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TOPOLOGICAL MINIMAL ALGEBRAS AND SULLIVAN -
DE RHAM EQUIVALENCE 

by Hans Michael UNSOLD 

1. Statement of theorem. 

Let QSj denote the category of 1-reduced rational 
simplicial sets and let Pi In ^ denote the category of 
1-connected minimal topological algebras ouer Q 
(see section 3 below). 

7 he,o/Le,m : There exist functors ft and Q inducing an 
equivalence of homotopy categories 

/7 ; Ho(QS7) Ko(P\in1) : Ç 

For M € ftin^ and X € US j we have : 

(i) H (PI) 3 H (JPIiÛ) 

(ii ) ( QM ) 1 = -n«(çm) 

(i) • H * ( X ; £ ) - H*(/7X) 

(ii)' T T ^ ( X ) = (Q /?X ) ' 

Here QM := M + / closure(M +.M +) . and 1 denotes the 
topological dual. 

Re-mcL/Lk: If (M,d) = (AZ, d) is an "ordinary" minimal 
algebra then we can never have properties (i) and 
(ii) together (whatever Q may be ! ). Look at the 
following 

E.x.cLm.nte.1 Fix an integer r > 2 and a ^-vectorspace V. 

Let Z = © Z 1 , Z i = 0 ( i ^ r ) , Z r = \/.d = 0. 
i 

Assuming (i) we get Hr(</M;£) = \J , and assuming (ii) 
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we get : H r(£M;<2) = Horn ( H ( QM ) , Q ) = Horn ( TT R ( QV\ ) , Q ) = V » . 

But in general V ^ \J" 9 so this example suggests to 

look out for a topology guaranteeing V = V" . 

2• Linear topologies. 

U/e regard Ù , the field of rationals , as a discrete 

sp ace. 

De.JL initlon (see [L.J ) : A topological uectorspace \J 

over Q is said to be linearly topological ( abbrev: 

l.t. ) iff it is hausdorff and there is a fundamental 

system of neighbourhoods of D consisting of nuclear 

(i.e. open - closed) subspaces . 

\J is called linearly compact (i.e.) iff any filterbase 

T consisting of affine subspaces has a clusterpoint , 

i.e. O (closure(F) : F <£ 7} 4 0 . 

Let V be a l.t.space. U/e topologize the topological 

dual V 1 by requiring that for any I.e. subspace K 

of \J the annihilator K° := {\\) € \J 1 : (K) = •} is 

nuclear in V 1 • 

7 he.o/ie.m (S.Lefschetz) 

(a) A l.t. space V is I.e. iff V ' is discrete. 

(b) If V/ is I.e. or discrete then V/ = V". 

(c) If V, Ui are discrete (resp. I.e.) then 

L(V,UJ) = L ( W ,V 1 ) . 

Re.ma/ik: There is another interisting link between I.e. 

spaces and discrete spaces (see £"L] ) • 

Any two of the following properties imply the third: 

( 1 ) V/ is discrete. 

(2) \J is I.e. 

( 3 ) dim V  <  o o . 338 
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P/Lono^ltLon: Given two l.t.spaces V.Ui there is a linear 
topology on \J m Ui such that the canonical map 
V x UJ 1/ a ill is universal with respect to uniformly 
continuous bilinear maps. 

Uie denote by \J a Ui the completion of \J a Ui . 
If V,Ui are I.e. (resp. discrete) then V a Ui is I.e. 
(resp. discrete) and (V a Ui) 1 = V 1 a  Ui • . 

Now let A = ^ A D be a (differential) graded algebra. 

(UJe assume all our algebras to be augmented an commutative 
in the graded sense.) 
A is called a complete (D)GA iff: 
(i) A D is a complete l.t.space for all p j> 0. 
(ii) Multiplication A p x A q •*> A p + q is uniformly 

continuous. 

Call A linearly compact if A p is I.e. for all p. 

3 . Topological minimal algebras. 

Let \1 = ® V 1 be a connected graded l.t.space. 

Psio noAltlon: There is a linear topology on AV such 
that the usual universal mapping property holds with 
respect to continuous maps. 

Uie denote by F\J the completion of AV . FV is a complete 
graded algebra in the sense of our definition. 
If V is I.e. in each degree then FV is I.e. and (FV/)1 

is the symmetric coalgebra over V 1 . If V is discrete 
then AV is discretethence AV = FV . 

De.£lnltlon: A complete 1-connected DGA (M.d) is called 
minimal (in the topological sense) iff: 
( 1 ) Disregarding differentials PI = FV for some graded 

1-connected I.e.space \J . 
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(2) d(W n) CL F(V 2 e  V 3 a  ... e V n~ 1) for all n > 2 . 

If M happens to be of finite type then M is a (discrete) 
minimal algebra in the usual sense. 

4. Minimal models for simplicial sets. 

Let X be a simplicial set and let A (X) be the algebra 
of ^-polynomial forms on X (as in [ BGJ ) • 
Topologize A (X) as follows : for any simplicial map 
x:Aq * X the subspace k er ( A p ( x ) : A p ( X ) A p(A q)) is 
nuclear in A P(X). 
Then A (X) is a complete DGA. 

Now assume X,Y to be 1-reduced simplicial sets. 

P/Lono^ltioa: 
(a) There exist /7X € Flin^ and a weak equivalence 

ex:/7X + A*(X) . 

(b) Given a simplicial map f:X Y there exists 
/7f:/7Y MX » unique up to algebraic homotopy • 
such that e^oflf is homotopic to A (f)oey. 
Furthermore if f is homotopic to g then 
Flf is homotopic to /7g . 

The rule X /7X , f /7f defines a functor 
/7 : Ho(QSf) > Ho(nin1) • 

5. An adjoint for /7 . 

For any complete DGA M let £M be the simolicial set 
given by (£M) = Hom(lYl, A (A q)). It is easy to prove 
that A and Q are adjoint functors 

A : simplicial sets < * complete DGA 1s : Q • 

Let p m : M A G№ 9 x x : X </A X denote the ad­
junction maps. 
Using a little abstract homotopy theory (as in [ " B 3 ) 
it can be shown that /7 and Q induce adjoint functors 

/7 : HoCaS7J 4 * Ho(flin7) : Q 
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It remains to show that : 
(1) The adjunction : M -> Mg(m)(W C Mlrif) is 

a weak equivalence, (in fact p^ can be shown to 
be an isomorphism.) 

(2) The adjunction x x: X + £/7X (X e CIS;) is a homo-
topy equivalence. 

If eflgp\ z ^ w A (^M) is tne minimal model of 
then the adjunction map is defined up to homotopy 
by requiring that eflQ\<\ ° P(V| ^ s nomotopic to p^ . 
In order to prove (1) it suffices to show that p^ 
is a weak equivalence. 
First assume that M  =  F\l » d = 0 , where \I is concen­
trated in some degree r^2 (i.e. V 1 = 0 if i ^ r ). 
There exists an inverse system ^a^a °^ finite dimen­
sional spaces such that \l = inv lim Ui . 

x _ a 

The maps PyyUJ : "** ^ a are weak equivalences 
(see C BG 3 ) . A 

It can be checked that F\J = inv lim AUi . H A QFM = 
inv lim H A £AuJa and that p is compatible with inverse 
limi ts. 

Definition: Let (M.d) be a complete DGA , UJ a I.e.space 
(not graded). Denote by (uJ,r) the graded space given by 
UJ in degree r and 0 otherwise. Let t : Ui •> Z r + ^ (PH) 
be a linear map and define a differential d̂ . on 
1*1 a F(Ui,r) by d

t l ^ = d » dt' U J = t -

The algebra ( M a F(Ui,r),d.) is denoted by M a F(Ui,r) 
Z t and is called an elementary extension of P I . 

The homology class ft j € H r + 1 ( L (Ui, M) ) = L ( Ui, H r + 1 ( PO ) ) 
is called the structure class . 

Proof of (1) , general M  : Uie proceed by induction 
over the elementary extensions F(v < n) + F(\/=n) . 
The inductive step is achieved with the help of the 
following propositions. 
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PsionoA it ion: Assume that : M A (</№) is a u/eak 
equivalence. Let M N = M a F(Ui,r) be an elementary 
extension. ^ 
Then ON Q{<\ is a principal simplicial fibre bundle 
with fibre F = K(Ui'.r) and the transgression 
T : ui = H r(F;£) -> H r + 1 (£M;0) = Hr+1(|vi) is given by the 
structure class Tt] . 

P/iono* it ion (Hirsch - lemma) : Let F + E •> B be a 
principal simplicial fibre bundle with fibre F = K (TT.r) , 
7T a rational vectorspace (discrete). 
Let e D * /°?B **• A (B) be a minimal model of B and 
suppose that the transgression T : H r (F ; Q ) H r ( B ; <Q ) 
is represented by some map t : TT 1 Z r + 1(/7B). 
Then there is a weak equivalence 

MB a F ( 7T ,,r) > A*(E) . t 

The proof of (2) is now very easy. T y is defined by 
T X =  ^^ ex^ ° T X w h e r e e

x

 : / > ? X "** A i s t n e model 
of X. A straightforward computation shows that 
e x = A ( T

x) ° Pflx * eX a n d P/°?X a r e l j j e a l < equivalences 
hence A (T X) is a weak equivalence and by duality of 
H*(-;£) and H*(-;G) we get : H*(X;G) = H*(£/7X;£). 
Since X and QflX are 1-connected rational simplicial 
sets an application of Whitehead's theorem gives the de­
sired result. 
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