induced by the natural inclusion (i.e. "evaluation at 1")
e:HomR(S,G) < G.

(Note that the diagram

HﬁﬁS)@HomR(S,G)

takes U@ A to [H.?n()\)] (1)

H,(Hom, (S, G) ) > 13(6)

via inclusion

commutes.) For this we let I° be an R-injective resolution of G,

then extend the natural (inclusion) map of complexes
Hom, (S,1') —> Homp(R,I') = I~

to a map of Cartan-Eilenberg resolutions (double complexes) ¢ - D",
and consider the resulting map
Tm(C™") > Ip(@""),

which induces a natural homomorphism of spectral sequences; in
particular we obtain the commutative diagram

121



J. LIPMAN

ao ..
5%(c*") = Hp(Homy (5,6)) —> Ext3(s,G)

via e

dO(D"

E)

) = Hp(Homg(R,G)) = Ext3(R,6) = HH(G)

which gives us the desired result.

Second, we have to show that B8 is §-functorial, i.e. if

(13.8.3) 0~>G'>G~>G" ~>0
is an exact sequence of R-modules, then the resulting diagram

Hg‘(Extg(S,G")) ——  ExtSYs,em) —— w596

® ©)

o (ExtT(s,61)) —— Ext§ (s, —— w& I

commutes for all g = 0. This is easily checked for the subdiagram
C) . As for (:), we choose an exact sequence of injective

resolutions.

.

0 > I'

>I" —> 1" —> 0

over (13.8.3); and then, with J'° = HomR(S,I") etc., we have an

exact sequence

0 —> J'* 45 7° 5> J"* >0 .

The horizontal arrows in (:) come from the standard spectral sequences
for the hypercohomologies m&“J"'), Hpu(J'") respectively. There is
however a natural map from the mapping cone K*® of u [H,p.26] to

J"* which induces homology isomorphisms; so we may replace mnﬁJ“ﬂ
by ZHnJK'). But then the vertical arrows in (:) are those associated
to the natural projection K° - J"[1] , where [1] denotes "shifting
one place left" (cf. remarks preceding (8.6)). The commutativity
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of (:) results, and that finishes the proof of (13.8) (a).

Now we prove (13.8)(b). With R and S as above, (R now
being assumed Cohen-Macaulay), to show that n 1is an isomorphism we
may pass to completions; so we keep the same notations as before, but
assume that R and S are complete.

It suffices then to show that the pair consisting of

E = Extg_d(s,ﬁR) together with the map
d, > Yoneda n,~ resR
.8. _— ———>
(13.8.4) Hm(E) Hm(wR) k

represents the functor Homk(H%(E),k) of S-modules E. 1In other

words, we need to show that the composition (13.8.4) enatural in the

following diagram is an isomorphism.

n-d ~ o] ~
- S

ExtR (E,wR) > HomS(E,E)

via | Yoneda natural
(13.8.5)
da n, ~ . via da d,~
HomR(Hm(E),Hm(wR)) <—vYoneda — HomS (Hm(E)er(E))
res’; (13.8.4)

d
Hom, (Hp(E) ,k)

Here o corresponds to the natural pairing

(13.8.6) Extg-d(E,GR)®E = Extg_d(E,iKR)@HomR(S,E) > Extg_d(s,ﬁ

But the diagram (13.8.5) commutes: for the lower triangle, this is

clear, and for the square it is equivalent to the commutativity of
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n-d,_ ~ d via(13.8.6) n-d, . ~ d
ExtR (E,wR) ?E@Hm(s) ExtR (S,wR) @ Hyp(S)
Yoneda
n-d ~ d n,~
ExtR (E,wR)®}%ﬁE) Yoneda > Hm(wR)

which is readily checked (for example by replacing ER by a variable
R-module G and using (13.9)). It will suffice, therefore to show:

(13.8.7) (Full Local Duality). For any R-module G, the
composition
n-d via Yoneda d n res; d
ExtR (G,wR) > HomR(Hm(G),Hn“wR)) _ Homk(Hm(G),k)

is an isomorphism;

and, in addition, that:

(13.8.8) for any S-module E, the map o in (13.8.5) is an

isomorphism.

By ((0.6) (c)) we have a natural isomorphism of functors of

R-modules G:

~ ~ n
HomR(G,wR) —> Homy (Hy(G) ,k),
which then extends uniquely to a homomorphism of dJ-functors

(13.8.9) Ext;(G,GR) — Homk(H;_i(G),k) (i = 0).

Replacing d by n - i in (13.8.7), and Yoneda by (—1)iYoneda, we
get a homomorphism of §-functors, which coincides with (13.8.9) for
i = 0, and hence for all i. So (13.8.7) asserts that (13.8.9) is

an isomorphism for all i. But this follows from the fact that, R
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being Cohen-Macaulay, we have H;JF) = 0 for any free R-module F
and any integer i # n = dim R [G3,p.13,Prop. 1.12 and p.47, Cor.
3.10], so that the target in (13.8.9) is the derived functor of
Hom, (Hp(G) k) .

In particular, if E 1is an S-module, then

~ d+1 _
= Homk(Hm (E) ,k) =0

and so the functor Extg-d(E,Gk) of S-modules E is left exact.
From this (13.8.8) follows (cf. [G3,p.49,Prop. 4.2]; the case where
E 1is finitely generated would suffice for our purposes, but anyway

the general case reduces to this one via direct limits).

This completes the proof of (13.8).

Proof of (13.11). Consider the diagram

(13.11.1) HomR(S,Extg—d(R/gR,m))

(:) evaluate at 1

©,

n-d ~
ExtR (s,w)

-4 ~
> Ext; (R/9R,®)
\

\ (13.1)
\a
\ /
N
® Hom_ (S,T/gl) —> HomR(S,HomR(/\n_ng/(gR) 2,0/g8) (13.1)

v v

®

HomR(An—dP/Pz ,3/P) > Homy (A" d9r/ (gR) 2, 5/gB)

Here the map C) corresponds to the natural map R/gR -+ S; and the

map (:) is the unique one making the upper triangle commute. As in
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the proof of (13.8.8) just above, since the functor Extg_d(E,U) of
R/gR-modules E 1is left exact, therefore (:) is an isomorphism.

The maps labelled (13.1) are fundamental local homomorphisms;
and they are isomorphisms as can be seen by using the Koszul complex
KR(g) determined by the regular sequence g as a projective
resolution of R/g to calculate (13.1) explicitly.

The map (:) corresponds to the isomorphism S —= An_ng/(gR)2
taking 1 to the natural image of Iy NIy A ATl 4

Thus the map o given by

a= Q) t13.1.Q

is an isomorphism.

The assertion (13.11) (a) then follows from the commutativity of
the diagram (13.11.1), which we leave to the reader to check. (A
variant of all this is given in [LS,p.218, Lemma (A.2)]).

As for (13.11) (b), we first note that there is a commutative

diagram

®

Extg"d (s,®) > Extg‘d (R/9R, ¥)

v

Homy, (HQ:(S) , H(3) ) Homp (HO) (R/gR) , Hyg (D))

where the horizontal arrows are induced by the natural map R/gR > S
(so that C) is the same as in (13.11.1)), and the vertical arrows
by Yoneda. As before, if we use the Koszul complex KR(g) to
calculate Extn-d(R/gR,ﬁ), we find that C) takes v, to the

R
cohomology class of the (n-d)-cocycle

V € gl:P Cc W = HomR(R,w) = HomR(KR(g)n_d,w) .

We see then, after a little thought, that it will suffice to prove
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the following statement:

(13.11) (b) ' The Yoneda product of

[1/(5),-.+/54) € Hp(R/gR) (5; = (s; + gR) € R/gR)

with the equivalence class (KR(g)) in Ext;_d(R/gR,R) of the exact

sequence consisting of KR(g) together with its natural augmentation
Ke(g)y = R > R/gR, is

[1/(gqsev-19y_qrSyre-+18q)] € Hp(R) .

Now we have a natural map of §-functors (of R-modules G)
i T i .
Ext  (R/(g,s)R,G) —> Hm(G) (1 2 0)

[which may be thought of as the Yoneda product with 1 € HgﬁR/(s,g)R)],

and, hence a commutative diagram

d ®

Extg(R/(g,s)R,R/gR)QbExtg_ (R/gR,R) —2L, H%(R/gR)Q@ExtE_d(R/gR,R)

Yoneda Yoneda

Extp(R/(g,s)R,R) ————> Hp(R) .

On the other hand, according to the definitions in §7, we find (with
i =d, G = R/gR) that

[1/(Syse-i89)] = T(Kg, p(8)) .

R/gR
Similarly (with i = n, G = R),

[1/(gl,...,gn_d,sl,...,sd)] = T(KR(g,s))
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So (13.11) (b)"' follows from:

(13.11) (b)": The Yoneda product of

(KR/gR(§)> € Eth<R/(q,s)R ,R/gR)

and

(Kp(9)) € Extg_d(R/gR,R)

(Kp(g,s)) € Extp(R/AG,S)R,R) .

As in (13.9), we can characterize the Yoneda pairing (for
R-modules E, F, G)

d d+
Extg (E,F) @ Exti(F,6) ———— Exty S (E,G)

as follows: for fixed E, F and fixed u € Extg(E,F), the family of
maps

q, q d+q
Yu.ExtR(F,G) —> Extp (E,G)

given by

yyx)=Ymmmuu®m

is the unique homomorphism of {§-functors such that

YS(A) = image of p under the map Extg(E,F) > Extd

R (E/G)
(F,G).

induced by X € HomR
It follows that this pairing is given by pasting (composition) of
exact sequences (cf. [M, Ch.III, §9]).

This being so, it is clear that (13.11) (b)" follows from

(13.11) (b)"™. Let R be any commutative ring, and let h = (hl,...,hn)

be an R-regular sequence. Then, in ExtE(R/hR,R), the equivalence

class (Kp(h)) 1is the same as the class of the composition

ce 0y of the following exact sequences:

9192
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h1
(cl) 0 > R > R > R/h.R —> 0
1
h2
AN AN
(02) 0 > R/h R > R/h R —> R/(h ,h,)R —>0
. h

(o)) 0 —>R/(h,e.o/h IR —>R/(hj,...ih IR — R/(hy ... /h )R —>0

Proof of (13.11) (b)™. We need only find a map Y of complexes
KR(h) > 040,...0, over the identity map of R/hR, which is the

identity map of R in degree n.

Let (el,ez,...,en) be the standard basis of Rn, and define

Yy in degree j by
aJ,pn .
wj.A (R7) ~» R/(hl,...,hn_j_l)R (0 < jJ < n)

(the target is R for j=n -1 or 3Jj = n) where

<
©
>
®
>
>
®
'—l-

[}

1 if (iy,iy,..0,45) =(n=j+1,n-3+2,...,n0)

0 otherwise.

This Y has the required properties.
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APPENDIX A

Projective Noether normalization.

In this Appendix we prove:

PROPOSITION (A.l). Let V be a d-dimensional projective variety
over a field k, and let v € V be a smooth point. Then there exists

a finite map f:V - P = Pi which is étale at wv.

Remark. Geometrically (i.e. when k is infinite and v is a

k-rational point) (A.1) is clear: project V cp? from a linear
N-d -

Ph a-1 cPY which meets neither V nor the tangent space to V

at wv.

The main difficulty arises when k is finite.

Proof of (A.l). Recall that V 1is smooth precisely where the

differential sheaf Qé/k is free of rank d, and that a map

f:V - P 1is étale precisely where the relative differential sheaf
Q%AP = 0. So the closure of v contains points which are both
smooth and closed, and we may assume that v itself is closed. Then
if m is the maximal ideal of ()

v,v’
over k, and f is étale at v if and only if m is generated by

OV V/m is finite and separable
’

the maximal ideal of QP £(v) " So it will be enough to find a

’
sequence (gb,gi,...,gé) of forms (= homogeneous elements) in the
homogeneous coordinate ring k|[V] (defined with respect to some

embedding V<L>PN), all of the same degree, such that gb(v) # 0,

gi/gb (1 < i <d) generate m, and k[V]/(gb,gi,...,gé) is finite-
dimensional over k. (Then we can take f to be the map associated
to the inclusion k[gb,...,gé] c k[v].)

The case d = 0 is trivial, so assume that d > 0. Pick an

element gl/h in m- mz,

where 9; and h are forms in k[V] of
the same degree, with h(v) # 0. Assume inductively that a sequence

(gl,gz,...,gj) (1 < j <d) of forms has been found such that:

(a) for each i < j, there is a form Ri having the same
degree as g; with 2.(v) # 0, and such that g./l. € m;

(b) if m. is the ideal m? + (g,/% ,...,g /2 ) in 0
J 1’71 v,V
(zi as in (a)), then the 0 /m) -vector space m / has
dimension j;
(c) every prime ideal in k[V] containing gl,...,gj has
height > j.
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Let M c k([V] be the prime ideal corresponding to v, let
Yy £ M be a form of degree 1, and let Mj c M be the homogeneous
ideal whose elements of degree e > 0 are the forms g such that
g/ye € mj (cf. (b) above). Then M ¢ Mj (since m¢g mj, j being
< d); and if bl,..
the ones containing (gl,...,gj), then M ¢ bi’ because M has

height d > j = height b; - I claim then that:

-1pg are prime ideals which are minimal among

(A.1.1) there is a form

9j+1 € M- (Mj u ”1 u ”z U...U ns).

Once (A.l.1l) is proved, we can continue in the same way, to build
up a sequence (gl,...,gd) of forms such that the above conditions
(a), (b), (c) are satisfied for j = d. We can also choose a form 99
not lying in any of the minimal primes of the ideal (gl,...,gd)k[V]
(cf. [2S, p.286]). So (go,gl,...,gd) has all the required
properties, except that the g; may have different degrees. We will
return to this problem below, but first let us prove (A.l1l.1l).

As in [ZS, p.286], there is a form

Yo €EM - (bl Ue.ooU hs)

and we may assume that Yo € Mj (otherwise take gj+l = YO)' A
similar argument yields the following Lemma, which we need to complete
the proof:

LEMMA (A.1.2). Let Apreeer Ay be homogeneous ideals in k[V]
such that k[V]/ai has Krull dimension > 0 for 1 < i < t. Then

there is an integer n such that for every n = n there exists

0
a form g € k[V] of degree n with

Ol

¢ t
g U a,
i=1 *

Proof. The assertion is clear when t = 1 (consider the
Hilbert polynomial of k[V]/al). Assume then that t > 1. After
replacing ai by a suitable prime ideal containing it, we may assume
that Oi is prime. We may also assume that ai Z Gj if 1 # 3.

For each pair i # j choose a form a,. in e - “j' and set

ij
a; = (Il a,) e (N a) - q; .
S TS R S
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Let 6j be the degree of aj, and let ¢ = maxlsjst(dj). Let &'
be an integer such that for any j with 1 < j < t and for any
n' > §' there is a form bj,n' of degree n' not contained in aj
(cf. the above case t = 1). Then, for any n > § + §', the form

25 ajbj,n—éj has degree n and lies in no ay- Q0.E.D.

Returning now to (A.1.1), we proceed by induction on s, the
case s = 0 being trivial. We may assume, by the inductive
hypothesis, that for each i =1,2,...,s, there exists a form

Y; € M - (Mj u Dl U...U b, U...uU Ds)

(where "ﬁi" means, as usual, "omit bi"). If Yi £ ”i for some i,

then we can take = y.. So assume Yy € bi for all i. Choose

99+1 i

n as in (A.1.2), and let m be an integer large enough that

0

s
n = m(degree YO) - (degree yl) + X (degree Yi) 2 n

i=2 0

(where, as above, Yo € Mj - (Dl U...uU hs)) so that there is a form

g of degree n not lying in M U bl U...U b Then consider the
form
gj+1 - ng Y0Y2Y3...YS .

Since 95 £ M and Y1 £ Mj’ we find that gY, £ Mj' Also, for
i>2, g¢g bi and Y1 £ b, so gv, £ b, . Moreover gvq € hl and

m
YoYo---Yg € (Mj n 52 Ne..N bs) - bl

The assertion (A.l.1l) follows.

We consider now the sequence (go,...,gd) found above. We will
construct a sequence of forms (ho,hl,...,hd) such that

(i) hi(v) # 0 (0 < i< d);
(ii) all the forms higi (0 < i < d) have the same degree; and

(iii) k[V]/(hogo,hlgl,...,hdgd) is finite-dimensional over k.
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Then the sequence (gi) = (higi) has all the properties needed -
as previously explained - for the proof of (A.l).

We choose h0 to be any form not contained in any of the
minimal primes of (gl,...,gd)k[V]. Assume that we have found forms
ho,hl,...,hj (j < d) such that hi(v) # 0 (0 < i < j), such that
all the forms higi (0 < i < j) have the same degree, say #, and
such that

k(V1/(hyggshygyreeerhygyrgyyyreeeidyg)

is finite-dimensional. Lemma (A.l1.2) gives us an n, such that for
n = n, there exists a form h(,) of degree n, not lying in any of

the minimal primes of the ideal

(hogolhlgll°' hd lhjgj’gj+21 .. 'lgd)k[v] ’

and such that hhﬁ(v) # 0. Let r; = degree hi (0 < i< j) and let

r be any common multiple of the ry such that
n.=r+§- degree(gj+l) zn,.
(r/rj)+l and setting h.

i ’ j+1 h(nr)' we
have the same conditions as above with j replaced by j + 1.

Then replacing hi by h

Continuing in this way, we complete the construction.
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