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BL. REINHART 

SOME REMARKS ON THE STRUCTURE OF THE LIE 
ALGEBRA OF FORMAL VECTOR FIELDS 

by Bruce L. Reinhart 

A formal vector field in IRm is an expression 
nu . y i £i=1 A (x ,..,x )a/ax 

where A"*" (x"̂ , . . , xm) is a formal power series in the variables 
(x , . . . ,x ). The Lie bracket which is defined for polynomial vector 
fields extends immediately to the set * ™ of formal vector fields, 
since the terms of degree k in the product depend only on terms of 
degree <k + 1 in the factors. The cohomology of «~ with real 
coefficients gives rise to characteristic classes for foliations of 
codimension m with trivial normal bundle, essentially because <t°° 
is in some sense the Lie algebra for the topological groupoid r of 
germs of diffeomorphisms of IRm. Thus, for the study of foliations, 
it is useful to understand the structure of this algebra. Certain 
extensions occur in the inductive construction of • from Lie alge-
bras of truncated polynomial vector fields. In this paper, the 
cohomology groups which classify these extensions are studied. 

Let o4> be the subalgebra of • consisting of formal vector 
fields with constant term 0. This algebra in some sense corresponds 
to a group, the group of °°-jets of diffeomorphisms of 3Rm that 
leave the origin fixed. flj» has finite dimensional quotient alge-
bras i whose coefficients are polynomials of degree <k. The m ^ corresponding Lie group GPm consists of k-jets of origin-fixing 
diffeomorphisms of 3Rm. (It is important to note that in all cal­
culations for finite k, terms of degree >k are discarded.) For 
every k > 1, there are exact sequences of Lie algebras 

m, K m+1 m 
k+1 where it . is defined by this sequence, m, JC 

Lemma. is an abelian Lie algebra, and the action of fj>̂  in m,k m — k+1 1 ttn -K depends only on (JVm = P fm« The sequence splits for k = 1 
and also for m = 1, k = 2. 
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Proof. Since the coefficients in itm k are homogeneous polynomials 
of degree k+1 , all the brackets are killed by truncation. In 
fact, all brackets involving terms of degree k+1 and of degree 
I > 2 are killed by truncation, which proves the second part of the 
statement. The splittings mentioned arise from injections because 
in these cases, no truncation actually occurs in calculating the 
bracket. 

For k = 1, the corresponding splittings of Lie group sequences 
also arise from the obvious injection of the general linear group 
into the higher order jet groups. For the case m = 1, k = 2 the 
splitting takes the polynomial mapping â x + BL^L in the variable 

2 a2 3 a2 4 x to the mapping anx + a0x + — x + —=• x + truncated 
1 ax 

wherever one pleases or not at all. 
Theorem. None of the above exact sequences except those mentioned in  
the lemma split. Also 

dim H2 (W W k )= \2 k = 5,7 
' ' ' ' 1 otherwise 

Note that the cohomology group mentioned in the theorem classi­
fies extensions modulo split extensions. This theorem will be proved 
later in the paper, and explicit cocycles representing generators 
and representing the canonical extension will be given. 

This calculation for the case m = 1 may have a more general 
meaning than appears at first, because of the following proposition. 
Proposition. Let m > 1 and 

p(x) = Î =1 x1 ô/ôx1. 

Then «~ is the vector space direct sum of the subalgebra consisting  
of volume preserving vector fields and the subalgebra consisting of  
multiples of p(x). _If m = 1, the latter subalgebra is The 
projection of a homogeneous polynomial Vector field of degree k > 1 
onto the second subalgebra is given by 

P<Xi=1 A1 ô/ôx1) 1 
m+k-1 

m̂ aA1 -i=l i ax p(x) . 
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Proof. By direct calculation, P = P, P is the identity on any 
multiple of p(x), and the kernel of P is the divergence free 
vector fields. Thus P gives rise to a direct sum splitting of the 
homogeneous fields of each positive degree. (The operator P has 
been used by Vagner [7] and the splitting of the homogeneous fields 
has also been studied by Terng [6].) The divergence free fields, 
including all the fields of degree 0, form a subalgebra since there 
is a purely formal calculation which establishes this fact. If p 
is homogeneous of degree k and q is homogeneous of degree I , 
then 

[p(x)p(x) ,q(x) p (x) J = (£ - k)p(x)q(.x)p(x) . 
Note that the coefficients in the last formula depend only on 

the degree of the polynomials, so that the structure of the sub-
algebra generated by p(x) reflects very strongly the structure of 

Thus, it appears that the relations among (î , the 
divergence-̂ ree fields, and are worthy of further ŝ tudy. 
Another open question is the meaning of the nonstandard extensions 
that occur for m = 1 and k = 5,7. Since elements of «1 give 
rise to symplectic vector fields in 3R , one may ask whether these 
extensions are related to the strange behaviour of the 4-jets of the 
symplectic algebra in IR (Gelfand, Kalinin, and Fuks [4]). 
Another reason for studying these questions now is that there are 
beginning to be general theorems about Lie groups, such as GPm' 
which are not either semi-simple or solvable (such as Dani [2,3], 
Brezin and Moore [1], Moore 15]). 
Proof of the theorem. The proof consists of calculations with 
cochains, using the basis consisting of the formal vector fields 

il lr i 
X ... X d/dx . 

k k+1 For £J> , 1 < r < k and for it T, r = k + 1. If m > 1 and c m' m,k' 
k > 1, then the cocycle representing the canonical extension is 
easily seen not to be a coboundary. For m = 1, let f be a 
cochain and let 

f(a,b) = fCxad/dx,xbd/dx). 
Then any cochain can be modified by a coboundary to obtain f(l,b) 
= 0 for b. > 2. Furthermore, no nonzero cocycle which satisfies 
this condition can be a coboundary. Thus, it remains to determine 
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the conditions for a cochain satisfying this condition to be a 
cocycle. By considering ôf(l,b,c), one sees that a cocycle must 
satisfy 

f(a,b) = 0 for a + b î k + 2. 
2 

Thus H = 0 for k = 1,2, while for k = 3 (respectively 4) the 
value of f(2,3) (respectively f(2,4)) is arbitrary. For k = 5, 
the values of f(2,5) and f(3,4) are arbitrary. For the canonical 
extension, the values are f(2,5) = 3 and f(3,4) = 1. For k = 6, 
the values of f(2,6) and f(3,5) are subject to the condition 
that -2f(3,5) + f(2,6) = 0, while the canonical extension is given 
by f(2,6) = 4 and f(3,5) = 2. For k = 7, the values of f(2,7), 
f(3,6), and f(4,5) are subject to the one condition 

-f(4,5) - 3f(3,6) + 2f(2,7) = 0 
while the canonical extension is given by f(2,7) = 5, f(3,6) = 3, 
and f(4,5) = 1. For k > 8, the number of conditions for a cochain 
to be a cocycle increases very rapidly, and it is always possible to 
find enough so that the only cocycles are multiples of the canonical 
cocycle, which is given by f(a,b) = b - a provided a + b = k + 2. 
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