Astérisque

KATSUYUKI SHIBATA

Sullivan-Quillen mixed type model for fibrations and the Haefliger model for the Gelfand-Fuks cohomology

Astérisque, tome 113-114 (1984), p. 292-297

<http://www.numdam.org/item?id=AST_1984__113-114__292_0>

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ K. SHIBATA

SULLIVAN-QUILLEN MIXED TYPE MODEL FOR FIBRATIONS AND THE HAEFLIGER MODEL FOR THE GELFAND-FUKS COHOMOLOGY

> by Katsuyuki SHIBATA (Saitama University)

1. Introduction (The Bott "Conjecture").

Let M be a paracompact Hausdorff C^{∞} -manifold of dimension $n \ge 1$ and L_M be the topological Lie algebra of C^{∞} -vector fields on M. Gelfand-Fuks [1] considered the differential graded algebra (DGA for brevity) $C_c^{*}(L_M)$ of continuous cochains of L_M , and its cohomolgy $H^{*}(C_c^{*}(L_M))$ is called the <u>Gelfand-Fuks cohomology</u> of M.

On the other hand, let $\mathrm{EU}_n^{(2n)} \to \mathrm{BU}_n^{(2n)}$ be the universal U_n-bundle restricted over the (homotopical) 2n-skelton of the base and

(1.1.)
$$\hat{\gamma}_n : EU_n^{(2n)} \to EU_n^{(2n)} \underset{U_n}{\times} EU_n \to BU_n$$

be the associated fiber bundle over BU_n with fiber $\mathrm{EU}_n^{(2n)}$. And let τ_M^C be the complexification of the tangent bundle of M classified by a map $f_M^C: M \to \mathrm{BU}_n$. Consider the cross-section space $\Gamma((f_M^C) * (\hat{\gamma}_n))$ of the induced bundle $(f_M^C) * (\hat{\gamma}_n)$ equipped with the compact open topology. Then the Bott "Conjecture" asserts ;

(1.2.)
$$H^{*}(C_{c}^{*}(L_{M})) \cong H^{*}(\Gamma((f_{M}^{C}) * (\hat{\gamma}_{n})); R).$$

A. Haefliger [3], [4] affirmatively solved this conjecture by constructing a Sullivan-Quillen mixed type model for the fibration $(f_M^C) * (\hat{\gamma}_n)$. Here, by <u>a</u> Sullivan-Quillen mixed type model for a fibration, we mean a DG Lie algebra $L = A^* \otimes \overline{L}$ over a DGA A^* with a differential d, whose restriction $(A^*, d A^* = d_A)$ is a model for the base space in the sense of Sullivan and whose quotient $(\overline{L} = R \otimes_{\mu} L, 1 \otimes_{\mu} d)$ is a model for the fiber in the sense of Quillen.

The superiority of the mixed type model lies in the following fact. The cochain complex $C_A^*(L)$ over A^* of L is a Sullivan model for the total space of the fibration while the cochain complex $C_R^*(L)$ over R of L is a Sullivan model for the cross-section space of the fibration.

But if we want to construct a mixed type model on the universal level, i.e. a model for $\hat{\gamma}_n$ itself instead of the induced one $(f_M^C)^* * (\hat{\gamma}_n)$, we have no longer a differential on L but a pair (D,χ) of a derivation D on L and the <u>Euler element</u> χ in L₋₂, χ being the obstruction for D to be a differential and, at the same time, being a representative for the obstruction class to the existence of a cross-section of the fibration.

In this note we give a sketch of the following two subjects, the details of which will appear elsewhere. First we present a general view of the Sullivan-Quillen mixed type model in section 2, generalizing the Haefliger-Silveira theory of mixed type model for fibrations with a given cross-section [7]. In section 3, we exhibit a very explicit description of the mixed type model for the fibration (1.1.), and thus give a complete answer to the algebraic computational problem posed by Haefliger [3]. We remark that partial results to this problem permitted us to deduce the following result.

THEOREM (1.3)([6]) : <u>A closed connected orientable manifold</u> M of dimension ≥ 1 has finitely generated Gelfand-Fuks cohomology (as an R-algebra) if and only if M = S¹.

I am greatly indebted to S. Hurder's suggestion for accomplishing my computations of the differential in Haefliger's model. I also owe a great deal to A. Haefliger for suggesting me to generalize the mixed type model theory to fibrations without cross-section. Finally the discussions with H. Sliga clarified me the role of the Euler element in the mixed type model.

2. Sullivan-Quillen mixed type model for fibrations.

Let $A^*(= A_{*})$ be a positively graded DGA with a differential d_A and L_* be a graded Lie algebra over A^* with the grading deg (a.y) = deg(y) - deg(a) for a $\in A^*$ and y $\in L$.

DEFINITION 2.1. : A graded Lie algebra L_{*} over A^{*} is <u>an algebraic fibration</u> of mixed type over A^{*} if $(R \otimes L_{*})_{p} = 0$ for $p \leq 0$ and if it is equipped with a pair (χ, D) , where χ is an element of L_{-2} called <u>an Euler element</u> and $D : L_{*} \rightarrow L_{*}$ is an A^{*} -Lie derivation of degree -1, i.e.

(2.2)
$$D(a \cdot [y_1, y_2]) = d_A(a) \cdot [y_1, y_2] + (-1)^{deg(a)} a \cdot \{ [D(y_1), y_2] + (-1)^{deg(y_1)} [y_1, D(y_2)] \},$$

satisfying the following trace formulas ;

(2.3) $D(\chi) = 0$, and

(2.4) (D)²(y) =
$$[\chi, Y]$$
 for every $y \in L_x$.

The quotient DG Lie algebra (R \otimes L_{*}, l \otimes D) is called the fiber of this A A algebraic fibration.

DEFINITION 2.5. : Let (L_*, χ, D) be an algebraic fibration of mixed type over A^* . Its <u>chain complex</u> $C_*^{A,\chi}(L_*)$ <u>over</u> A^* is the DG coalgebra $(S_*^A(\sigma L_*), d = d_L + D + d_\chi)$, where σL_* is the suspension of L_* (the shift of degree by +1), $S_*^A(\sigma L_*)$ denotes the symmetric coalgebra of σL_* taken over A^* , d_L is the usual differential on $s_*^A(\sigma L_*)$ arising from the Lie bracket of L_* , D is the coderivation on $S_*^A(\sigma L_*)$ induced by the derivation on L_* denoted by the same symbol, and d_χ is the differential which is nothing but the multiplication by the suspension $\sigma\chi$ of χ , i.e. $d_{\chi}(x) = \sigma\chi.x$. We call d_{χ} <u>the Euler differential in</u> $C_*^{A,\chi}(L_*)$. The trace formulas (2.3) and (2.4) are equivalent to ; $d^2 = 0$ in $S_*^A(\sigma L_*)$. The cochain complex $C_{A,\chi}^*(L_*)$ <u>over</u> A^* <u>of</u> L_* is the A^* -dual of $C_*^{A,\chi}(L_*)$, namely

(2.6)
$$\operatorname{Hom}_{A_{*}^{\ast}}(\operatorname{S}_{\ast}^{A}(\operatorname{GL}_{\ast}), \operatorname{A}^{\ast}) \cong \operatorname{A}^{\ast} \otimes \operatorname{S}_{R}^{\ast}(\operatorname{R} \otimes \operatorname{GL}_{\ast}) ; \operatorname{Hom}_{\ast}(\operatorname{d}, \operatorname{l}).$$

This is an algebraic fibration over A^{*} in the sense of Sullivan.

Conversely, starting from an algebraic fibration $A^* \rightarrow E^*$ in the sense of Sullivan, we can construct a mixed type fibration (L_*, D, χ) over A^* with χ being a representative of the obstruction class to the existence for a cross-section in the minimal model for the fibration above.

3. The Haefliger model.

Now we return to the fibration $\hat{\gamma}_n$ of (1.1). The minimal model for the base

space
$$BU_n$$
 is given by
(3.1) $I^n = R[\overline{c_1}, \overline{c_2}, \dots, \overline{c_n}]$; deg $\overline{c_i} = 2i$, $d(\overline{c_i}) = 0$.

A model for the fiber $EU_n^{(2n)}$ is given by

(3.2)
$$\hat{W}_n = E(h_1, h_2, \dots, h_n) \otimes (R[c_1, c_2, \dots, c_n]/(\deg > 2n))$$

with deg $h_i = 2i-1$, deg $c_i = 2i$, $d(h_i) = c_i$, $d(c_i) = 0$. A model (in the sense of Sullivan) for the total space is given by

(3.3)
$$I^{n} \otimes \hat{W}_{n}$$
; $d(h_{i}) = c_{i} - \bar{c}_{i}$, $d(c_{i}) = d(\bar{c}_{i}) = 0$.

The fiber ${\rm EU}_n^{(2n)}$ has the rational homotopy type of a bouquet of spheres and its minimal model (in the sense of Quillen) is

(3.4)
$$L(\sigma^{-1}\tilde{H}^{*}(\hat{W}_{n})')$$
; $d \equiv 0$

A convenient basis $\{ [h_{I}c_{J}] ;$ partitions I and J satisfy certain inequalities} for $\tilde{H}^{*}(\hat{w}_{n})$ was found by J. Vey [2].

Now $I^n \otimes L(\sigma^{-1}\tilde{H}^*(\hat{W}_n)')$ has the natural graded Lie algebra structure over I^n . We define the Euler element χ in it by

(3.6)
$$\chi = \sum_{\omega} \bar{\mathbf{c}}_{\omega} \otimes \sigma^{-1} \left[\mathbf{h}_{\omega} \mathbf{c}_{\omega} \mathbf{c}_{\omega}^{-1} \mathbf{c}_{\omega}^{-1$$

where the summation runs over all the partitions $\omega = (\omega_1, \omega_2, \omega_3, ...)$ such that $1 \le \omega_1 \le \omega_2 \le ..., \quad \omega_2 + \omega_3 + ... \le n$, and that $\omega_1 + \omega_2 + \omega_3 + ... > n$. And we define I^n -Lie derivation D as a sum of two differentials d_1 and d_2 ; (c.f. [6], p. 398 for the notations)

$$(3.7) \quad \mathbf{D} = \mathbf{d}_1 + \mathbf{d}_2 : \mathbf{I}^n \otimes \mathbf{L}(\sigma^{-1}\tilde{\mathbf{H}}^*(\hat{\mathbf{W}}_n)') \rightarrow \mathbf{I}^n \otimes \mathbf{L}(\sigma^{-1}\tilde{\mathbf{H}}^*(\hat{\mathbf{W}}_n)'),$$

(3.8)
$$d_{1}(1 \otimes y(\mathbf{I}, \mathbf{J})) = - \sum_{(\mathbf{I})} \operatorname{sign} \prod_{\mathbf{I} \leq v} (\omega_{1} - \mathbf{i}_{v}) \overline{c}_{\omega} \otimes y(\omega_{1} + \mathbf{I}; \omega - \omega_{1} + \mathbf{J})$$

+
$$\sum_{\substack{(2)\\l \leq v}} \operatorname{sign} \prod_{l \leq v} (j_t - i_l) \overline{c}_{\omega} \otimes y(\omega_l + I - i_l + j_t; \omega - \omega_l + i_l + J - j_t)$$
,

where $y(I;J) = \sigma^{-1} [h_I c_J]'$, and

$$(3.9) \quad d_{2}(1 \otimes y(1;J)) = \sum_{(1)} (-1)^{|I(1)|} sign \sum_{1 \le \mu, \nu} (i_{\mu}^{(1)} - i_{\nu}^{(2)}) \overline{c}_{\omega} \otimes [y(I(1);J(1)), y(\omega_{1}^{+1}(2) - i_{1}^{(2)};\omega - \omega_{1} + i_{1}^{(2)} + J(2))] + \sum_{(2)} (-1)^{|I(1)|} sign \prod_{1 \le \mu, \nu} (i_{\mu}^{(1)} - i_{\nu}^{(2)}) \overline{c}_{\omega(1)} \overline{c}_{\omega(2)} \otimes [y(\omega_{1}^{(1)} + I(1) - i_{1}^{(1)};\omega(1) - \omega_{1}^{(1)} + i_{1}^{(1)} + J(1)), y(\omega_{1}^{(2)} + I(2) - i_{1}^{(2)};\omega(2) - \omega_{1}^{(2)} + i_{1}^{(2)} + J(2))].$$

One checks by direct computations that χ and D defined above satisfy the trace formulas (2.3) and (2.4). Thus $(I^n \otimes L(\sigma^{-1}\widetilde{H}^*(\widehat{w}_n)'), \chi, D)$ is an algebraic fibration of mixed type. Its cochain complex C^* $(I^n \otimes L(\sigma^{-1}H^*(\widehat{w}_n)'))$ I^n, χ is proved to be the minimal model for the fibration (3.3).

Now let M be an n-dimensional manifold as stated in the introduction, and $\Omega^*(M)$ be its de Rham algebra. A choice of Pontrjagin forms $\tilde{p}_i \in \Omega^{4i}(M)$ makes $\Omega^*(M)$ an I^n -algebra via the homomorphism defined by $\bar{c}_{2i} \xrightarrow{} \tilde{p}_i, \bar{c}_{2i-1} \xrightarrow{} 0$. By the scalor extension, we obtain a DG Lie algebra over $\Omega^*(M)$

(3.10)
$$(\Omega^*(M) \otimes (I^n \otimes L(\sigma^{-1}H^*(\widehat{w}_n))) \cong \Omega^*(M) \otimes L(\sigma^{-1}H^*(\widehat{w}_n)); 1 \otimes D)$$

whose cochain complex $C_R^*(\Omega^*(M) \otimes L(\sigma^{-1}H^*(\widehat{W}_n)^*)$ over R is a model for the crosssection space $\Gamma((f_M^C) * (\widehat{\gamma}_n))$. This is <u>the Haefliger model</u> for the Gelfand-Fuks cochain complex $C_c^*(L_M)$. Notice that $(f_M^C) * (\widehat{\gamma}_n)$ admists a unique homotopy class of cross-sections since the fiber $EU_n^{(2n)}$ is 2n-connected.

REMARK 3.11. : The minimal model for the algebraic fibration (3.3) is isomorphic to that of DGA $I_{(n)} = I^n/(deg > 2n)$. So the minimal model above can also be regarded as the minimal model M_I . In fact, the modulo $(\overline{M}_I)^3$ -reduction of the formulas (3.6)-(3.9) gives rise to formulas (2.15)-(2.19) of Hurder-Kamber [5].

Since $R[p_1, p_2, \dots, p_{n/2}] \cong I^n/(\bar{c}_{2i-1})$, we obtain the minimal model (= the Postnikov decomposition) for the algebraic fibration $P_n \to P_n \otimes \hat{W}_n$ by putting \bar{c}_{2i-1} in the model above. This is a complete answer to the computational problem posed in [3].

SULLIVAN-QUILLEN MIXED TYPE MODEL

REFERENCES

[1]	I. GELFAND and D. FUKS, The cohomology of the Lie algebra of tangent vector
	fields (I), (II), Funct. Anal., 3 (1969), 32-52, and 4 (1970), 23-32.
[2]	C. GODBILLON, Cohomologie d'algèbre de Lie, Lect. Note Math. 383.
[3]	A. HAEFLIGER, Sur la cohomologie de Gelfand-Fuks, Lect. Note Math. 484.
[4]	, Sur la cohomologie, Ann. Sci. E.N.S., 9 (1976), 503-532.
[5]	S. HURDER and F. KAMBER, Homotopy invariants, Lect. Note Math. 788.
[6]	K. SHIBATA, On Haefliger's model, Japan. J. Math., 7 (1981), 379-415.
[7]	F. SILVEIRA, Homotopie rationnelle, Thèse, Univ. Genève, 1979.