
Astérisque

D. B. A. EPSTEIN
Transversely hyperbolic 1-dimensional foliations

Astérisque, tome 116 (1984), p. 53-69
<http://www.numdam.org/item?id=AST_1984__116__53_0>

© Société mathématique de France, 1984, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1984__116__53_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Transverse ly h y p e r b o l i c 1 - d i m e n s i o n a l f o l i a t i o n s . 

D.B.A.Epstein 
Mathematics Institute, University of Warwick, Coventry, England 

53 



D.BA. EPSTEIN 

In this paper we investigate 1-dimensional foliations with a transverse hyperbolic struc­
ture. There is a danger of confusion here, because of different meanings of the word "hyper­
bolic". What is meant in this paper by a transverse hyperbolic structure for on a 1-
dimensional foliation of a manifold of dimension n . is that the given foliation is given by local 
submersions into H""1, the hyperbolic space of dimension (n-1), and that different submer­
sions differ from each other on their common domain by composition with an isometry of 
IP"1. 

There is a theory of transverse Riemannian structures on foliations, of which the above is 
a very special case. The first paper in this area was by Reinhart [9]. Amongst other contribu­
tors to the subject are Fedida [5] and Conlon [3]. The reader is referred to the papers of Mol-
ino, especially [8], for an elegant general treatment. Molino's idea of replacing the model 
transverse manifold by its associated bundle of frames is particularly illuminating. Papers by 
Carri£re and Ifolino in these proceedings contain further details and references. 

In this paper, we have thought it advisable to repeat some proofs of results due variously 
to Thurston, Carrielre and llolino, in order to make the reader's task easier. Also, some of 
these results are not easily available for reference. 

Our main result is the following generalization of a theorem due to Thurston [11]. 
Main Theorem. Let M be a closed n •manifold with a smooth 1-dimensional foliation with 
transverse hyperbolic structure. Then one of the following two possibilities must occur: 
1) Each leaf of • is a circle. The holonomy map h :nxM -•IsomH*"1 has a discrete image and a 
non-trivial kernel. The holonomy associated to each leaf is finite (and is generically zero). 
2) The manifold U has dimension n=3 or 4. The closure of each leaf is a torus of dimension 2 
or 3 respectively. The holonomy representation is infective, and fixes a certain point on the 
boundary sphere of IP'1. Transferring to the upper half space model, by putting this point at 
infinity, we find a similarity S of the boundary of the upper half space, Rn~8, which has a 
change of scale \<1, such that the image of itxM acts by elements of the form z -*Skz+b. As 
we range over elements of it%M, k takes on all integral values, and the elements b form a 
dense subgroup of R1 or R8 respectively. This subgroup is invariant under S. M is a fibre 
bundle, with fibre either T2 or T9 and each fibre is foliated by the leaves of •. A leaf is always 
dense in its fibre. The base space of the bundle is a circle, and the monodromy of the bundle 
is an isomorphism A :Tn ->Tn, where A €GL (n ,Z) and n=2 or 3. A has one expanding direction, 
with eigenvalue ±\~~n*i and either one or two contracting directions, according as n =2 or 
n «3. / / n «3. then the contracting directions have eigenvalues which have equal absolute 
values. The foliation • consists of lines on 7**. parallel to the expanding direction of A. 

The manifold and foliation also have an algebraic description. U is the quotient of a 
simply connected solvable Lie group G by a group T of affine automorphisms of G, which acts 
freely on G. V has a subgroup T0 of index at most two which is a uniform discrete subgroup of 
G acting on the right, and the foliation is given by a 1-parameter subgroup acting on the left. 
Elements of V, which are not in TQ, reverse either the orientation of the leaves in G, or the 
transverse orientation 
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§ 1. Transverse Riemannian Structures. 
Let G be a group of isometries of a Riemannian manifold. Let M be a smooth manifold 

and let F be a smooth foliation. We say that F is a (G JC)-foliation, if it is defined by smooth 
local submersions -Of, where the are an open covering of M, and the leaves of F are 
given locally as connected components of the inverse images of points of X. There is assumed 
to be a locally constant map y y r\Ui -+G. such that /« (x)=7V (x )f$ (x ) for x r\Ut. Clearly. 
y it is determined by /< and ff. The }/« J are called admissible submersions. We will suppose 
that the family J/41 is maximal, with the object of making the structure unique, as is usual in 
manifold theory. 

We now define the holonomy homomorphism and the developing map. Suppose a J -*M is 
a path, u is the germ of an admissible submersion defined near a(0) and v is the germ of an 
admissible submersion defined near a(l). We choose a partition 0=t0£'i*" ' ' St*sl and 
admissible submersions where a[t<. !,<<]££/< (l£t£fc). Let / o s u and A+i^v. and let 
t-\=tQ=0, = 1. Let 7i.i.|CC be defined by 7i,i-t/«-ias/t near a(t<_i). for l£i£fc+l. We 
define 

h(atv.u)>=7k+ijt7kjt-i • ' ' 72.i7i.o. 

We now have to show that h(a,u ,v) is independent of the choices involved. 
Step 1. If 0=*0£*i£ ' * • *ifc = l is Axed, and f^U^X is changed to f\:U\->X. then h{a.v,u) is 
unaltered. 

Clearly, we may assume that only one fi is changed. Then /'4*7/1 on a[ti_i.t«]. for some 
yeG. It follows that 7'4.i-i-77i.4-i and /i+u«7i.ft.i7~1. and so h(a,v ,u) is unaltered. 

It follows that the definition of h(a,v,u) depends at most on the partition 
0=*0£*i£ ' * • *ifc = 

Step2. Given a partition 0=t0£*i* ' ' **k = l. and a computation of /i(a,v,u) using this parti­
tion, any finer partition gives the same answer. 

We may assume that a single point is added, with *<_i£s£*<. The computation may be 
performed by associating each of the two intervals [t4_J(s] and [s.t<] with the same submer­
sion fi-Ui -*X. The corresponding coordinate transformation in G. coming from the point s. is 
the identity, so that h(a,v,u) is unchanged. 

>From these two steps, it follows immediately that h(a,v,u) is well-defined. We have the 
following easily verified properties: 
1.1. h(a'l.u,v)^h(a.v.u)'1. 
1.2. If a and ft are two paths and a(l)=ft(0), then we define the path fta in the obvious way. 
Let it; be a germ of an admissible submersion near /9(1). Then 

h {ft a MÌ ,u) - h (0 .tu ,v )h (a,v ,u ). 

1.3. If ?o.7ie^. then /i(a.7iV.70u)=71/i(a.v.ii)7o!. 
1.4. If a is homotopic to ft, keeping endpoints fixed, then h(a,v,u)-h{ft,v ,u). The proof of this 
is that a very small movement of a can be dealt with without changing the fi'.Ui^X. 
1.5. Let u be a germ of an admissible submersion at m0eM. Then h^/n^M,mQ)->G, defined by 
/iu(a)-/i(a.u,u). is a homomorphism. This homomorphism is called the 
holonomy homomorphism based on u of the (GJC)-foliation. 
1.6. hyu =yhuy~l for yeG. 
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D.B.A. EPSTEIN 

Lei U be the universal covering of M. The developing map DuJi-*X, is defined as follows. 
We regard elements of U as homotopy classes of paths aJ ,0-Of ,m0. Using the notation above, 
we define 

Du (a)=h (a.v ,u )~lv (a( 1 )). 

1.7. This map is a well-defined submersion DuJf-*X and 

0=*0£*i£ ' * • *ifc = 

1.8. If fi is a loop based at m0. 1.2 implies that 

D (afi.u )=h(afi,v.u))-lv(a(\)) 

=h(fiM.u)-lD(a,u) 

or Du (m fi)=/i* (fi)~lDu (m ) 

Thus, transferring the action of Wi(l/,m0) to the left of U by the definition p.a=ap~l, we 
obtain the equation 
1.9. / M l m H M / W U m ) 

A (CJIf)-foliation is said to be complete if Du Ji -*X is a locally trivial fibre bundle for some 
(and hence for any) it. The following result is due to Thurston [11]. A version of it was proved 
earlier by Ehresmann [4], under much stronger assumptions. 

1.10. Theorem. If M is a closed manifold, the foliation is complete. If X is simply connected, 
then each leaf of the foliation of M is a fibre of Du Ji -Of and conversely. 

Proof. Define a smooth field r of planes on U, which are transverse to the foliation and have 
the same dimension as X. (For example, take any smooth metric on M and take the planes 
orthogonal to the foliation.) Use r to construct a new Riemannian metric on M, which induces 
the same metric as before on each leaf, such that r is orthogonal to the foliation, and such 
that each admissible local submersion / maps rs (xelf) by a linear isometry onto the 
tangent space to X At fx. 

A path in U (or M) is said to be horizontal if it is tangent to the field r (or the lifted field 
Tin M) at each point of the path. 

1.11. Lemma. If M is closed, then, given any path a:(a,b)->X (-00 £a<6£ oo) and any c 
(a<c<b), and an element a(c)€M, such that Dua(c)=a(c), there is a unique horizontal lift­
ing a:(a,b)-»J#, such that Dua=a. 

J2 tLo. 
Proof. Paths can be lifted locally, using the differential equation — = S(a(t))—, where 
8(m) is the linear isometry described above, from the tangent space to X at Du(m) to r^. 
Clearly, the lifting is unique and a and a have the same length. Let (a'.b') c (a ,6) be a maxi­
mal subinterval over which a is defined. Since M is compact. M is complete as a Riemannian 
manifold, and so. if b'<b, a(t) tends to a limit as t tends to 6'. But then a can be extended 
beyond 6'. This contradiction shows that 6'=6. Similarly a'=a. This completes the proof of 
the lemma. 

It follows that a ball in X with centre ¿0 can be uniquely lifted into M so that radii are 
horizontal, once the lifting of the centre is fixed. The lifting is smooth (with no singularity at 
the centre) because solutions to a differential equation depend smoothly on parameters. This 
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gives a local product structure to the map DuJi-*X and completes the proof of Theorem 1.10. 
except for the special situation when X is simply connected, which will be dealt with in Lemma 
1.12. 

If F is a foliation on a connected manifold M with a transverse Riemannian structure, 
modelled on a Riemannian manifold X. then the developing map Du Ji -*X maps into a single 
component of JIT. It follows that there is no loss of generality in supposing that X is con­
nected. Since the transverse structure is locally defined, we may also replace X by its univer­
sal cover. 

The following lemma is an immediate consequence of the homotopy exact sequence of 
the fibre bundle DJi-*X, using exactness at ntF, where F is the fibre. 
1.12. Lemma. Suppose X is simply connected and M is a closed manifold with a foliation 
modelled on X, then each fibre of Du Ji ->X is connected. 

The last sentence of Theorem 1.10 now follows. 
1.13. Proposition. Let M be a closed manifold and let F be a foliation with a transverse 
Riemannian structure modelled on a connected Memannian manifold X. Then there is a 
positive number I such that any ball of radius I in X is convex and is embedded. Conse­
quently. X is complete. 
Proof. Let Ct. • • • ,C* be a finite covering of M by compact foliation charts. Let ft'.Ci-X be 
the associated submersion. Since D Ji~+X is surjective, we see that each point x€X is the 
image of some point of /<C| for some i, under an isometry otX. Since the radius of convexity 
has a positive lower bound on any compact set. the result follows. 
1.14. Proposition. Let M be a closed manifold with a foliation F. modelled on a simply con­
nected manifold X. Let h:it iM-UomX be the holonomy homomorphism. let H be the closure of 
h (ntJO in IsomJr. and let H0 be the component of the identity in H. Then the following condi­
tions are equivalent: 
/. H0~W; 
2. h(nxM) is a discrete subgroup of IsomX; 
3. h(niii) is a closed subgroup of InomX. 
4. H=h(7ttM). 
5. Each leaf of F is compact. 
Proof. To see that 1) implies 2). suppose H0*\id\. Then H is a discrete subgroup of IsonxY, 
since IsonxY is a lie group. Hence h(-nxH) is also discrete. The fact that 2) implies 3) is stan­
dard for subgroups of topological groups. It is immediate that 3) implies 4). 

To see that 4) implies 5). note that D Ji-*X induces a map M-*X/h(ttxM). The orbit space 
of X under any closed subgroup of IsomJf is a Hausdorff space. Hence the inverse image of 
any point of X/h(ntM) is a closed subset This means that each leaf of F is a closed, and hence 
compact, subset of M. 

We show that 5) implies 1) by contradiction. We assume that H0*\\d\. Let a<€*|J/. such 
that M<Xi) tends to the identity in IsomX'. We may choose a point x0, such that the points 
/i(a4)x0 are distinct. Let L=D'l{x0) be the corresponding leaf of U. Then the leaves a<L all 
project to the same leaf L. Locally H and U are isomorphic. It follows that any foliation 
chart meeting L must contain an infinite number of plaques of L. and so L is not compact. 
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§2. One-dimensional foliations. 
In this section, we prove a result due to Thurston [11] in the transversely hyperbolic 

case, and to Carridre [1,2] in the form stated. We follow Thurston's method, with improve­
ments due to Carridre. 
2.1. Theorem. Let U be a connected, closed manifold and let F be a 1-dimensional foliation 
urith a transverse Riemannian structure, modelled on a simply connected manifold X. Let 
h :itxM-laomX be the holonomy homomorphism, and let H be the closure o/ /i(n,J/) Let H0 be 
the component of the identity of H. Then Ho is abelian Moreover if h is not infective, then 
the five equivalent conditions of Proposition 1.14 are satisfied and each leaf of F is a circle. 
Proof. If h :i%\M -*lsomX is not injective, let a€irti/ be a non-trivial element in the kernel. 
From the equivariance of DJt-*X, we see that a preserves each fibre. Since it also acts fixed 
point free, the quotient of the fibre by a is a circle. This proves the last sentence of Theorem 
2.1. By Proposition 1.14.J/(Hid|. 

So we may now assume that h is injective. By Proposition 1.13, there is a leaf of F, which 
is a copy of R. But this means that //0*Jid|. The fibre bundle DJ£-*X has contractible fibres 
and is therefore trivial. So if SJfxR and D corresponds to projection onto the first factor. 

We may assume without loss of generality that the foliation has oriented leaves. The rea­
son is that going to the double cover, which results from orienting the leaves, replaces H by a 
subgroup of index at most two. But then the component of the identity of H is unaltered. 

We impose on M the adapted metric used in the proof of Theorem 1.10. Let />0 be 
chosen so that every loop in U of length at most / is contractible. We choose a left invariant 
Riemannian metric on IsomJf. If y€n%M and xeX,we write yx instead of h(y)x. We define U, 
to be the open ball in IsonxY of radius c. For each c>0, let r, = £/tn/i(tr,i/). Since h is injec­
tive, this is isomorphic to h~l(Ut). We know from Proposition 1.13 that there is an c0 such 
that each ball in A' of radius 4co is convex, and such that 4c0</. 

Given a compact connected subset K of X, there is an c(K) with the property that if 
g I.02€^«(JO and x€A\ then <*(y ix.02*)< c0. 

We now order the elements of re(jr>. Given xeK and 7o>7i€rc(jr)> we nave <*(7o*»7i*)<co« 
Let a be a path in X from yox to yxx of length less than 4c0. and let x€D~l(x)ck. Let a be the 
horizontal lifting of a, with a(0)*7ox. Then y%x and 5(1) both lie in the oriented real line 
D~*iyi*)> w« define 7i>7o *' 7t*>«0) and 7t<7o otherwise. Note that we can not have 
7ix«a(l). for otherwise a would represent a non-trivial path in U of length less that / , and 
this is impossible. 

Since a depends continuously on x and a, and since equality 7jX=a(l) is not possible, we 
see that the truth of the inequality 7i>70 or 7i<70 is independent of the homotopy class of a 
fixing the endpoints, provided the homotopy varies through paths of length less than 4c0. The 
homotopy class of a is equal to that of the short geodesic from y^x to ytx — A length-
decreasing homotopy is given by taking the short geodesic from a(0) to a(t) and then the ori­
ginal path from a(t) to a(l). Also the inequality is independent of small movements of x. But 
since K is connected, the inequality 7i>7o or 7i<7o depends only onK. We will write 7 ^ 70 or 
7O<JT7I 'or 7o.7i€rc(jr). (In *act one can snow tnat "* K is large enough and e small enough, the 
ordering is independent of K, but we will not bother to prove this.) 
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We now verify a number of properties of the ordering. 
2.2.1. We have 7i>jr 7o »nd onty 7o<jr 7i-
Proof. This follows from Diagram 1. where a and a' are horizontal lifts of a. 

Diagram 1 

tvq 

a 

dq q 

2.2.2. If 70<ir 7i «nd yt<K y2. then r0<jr 7« 
Proof. This follows from Diagram 2. 

Diagram 2 

aze 
a 

ad 

d 

dt 

^2* 

2.2.3. If KcL are compact sets, then Tt(L)cT$^), and the two orderings agree on r,^). It fol­
lows that the ordering is well-defined on the germ of h(itiM) near the identity in Isonrf. 
2.2.4. Let K be a compact connected set which contains a ball of radius €0. Let U =U~l be a 
neighbourhood of the identity in IsomX, such that U2cU€(Ky Let 7.7o.7i€i/ and let 7O<K 7I 
Let a be a horizontal path in U from 70* to a(l)<7ix and let Dx=x. 
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2.2.4.1. We have 77o<jr 77i. To see this, note that ya is a horizontal path from 770* to 
•ya(l)<77ix. 
2.2.4.2. We have 7o7<jr 7I7 TO see this, we suppose that the point x defined above is the cen­
tre of a ball in K of radius c0 Then yxcK and. writing y =y~lx, we see that a from 7o7V to 
7i7V can be used to show that 7o7</r 7i7 

Let rc+=}7crc:7>jr idf. where £<c(A>). We call this the set of positive elements in Tc. 
2.2.5. By 2.2.4, we see that if c is small enough, then y>K id if and only if id>K 7"1 
2.3. Lemma. If K is a given compact connected set. then the ordering <K on Tc+. the set of 
positive elements of iy has the same order type as the positive integers. 
Proof. 

Diagram 3 

yg 

.6 

Since 4c0</. we see that for any ball B in M of radius 2c0. and any y*id in njjf, Br\yB=e. We 
fix our attention on a certain XQGK and let B(r) be the ball in JIT of radius r and centre x0. 
Then D~XB SB xR for r <4c0. Let x0eD~lx0. Let B (r) be the lift of B, whose centre is at x0. and 
such that each radius is horizontal. If y€T, then d(x0,yx0)<c0, because c<e(K). Therefore 
B7 = 7B(2€0)np-1B(c0) is a disk mapped diffeomorphically by D onto 7B(2€0)n£ (c0)=£(c0). 
Therefore B7 separates D~1B(c0)*B(co)xR into two cylinders. Note that, if 7(l)*7(2)€r„ then 
Br<i)nB7(2)=0 Therefore the space between BJU) and B^2) in B_1B(€0) is a relatively compact 
subset, which contains at most a finite number of translates of x0 under rc, since itt(M) acts 
properly discontinuously on U. Since the set of translates is countable, the lemma follows. 
2.4. Lemma. For any sufficiently small n>0, the group generated by Tn is equal to 
r=H0nh(nlM) and is dense in (See Theorem 2.1 for the definition ofM*) 
Proof. If 17 is small enough, U^rjf =t/nni/0. Therefore rn=t/nn/i(ir|J/) is dense in U^HQ. NOW 
UnnH0 generates HQ, since H0 is connected. Hence, given g€H0. we can find a fc>0 and 
7t.' * * .7*€lV sucn that g(yt • • • 7i)~l€l/f|. If ger, then g(yx • • • 7*)~l€r,,. This proves the 
result. 

We can now prove Theorem 2.1. Let K be any compact connected set in X containing a 
ball of radius e0 Let UF be an open neighbourhood of the identity in IsonxY, such that e<e(/f), 
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where c is small enough for 2.2.4 and 2.2.5 to be valid, whenever they are invoked in the rest 
of the proof. 

We will prove by contradiction that all elements of rt+ are in the centre of T. Having 
proved this, we will know by 2.2.5 that all elements of Tc commute with each other. By Lemma 
2.4. r and hence H0 will then be abelian. Let y€Tf be the smallest element which is not in the 
centre of T. Since U, is open and y€U„ there is a very small neighbourhood U of the identity 
in Isom/r. such that UcUt, U=U'X and UyQU,. Let n>0 be smaU enough so that UncU. By our 
choice of y, and by Lemma 2.4. there is an element aeTn, such that aya~x*y. 

There are two possibilities: y<K aya'1 and aya~l>K y. In fact we may restrict to the 
second possibility, if we replace a by a'1. By 2.2.4. y>K id implies that aya~l>K id. By the 
definition of a this means that aya"1 commutes with all elements of T. Therefore V commutes 
with all elements of T. This contradiction shows that Hois abelian. 

There are some general results which now apply. For example, one can prove that the 
closure of any leaf is a torus, and one can say a great deal about the foliation structure. For 
this we refer the reader to the articles by Carrielre and llolino in these proceedings. We will 
discuss only the transversely hyperbolic situation, which is more special. 

{3. Abelian groups of isometrics. 
3.1. Lemma. Let G be on abelian group of Euclidean isometries of affine Euclidean space of 
dimension k. Then we can choose an origin* making the space into a vector space isomorphic 
to R*, such that each *€C has the form 0(x)*r*x+6*. T+€0(k). 6*€R* and 7**64*6*. More­
over the union of all minimal G -invariant affine subspaces is 

M * |x:7y:«x forall*€Ci 

and these subspaces are disjoint and have the same dimension. 
Proof. We can write each 0 in the form » T+x +6*. Suppose first that each 7** is the iden­
tity. Then the result is clear. So suppose that for some 7**#id. Let Af 1 • \x:Tix»x\ and let 
Mz be the orthogonal complement. Let 6**61+6* with 6t€Af t and 6«€i/«. We solve for x*€JS8, 
such that r*ar**s*-6s. Then 0(*+x*)*7'*£+6s+s*. Changing the origin to x*. we obtain 

*(x)~7V*+6i with r*6i*6t. 

So 0 induces an orthogonal transformation of R*/J/i. which can be thought of as T+\M2- The 
only fixed point of 0 acting on R*/V, is the origin. 

Any ^-invariant affine subspace of R*/Af 1 must contain the origin, otherwise the nearest 
point to the origin would be fixed. Clearly. M\ is the union of ^-invariant affine subspaces 
which are either all of dimension zero or all of dimension one. Hence Af x is the union of all 
minimal ^-invariant affine subspaces of R* and dimAf i<c. Moreover M\ is G -invariant. 

The lemma now follows by induction on k, since every G-invariant subspace meets M\, 
and hence every minimal G-invariant affine subspace is contained inM\. 
3.2. Proposition. Let G be an abelian group of isometries of H" (n 22). Then all minimal G -
invariant hyperbolic subspaces have the same dimension and they are disjoint. Their union 
S is a hyperbolic subspace. 
3.2.1. If the minimal invariant subspaces have dimension zero, then each element of G is 
elliptic and contains S in its fixed point set. We have dimS <n. 
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3.2.2. If the minimal invariant subspaces have dimension one, then there is only one 
minimal invariant subspace. This case occurs if and only if G contains a hyperbolic element 
0, and then S is the axis of 0. G may contain elliptic elements, but it contains no parabolic 
elements. 
3.2.3. If the minimal invariant subspaces have dimension at least two, then we can choose 
upper half space coordinates such that each 0€C has the form t(x)=T+x +6^. where 
T+€0 (n-1), 6#€Rm"! and T4b+=b+ The space 

U - \x^-x.T^^x for all *€C| 

is an afflne space which is the boundary of the hyperbolic subspace S. G may contain elliptic 
elements (6#=0), but it contains no hyperbolic elements. At least one element of G is para­
bolic. 
Proof. Suppose there is an element 0€C. such that the union Y of all minimal ^-invariant 
hyperbolic subspaces is a hyperbolic subspace with dimK<n. Y is clearly G -invariant. Any 
G -invariant subspace is ^-invariant, and therefore meets Y. So any minimal G -invariant sub-
space must be contained in Y. 

By induction, we may suppose that Proposition 3.2 holds for G\Y. If 3.2.1 or 3.2.2 apply 
to G | Y, they will apply to C as weU. 

If 3.2.3 applies to C\Y, then G contains no hyperbolic element, and it contains at least 
one parabolic element. Since a point at infinity in Y is fixed, we can choose an upper half 
space model so that every element f€C has the form if(x) = TfX+bf with T+€0(n-l) and 
6f€Rn~1. We can now apply Lemma 3.1. Since G contains a parabolic element, any invariant 
hyperbolic subspace is a vertical half plane. Case 3.2.3 follows, provided a 0 exists as in the 
first paragraph of this proof. 

To complete the proof, we need to look at the case where, for every non-trivial isometry 
0€C. the space Y, defined above, is the entire space. It follows that no element of the group is 
hyperbolic, no element is elliptic, and every parabolic element is a pure translation (see 
Lemma 3.1). This is case 3.2.3. 

§4. Proof of main theorem. 
We suppose now that M is a closed n-manifold with a transversely hyperbolic foliation 

whose leaves have dimension 1. We have already dealt with the first case of the theorem, so 
we may assume that not every leaf is a circle. We have defined DM-WX, the holonomy 
homomorphism fc:*iJf-tlsomH*'1. the closure H of h(ittM) and HQ, the component of the 
identity of H. By Theorem 2.1. we know that H0 is abelian. By Proposition 1.14. we know that 
#o*|id|. 
4.1. Lemma. The union of minimal HQ-invariant hyperbolic subspaces of H""1 is equal to 
IT-1 and we have Case 3.2.3 of Proposition 3.2. 
Proof. Let S be the union of minimal //0-invariant subspaces. It is invariant under H, since 
H0 is a normal subgroup of H. If S is not equal to IT"1, let / (x) be the distance from S to x. 
Then / is an unbounded //-invariant function. In particular, it is ntM-invariant. Hence 
fDM^R is an unbounded n,J/-invariant function. But this defines a continuous unbounded 
function on U, which is impossible. The lemma follows. 
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4.2. Lemma. H0 consists of all translations of the upper half space — ie . H0=Rn~2 and H0 
consists of all transformations of the form x -»x +6 (6 €Rn~8). 
Proof. H0 is connected and. by Proposition 3.2.3 and Lemma 4.1. consists of transformations 
of the form x-»x+b. Therefore H0 consists of all transformations of the form x-»x+6, with 
beV. a vector subspace of R"~*. We want to show that V=ftn~2. Since H0 fixes a unique point 
at infinity, and H0 is normal in H, every element of H also preserves this point. Hence every 
element 0 of H has the form X-*\JTJX+CJ with X^>0. 7^€0(n-2), ĉ €Rw~8. Moreover V must 
be T-invariant. Since nXMQH, we have a commutative diagram 

d (x0j-l1> 

d (x0j-l1>+ 

with D surjective. It follows that W*~l/H is compact. H can not be a subgroup of the group G 
of all Euclidean isometries of R*~*. since H"~VC 3 (0,oo). Hence there must be an element 
0€i/, with X#>1. Such a 0 is hyperbolic. We choose coordinates so that the axis of 0 passes 
through the origin. 

Let H i be the subgroup of H consisting of f such that Xf=l. Clearly, Hx is closed and 
normal in H and is contained in the group of Euclidean isometries of R"~*. Choose x0 on the 
axis of 0. Since H0 is normal, the orbit of x0 under H consists of a discrete set of horizontal 
horospherical subspaces. The orbit of x0 under Ht consists of all such subspaces at the same 
Euclidean height as x0. Let xx€Hxx0 be a nearest point to x0. not in //ox0, if such a point 
exists. Let xx=fx0 with f€.Hx. Now ^x0sX^Xo and therefore 

d (x0j-l1>+xo)=d (**o.***o) 
d(x0jrx0) 

X* 

by the definition of the hyperbolic metric in upper halfspace. By the definition of f, we then 
would have ^~lf^x0-x0, or ir+x0=$x0. Since f is a Euclidean isometry, this means that 
^x0=x0 which is impossible. It follows that the Ht-orbit of x0 is the same as the //0-orbit. 

Let i>x(x)=\xTxx +cx and i>2(x)=\zTzx+c2 with ^i/fae/f. Then 

[f i .*]-****"1*"^*) 

=TLTIT{LT£L (x) - r ,7Vf1 (c8) - A ^ I V f 1 (Cl) + X^fc , ) + C|. 

We take 0 as above, X=X^>1, T=T+, c^=0, and we define ^gs0*. for some ife. Then, since 
TX,Tz€.0(n-2) and x0 lies above the origin, T XX0=TZXQ-X0. Also c8=0, 7*8«r* and X8=X*. 
Therefore 

[fi.fi](«o)-*o-X*rir»rrlcl+c,. 

and [^i.^8]€#i By taking * large and negative, we see that cxeV. We have observed at the 
beginning of this proof that Tx must preserve V. Since fx€.H is arbitrary, we see that, in 
terms of the action of H on R"~s, V is invariant under H. It follows that the hyperbolic sub-
space 5 whose boundary is V, is invariant under H. As before, the distance from S gives an 
unbounded function on M, and hence a contradiction, unless V=Rn~2. This proves the lemma. 

We have a homomorphism /f-»R*. sending 0 to X^>0. The image of this homomorphism is 
discrete, for suppose $n(x)=\nTnx +bn and X* converges through distinct values to 1. 
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Since V=Rn~z, we may assume thai Q*=0. We may also assume that Tn converges to a limit T, 
since 0(n-2) is compact. Then 0* converges to +(x)=Tx and $€//,. But this contradicts the 
fact that H/Hx is discrete. 

Let $€h(ntM) be such that A=X^>1 is minimal. Let x0 be a point on the axis of 0 and let 
Et be the horosphere at a hyperbolic distance t above x0- Then 0(£*)=£t+iogx- We define 

f :H*-l->Sl=B/Z by/(x)=*/logA if xeEg. 

Then / (^x)=/(x)+l. Since H0 and H\ preserve each Et . f is //-invariant. We obtain a com­
mutative diagram 

a ° I T - 1 
* * / 

M i Sl. 

Since D is a locally trivial fibre bundle, it is easy to see that it is a locally trivial fibre bundle, 
whose fibre is equal to R*~*xR modulo the action of ri=/i"!(//i) Later we will show that 
//,«//<>. so that r0=/i-l(//o)-r,. We also write r»w,J/. 

The following result is due to Fried [6]. 
4.4. Theorem. Let M be a compact manifold, possibly with boundary, with an oriented 1-
dimensional foliation. Let p Si -*M be an infinite cyclic covering such that the leaves of the 
induced foliation form the fibres of a smooth locally trivial fibre bundle with fibre a copy of R 
Then there is a section of the fibre bundle which projects injectively to a section of the folia­
tion on M. 

The following result is now obvious. 
4.5. Corollary. Under the hypotheses of Lemma 4.4. M and its foliation are given by the map­
ping torus of a diffeomorphism of B with itself, where B is the quotient of U identifying each 
leaf to a point. 

Let R"*1 act on itself by left translation. 
The author learnt of the following result, due to A.Verjovsky. by reading Carriere [1]. 

4.6. Theorem. (A.Verjovsky). Let U be a closed manifold with a 1 -dimensional oriented folia­
tion and a transverse (R* ~1 ,RW ~1) -structure. Suppose M has a dense leaf. Then one can 
impose a metric on M, which is adapted to the transverse structure as in the proof of 
Theorem 1.10, and in this metric M is the fiat torus and the foliation is linear. 
Proof. We may suppose that n> l . We are suspending for the moment the hypothesis that the 
transverse structure is hyperbolic. Let H and H0 be defined as in 1.14. Then there is a com­
mutative diagram 

M i R*"1 

M -> RW"V// 

such that every leaf in M is mapped to a single point. Since there is a dense leaf, we see that 
H-ftn'l^H0' >From Proposition 1.14 we know that h:ntM-»RW_I is injective. Therefore itxM is 
free abelian. We choose a maximal set of generators whose images in Rn_1 are linearly 
independent over R. Since h(nxM) is dense, this set has exactly (n-1) elements. Let rt be the 
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subgroup of niJf generated by these elements, and let M =M/TX We may assume that ixXM/Tx is 
torsionfree. We have a commutative diagram 

a -> M 
Di i 

Rnl -> Rw_1/Ti = T11'1 

and the map M->Tn~l is a fibre bundle with fibre R. Hence M^Tn~lxR. Now M has two ends 
and ffiif/Ti is a free abelian group acting as a group of covering translations of M with com­
pact quotient. Therefore ntmf/Ti has two ends and must be cyclic infinite. Thus Fried's 
Theorem (4.5) and Corollary 4.6 apply, and there is an embedding of Tn~l in M, which is 
transverse to the foliation and consistent with the transverse Euclidean structure. It follows 
that, as a foliated manifold. M is the mapping torus of a diffeomorphism Tn~l->Tn~l, and this 
diffeomorphism is left translation by an element 7 of the group T*'1. (The element 7 is a gen­
erator of the image of i\XM/T\ in Rn~l/nLMI under the holonomy homomorphism.) 

It follows that M can be described as the quotient of Rw"!xR by the group generated by Tt 
and by (-?!.+1). where +71 represents 7€Rw~VTi. This proves Verjovsky's theorem. The 
transverse structure is given by projection onto Rw_l in a direction parallel to (-71.I). 
4.7. Lemma. Let 7*" =RW/Zn be a torus foliated linearly by a dense line parallel to a non-zero 
vector v €R". The group of diffeomorphisms of 7** respecting the foliation can be deformation 
retracted to the group of transformations of the form x->Ax+b, where b€Tn, A €CL(n,Z) and 
v is an eigenvector of A. The deformation ft of a diffeomorphism f has the property that for 
any leaf L, ft(L)-f (L). for each time t. 
Proof. The foliation represents a class in #1(7** ;R). defined up to multiplication by a non-zero 
real number, and this homology class is an invariant of the foliation. This class was first 
defined by Schwartzmann [10]. One takes a long piece of leaf and closes it up to a loop with a 
short path in 7"*. One then normalizes by dividing by the length of the loop. Finally, one 
takes the limit as the length tends to infinity. The class in ^i(7m;R) is [v], corresponding to 
v€R* under the isomorphism /^i(7m;R)aRw. Let / :7m-»f* be a diffeomorphism respecting the 
foliation. Let AcGL(n,Z) be the map f+Jfi(Tn,Z)-*Ht(Tn:Z). Then v is an eigenvector for A. 
Let OeT* be the identity element in the group T^-RVZ*. Let / (0)*6. Then / is homo topic to 
g, defined by g(x)=Ax+b, by a homotopy which keeps 0 at 6 (but which may not respect the 
foliation). The diffeomorphism h=f~lg .Tn-*Tn preserves the foliation and the point 0. Hence 
it sends the leaf through 0 to itself. 

Consider the lifting of h. £:R*-»RW, such that £(0)=0. Then h |Z* is the identity. Hence 
every leaf through a point of Z" is sent to itself. Since this set of leaves is dense, h sends 
every leaf to itself. It follows that / must preserve the transverse Rn~! structure. (This result 
is a special case of a general result due to liolino [7.8]. However, llolino's method requires / 
to be C°°, whereas here the method works even if / is only a homeomorphism.) 

Let £,/:Rn-Rn be liftings of g,f, such that /(0)=£(0). Then for any leaf L of R\ 
g (L )=/ (L), as we have just seen. Since g is homotopic to / . keeping 0 fixed. / and g will be 
equal on Z". Therefore either / and g both preserve the orientation of leaves, or / and g 
both reverse the orientation of leaves. Hence one can construct a linear homotopy from / to 
g, and this homotopy will be Zn-equivariant and will not move any leaf out of its image leaf. 
This completes the proof of the lemma. 
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4.8. Lemma. Let f :Tn -»7*n preserve a linear foliation by dense lines, and suppose f has 
finite order. Then f induces the identity on Hx(Tn;Z). For some 6cRn, we have a commuta­
tive diagram 

R* ' Rw 
Di W 

+* 
R-"1 -> Rnl 

where D is the developing map. 
Proof. Let AeGL(n.Z) be the map induced on Hx{Tn,Z). Then Av=\v, where v€R* is the 
direction of the foliation and XcR. Then A=±l. Let Rn=V®W, where V is the A-eigenspace of A 
and W is an 4 -invariant complementary subspace. Since X is an integer, V and W can be 
defined over the rationals. In other words, we can find vx, • • - ,vk,wl, • • ,wn-k€2?, such that 
the \vi\ form a basis for V and the \wi\ form a basis for W. But veV and v generates a line 
which is dense in 7*". Hence W «0. 

By the Lefschetz fixed point theorem, X~-l is impossible. This proves the result. 
We can now go back to the transversely hyperbolic situation of the main theorem of this 

paper. We refer the reader to the definitions of H0 and H at the beginning of §4, to the 
definition of Mi in the proof of Lemma 4.2, and to the definitions of r0, Tt and T just before 4.4. 
We recall that we have shown that H consists of transformations of the form x -»X7*x +6 in the 
upper half space model, with X>0, Te0(n-2) and b€R*~*. and that H0 consists of all 
transformations of the form x -*x +6. 
4.9. Lemma. HQ»H\. and the fibre bundle irJd-*Sl defined above has for its fibre a torus Tn~l, 
which is foliated linearly by dense lines. This foliation is locally constant 
Proof. We have the developing map D M -»H". Let N be the inverse image in M of a horosphere 
in IT, which is preserved by H0. Then the image Af of if in M is a closed submanifold, namely 
a fibre of the fibre bundle irJi-*Sl described above. 

Let r8 be the subgroup of T0 of index at most two, preserving the orientation of the fibres 
of D J/-»IT. Now N**N/?\, and the covering with fundamental group T8 has finite index. Now 
N/Yz is a torus of dimension (n-1) with a linear foliation by dense leavres. The group Yx/Tz 
acts on this torus. By Lemma 4.8. the elements of Tx/Tz preserve the orientation of the folia­
tion, and so r0=r8. According to Lemma 4.8. the elements of Tx/T0 are all translations. So this 
means that Ti^Io. 

We have now proved that the fibre bundle M ->S1 has for its fibre a torus with a linear foli­
ation having dense leaves. It follows that ?x/?Q*Hx/Ht is cyclic infinite. However, we have not 
yet proved that the foliation is locally constant. This can be seen by improving Carritre and 
Verjovsky's theorem (4.6) to the situation where the transverse structure is an 
(Rw"1.Rw"lxB)-structure, where B is a ball on which R*"1 acts trivially. We further suppose 
that the manifold is fibred by tori, one for each xeB, and that each torus has a dense leaf. 
Going through the proof, simply multiplying by B at appropriate points, we see that we have 
BxTn~l, where the foliation on Tn~l is constant. An alternative approach is to follow Itol-
ino [7.8] (but then, as already remarked, one is limited to the C°°-case, whereas the above 
approach can be generalized). 
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Any fibre bundle nji -*S1 is determined by the monodromy, which is a diffeomorphism of 
the fibre to itself. In the situation under consideration. Lemma 4.7 shows that the mono­
dromy diffeomorphism ^t:T1T~L-*TN~L can be chosen to be of the form /*(x)=ilx+6. 

It follows that ffil/^r is an extension of the free abelian group T0 of rank (n-1). by a 
cyclic infinite group, and that conjugation by a generator of the cyclic infinite group is equal 
to A . We consider T0 and T as groups of transformations of the upper half space of the form 

x-XTx+6 (6eR*-2.X>0. r€0(n-2)) 

Let X-*\QTOX be a generator in T of the infinite cyclic group HX/H0, with Xo>l. Then conjuga­
tion by this generator induces Xo7*o on v* obtain a commutative diagram 

R*-i I R*-2 
Ai I\QTo 

Rw_l * R*-a 

where u is an R-linear surjection, induced by the holonomy homomorphism /i.T1«Zw~l-»Rw"8. 
Hence n - 2 of the eigenvalues of A are equal to Xo in absolute value, since A eCL(n-l.Z). and 
the exceptional eigenvalue is u=±\on**. 

The eigendirection for the exceptional eigenvector is v, the direction of the foliation, 
since u:Rw~l-*Rn~2 can be identified with the restriction of the developing map to the inverse 
image of a horizontal horosphere. We now claim that the characteristic polynomial of A is 
irreducible over the integers. For suppose / is a polynomial over the integers, and suppose 
the exceptional eigenvalue is a root of / . Then f(A)v«0. Since the foliation parallel to v is 
dense, the induced map / (A ):f*-|-»r*-1 is identically zero. Hence / (A ):RW~1-»R*~I is equal to 
a constant, which must also be zero. It follows that the minimum polynomial of A is irreduci­
ble. Since the exceptional eigenvalue is a simple root, the minimum polynomial is equal to 
the characteristic polynomial. 

§5. Algebraic number theory. 
I would like to thank Simon Norton for the proof of the next theorem. 

5.1. Theorem. Let ao+at+ • • * +a*x* be an irreducible polynomial with integral coefficients 
and roots a i, ,ak. Let | a i |= • • • \ak-t\*\ak |. Thenh*3. 
Proof Suppose £24. Let r * | at |. If a is a root, then so is 5 and | a | -151. Since k 24, we may 
assume that ax and at are distinct roots. We may further assume that ag^Sf. It follows that 
58#ai. Futhermore, from the definition. a2^at. We have the equation ai&t'agSg. Let 6 be an 
automorphism of the splitting field for the polynomial, taking a% to a*. Then |0a<|*r for 
KiZk, and, in particular. 18a21 = 10511 = 16c\21 =r. We have 

0a |. 051 =0ot8.058 

and so \ak |r=r2, which is a contradiction. 
It follows from the concluding paragraph of §4 that n - l £ 3 , which means n£4. To obtain 

examples for n =3 and n =4, we can take 

4 = 
2 1 
1 1 and A = 

0 0 1 
1 0 -1 
0 1 0 
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In the second case, the characteristic equation is A3+X+l, which has one real root u and two 
complex roots Xoe^* and Xoe<#. with Xo>0. 

All examples of closed manifolds with transversely hyperbolic 1-dimensional foliations 
can be described explicitly. We describe the 4-dimensional case with a notation that is con­
sistent with the example just looked at, and leave to the reader the trivial task of decreasing 
appropriate integers by 1 for the 3-dimensional case. Let A eGL (3.Z) have one real eigenvalue 
u>\ and two other eigenvalues of equal absolute value Xo<l. (These will be complex conjugate 
in the transversely oriented case. In the transversely non-oriented case they are real with 
opposite signs. They can not be real with the same sign, since A acts irreducibly, as we saw at 
the end of 54.) Let B «X8 if either §i<0 or if the other two eigenvalues are real, equal and oppo­
site in sign. Otherwise, let B »A. Let G be the simply connected 4-dimensional solvable Lie 
group, which is a split extension 

0 -> R3 - G - R-0 

where the element 1 in R acts on R3 via £ . G is diffeomorphic to R4. Let r be the split exten­
sion 

0-»Z3-»r-»Z-*0, 

where the generator of the quotient acts via A. Let r0 (not the same r0 as was defined previ­
ously) be the subgroup of index at most two. defined in the same way as I\ but with B acting 
instead of A. T acts on G through right multiplication by A on the quotient copy of the reals 
(B is thought of as the number 1. and A as the number 1/2), and by the action of A as a 
matrix on R3. The action of r0 on G is by right translation, but not the action of I\ since A is 
not in G. There is a surjective homomorphism G-*GX% obtained by taking the quotient of R3<C 
by the normal subgroup which is the M-eigendirection of A. Then Gx is a split extension 

0-*R8-»C1-»R-»0 

and G\ can be thought of as a simply transitive group of isometries of upper half space H3, 
which keep oo fixed. The subgroup R* consists of parabolic translations, and the element 1 of 
R acts by a hyperbolic transformation, whose translation distance is logAo or 21ogXo. depend­
ing on whether A ~B or A*»B. Gt is diffeomorphic to H3. The homomorphism G-*G\ is the 
developing map. The manifold M is C/T. 
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