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C. LÖFWALL 

A CHANGE OF RINGS THEOREM FOR LOCAL RINGS 
by 

Clas Löfwall 

Let f: (A,m,k) —• (B,n,l) be a local homomorphism of local noetherian 
rings. Suppose also that char(l) = 0. Define the graded vector space V as 

V = s ker(QTorA(k,k) *k 1 
Of, QTorB(l,l)) 

(Q means the functor defined by forming the set of indecomposable elements, 
and s is the shift operator acting as (sW)_̂  =Wi-1)). 
Let further T(v) denote the (graded) commutative algebra on V and let 
Pol(V) denote the (graded) bicommutative Hopf algebra on V . Define Y as 
X ®A B , where X is a minimal A-resolution of k . In [2] Theorem 3.5 
Avramov (implicitly) states that the Hopf algebra Exty(l,l) is the tensor 

* 
product of Pol(V ) and the Hopf algebra kernel of 

f : ExtB(l,l) ExtA(k,k) ®k 1 . 
This is however not true! But it iŝ  true that there is an exact sequence of 
Hopf algebras 

1 —• Pol(V*) —* Ext (1,1) —* ker(f*) —• 1 
and that Pol(V ) is contained in the graded centre of ExtY(l,l) ( a result 
of Calle Jacobsson [10]) "but the sequence does not split in general (Calle 
Jacobsson was the first to give a counter-example to this). 
The following theorem or rather its first corollary may be seen as the 

corrected version of Theorem 3.5 in [2], It should be pointed out that, in [2], 
Avramov proves that the sequence in the theorem below is exact as a sequence 
of coalgebras and also that riy and f are maps of Hopf algebras. The main 
contribution of the present paper is the fact that is a map of Hopf 
algebras. The proof of Theorem 1 does not use Avramovs result. For a proof of 
the fact that im(Ŷ ) is contained in the graded centre of ExtY(l9l) the 
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A CHANGE OF RINGS THEOREM FOR LOCAL RINGS 

reader is referred to the paper [10] by C. Jacobsson (he proves this when 
A —> B is flat, but the same proof is valid in the general case). 
After this was written, Avramov has given an independent proof of Theorem 1 

in arbitrary characteristic. 

Theorem 1 There is an exact sequence of coalgebras 

1 —• Pol(V*) 
Y 1 Exty(l,l) 

n*y 
ExtB(l,l) 

f 
ExtA(l,l) «k 1 

y2 
Pol(s V*) 

1 
((. v V = (vV* 1) 

where , nY and f are maps of Hopf algebras, nY is induced by the 
unit map r|y: B —• Y. Moreover im(Xj) is contained in the (graded) 
centre of ExtY(l,l) (in other words, Y.,(V*) is contained in the centre 
of the Lie algebra of primitive elements in ExtY(l,l)). 

Combining theorem 1 with the Eilenberg-Moore spectral sequence 
ExtH(y)(l,l) •» ExtY(l,l) we get 

Corollary 1 With the same notations as in theorem 1 we have a spectral 
;equence of Hopf algebras 

Ext p.q 
TorJ *(B,k> 

(1,1) -> E 

and an exact sequence of Hopf algebras 
« y t 

1 —• Pol(V ) —• E —• ExtB(l,l) —• ExtA(k,k) »k 1 

with im(y) contained in the graded center of E . 

If B is A-flat, Tor (B,k) = B ®A k and the spectral sequence degenerates, 
yielding the following 
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C. LÖFWALL 

Corollary 2 Suppose in addition that B is A-flat, then there is an 
exact sequence of Hopf algebras with im(y) contained in the graded center 
of Ext_ В • A " ( 1 - 1 } 

1 — Pol(V#) — ExtB 8 k(l,l) 
A 

« 
g Ext (1,1) 

* 
f ExtA(k,k) ®k 1 

where g is induced by the natural projection g : B —• B GA k . 
Moreover, |V| < » and Vi = 0 for odd i . 

Remark The fact that |v| < • is due to Andre [5] , the fact that 
= 0 for odd i is due to Avramov [3] • 

Theorem 1 may be generalized to cover cases where Y is not necessarily 
of the form X 8. B. 

A 
Definition We say that "derivations may be extended" in Y = B<...S...> 
if there is for each S a derivation j : Y —• Y (commuting with the 
differential) such that jg(S) * 1 and jg(Sf) = 0 if deg(S') < deg(S) 
and S' + S . 

Theorem 2 Suppose (B,n,l) is a local ring, chard) = 0, and Y is a 
DG B-algebra obtained by adjoining variables such that Y 8fi 1 has zero 
differential. Then there is an exact sequence of coalgebras 

1 Pol(V*) —• Exty(l,l) 
* 

nY ExtB(l,l) 
f 

Horn̂ Y,!) —• Pol(s V ) —• 1 

where r\ is a map of Hopf algebras and V = s ker(Q(Y 3 ß 1) 
of 

QTorB(l,D). 

The maps f# and f are induced by a map f: Y —• U where U is the 
acyclic closure of B ( —* 1). Suppose also that "derivations may be 
extended" in Y . Then Pol(V ) is the Hopf algebra kernel of ny and 
contained in the graded center of ExtY(l,l) and the map 

« « 
Ext_(l,l) —• im(f ) induced by f is a Hopf algebra map. 

Jb 
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Corollary 3 Suppose (B,n,l) is a local ring and Y a DG B-algebra 
obtained by adjoining variables and let and e Y denote the unit 
and augmentation maps (Y is augmented to 1 in the natural way). Suppose 
a) Horn̂ Y,!) has zero differential 
b) e* : ExtB(l,l) —* Ext (Y,l) = Hom^Y,!) is surjective 
c) derivations may be extended in Y. 
Then there is an exact sequence of Hopf algebras 

1 —* Exty(l,l) 
n* 
Y ExtB(l,l) 4 Hom^Y,!) —• 1 

This is a particular case of Avramovs Theorem 2.2 in [1]. It may be applied 
e.g. for Y equal to a "step" in the Tate-resolution of 1 over B , or 
for Y = X ®A B where (A,m,k) —• (B,n,l) is a small homomorphism and 
X is a minimal resolution of k over A . Also we have the following 

Corollary k Suppose B = i[[x1,...,xn]]/(f1,...,fr) • CL 

where f̂  are quadratic forms in x.j,...,xn and is an ideal contained 
in (x1,...,xn)3 . Let A be the subalgebra of ExtB(l,l) generated by the 
one-dimensional elements and U = (B ̂  A , d) (defined in [l jj ) . 

Then there is an exact sequence of Hopf algebras 
1 ExtyU,!) —Ext B(l,l) — A •* 1 

(which is split by the natural map A —Extfi(l,l) ). 
Moreover if m̂  = 0 the Eilenberg - Moore spectral sequence 
Extu/TTN (1,1) »• ExtTT(l,l) degenerates yielding a (split) exact sequence H v U / u 
of Hopf algebras 

1 —* T(s H(U)) ExtB(l,l) —• A 1 
which is a result in [11] 

Proof It was proved in [l ij that U satisfies a), b) and c) of 
corollary 3 , and that A = HonigdJ,!). 
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C. LÖFWALL 

Proof of theorem 2: Let Z be the acyclic closure of Y ( —*- 1) and 
consider the following exact sequence of differential T-algebras 

1 Y 8 B 1 — Z 8 B 1 Z 8 y 1 —• 1. 
This yields an exact sequence of complexes 

0 —* Q(Y ® B 1) — Q(Z ®B 1) Q(Z eY 1) — 0 . 
According to Gulliksen ([9] Th. 1.6.2) Z 8 y 1 has zero differential 
and Y 8 B 1 has zero differential by assumption. 

According to Gulliksen ([9] Th.3.2,3), since char(l) • 0, the natural map 
B B Z 8 B 1 —»• Tor (1,1) induces an isomorphism H Q(Z 8fi 1) —* Q Tor (1,1). 

Hence there is an exact sequence (with naturally defined maps) 
0 s \ Q(Y ® B 1) —>• Q TorB(l,l) Q(Z ®Y 1) V — 0 (2) 
This gives an exact sequence of T-algebras 
1 —* r(s 1V) —• Y 8_ 1 TorB(l,l) —+ Z ®v 1 —• T(V) 1 . 
Dualizing this and observing that (by Eilenberg-Moore spectral sequence) 

Y 
Tor (1,1) = Z ®Y 1 we get the first part of the theorem. The fact that 
Exty(l,l) is a Hopf algebra and (r)Y) is a Hopf algebra map has been proved 
by Avramov (to appear in a forthcoming paper). However, for our purposes we 
will use another definition of Exty(l,l) and in the appendix 
we prove that this definition coincides with the one used by Avramov. 

rhe definition of the T - Hopf algebra 
Y 

Tor (1,1) is parallel to the case where Y = B . As was said above 
Gulliksen proves that the acyclic closure Z of Y ( • 1) has 
the property that Z 8 y 1 has zero differential but also that the 
Y-derivations on Z defined up to a certain degree, commuting with the 
differential, may be extended to the whole of Z . As T-algebras we have 

Y Y Tor (1,1) = Z 9y 1 .A T-Hopf algebra structure is defined on Tor (1,1) 
precisely when Q (Z 8 y 1) is given a structure of a graded Lie algebra 
(cf. [12],[6],[1U]) and this is done as follows. Let DerY(Z) denote 
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the set of graded derivations Z —> Z which are zero on Y . This is a 
graded Lie algebra. The map [dz, •] : Dery(Z) —• Dery(Z) makes Dery(Z) 
to a differential Lie algebra, and hence H(Dery(Z)) is a Lie algebra. 
There is a natural map 4> 2DerY(Z) Q (Z 8 y 1) 
defined in the following way. If j € Dery(Z) is a homogeneous element 
then E. o j : Z —> 1 induces a derivation Z 8 1 —• 1 and this map 
is zero on decomposable elements, since it is non-zero in just one degree 
and satisfies the derivation rule. Hence j € Dery(Z) defines 
•(j) € Q (Z ®Y 1) . The map <f> is onto, since if a € Q (Z ®y l) then 
a may be defined such that 

5 . ( z V ) r — Q ( z V ) r 

z \ commutes 
and if a is defined as zero in degrees below r , then a is a Y-derivation 
Ẑ  —• Z and this derivation may be extended to a derivation j e/Der..(Z) 
such that <f>(j) = a . The kernel of <p is {j €ZDery(Z); e o j = 0} = 
= SDery(Z) . This is true since if e o j = 0 , then there is a map of 
complexes r: Z —*• Z such that [d,r] = j . But since Z is obtained from 
Y by adjunction of variables, it is possible to define r successively 
such that r € DerY(Z) . Also, e o [d,r] a 0 , since dZ <= nZ and r is 
B-linear. Hence <f> induces an isomorphism H(DerY(Z)) — Q (Z 8 y l) , 
which gives the desired Lie algebra structure on Q (Z 8 y 1) . 

B Y 
We now turn to the question whether (ny]^ :Tor (1,1) —*• Tor (1,1) is a 

f 
Hopf algebra map. A map Y —• X of DG free T-B-algebras induces a Hopf Y Y 1 2 
algebra map Tor (1,1) —• Tor (1,1) in the following way. (One could 
also have a change of rings B1 —• , Ŷ  a B.j-algebra and 
1 1 

commutative, but we restrict ourselves to the case with B fixed). 
Let Z i be the acyclic closure of ^ ( -+ ! ) • According to ([9] lemma 1.8.6) 
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f may be extended to a map f : —• Ẑ  and this induces a map of 
T-algebras Z. &y 1 —• Z p ®Y 1 . We will prove that this map also is a 

Y1 2 
map of Hopf algebras. If j € Q (Ẑ  ®Y 1) let j denote an element in 

2DerY (Ẑ ) such that e. o j = j where : Ẑ  —• 1 is the augmentation, 
i 

Suppose j a , j b C Q (Z2 8 y 1) . Then Ua»JbJ is mapped to 

Uft,jj o f = e o [j X] o f e2 o f o [Q a o ?),(jb o f)] '• 
= e1 o [(ja o f),(jb o f)] = [ja o f,jb o f] . 

(Jao î) 

ч ° 1 

z ! 
t. 

Z2 
Ja 

Zi f t 
h-

£2> 

z1 
f 3J 

Z2 
V 

£ 2 . 

Z2 c1 

the squares are homotopy 

commutative. 

Let now Y satisfy the additional assumption that derivations may be 

B Y 

extended and consider the Hopf algebra map Tor (1,1) —• Tor (1,1) 

induced by T)^ : B —• Y . I claim that the T-algebra kernel is a Hopf algebra, 

i.e. the image of the map Q TorY(l,l) — Q TorB(l,l) is a Lie ideal in 

Q Tor (1,1) . This gives the assertion of the theorem that Ext_(l,l) im(f ) 

is a Hopf algebra map. Let Z be the acyclic closure of Y ( —• l) and 

U the acyclic closure of B ( —• 1) . There are maps of augmented DG 

B-algebras making the diagram below homotopy commutative 

« Î \ Y 

Y U . 

The map U Z induces the canonical map 

U ®B 1 = Tor
B(l,l) —• TorY(l,l) = Z 8 y 1 . Suppose j € Q*(U 8fi l) is 

in im(a) . Then there is j" e2Dery(Z) such thaV o j" o Y = j and 
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y €2>erB(U) such that o j' = j . Suppose also j 1 € Q (U 8 ß 1) and 

j» €2berB(U) such that eu ° ¿1 = Ji and j'' e2)erB(z) 'such that 

e z o j" o Y = j 1 (j" exists since Y is a homotopy equivalence). Since 

derivations may be extended in Y, by assumption, there is j , M €J£ber_(Y) 
1 B 

such that e y o j"' = j 1 o 3 
j, j 

z • z • z 
Y * Y y Y 

u -*h—• u J » u 

All diagrams above are homotopy commutative since 

e z o j " o \ = j = Ey o j ' = e z o y o j ' and 

e z o j 1 ; o y = Jt = ey o j ; = e z o y o j ; and 

e y o ß o j^" = e Y o j ' ^ = j 1 o ß = Ey o j | o ß . 

It follows from the diagram that also j " o 6 and 6 o j^" are homotopic, 

since y is a homotopy equivalence. Now 

[jf^] = c y o (y o j« ± j« o j') = e z o (j" o j'j t j'J o j") o y . 

This is an element in im(a) if &̂  o [j" o 6 = 0. But this is true 

since j" o Ô = 0 and j" o 6 and 6 o j"' are homotopic. 

Hence we have proved that im(a) is a Lie ideal and we have proved all 

assertions of theorem 2 but the fact that Pol(V ) is the Hopf algebra 

kernel of riy if derivations may be extended in Y . To do this we will 

use Andrews notion of "special variables", see [5] . 

From (2) above it follows that V may be interpreted as 

ker(Q*(Z ®v 1) —• (HQ(Z 8̂  1))*) . If Z = Y<...T.,..> then a basis 
* 

for V may be chosen to consist of duals of variables T , such that dT 
(2) . 

has a component in Y which is not in nY + I Y . Since derivations 

may be extended in Y , there is a derivation j defined up to deg(dT) 
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such that j(dT) = 1 , i.e. V has a basis consisting of duals of 
special variables. But Andre has proved that if a special variable is even 
then it may be adjoined in any order with respect to the other variables. 
We will prove that Andre's result holds also for special variables of odd 
degree (at least when char(l) = 0). From this it easily follows that if 
T is a special variable then the derivation JT associated to T may 
be chosen to satisfy j^T1 ) = 6^, and then [JT,JTJ = 0 if T and 
T* are special variables. For the fact that [JT»JT,3 = 0 if just one of 

T and T' is special (which gives the assertion that 
V c center(Q Exty(l,l))) we refer to the paper of C. Jacobsson [ 10] . 
Andre's result 
Andre1 proves the following ((B,n ,1) is a local ring) 

Theorem Suppose Y c U c Z are DG B-algebras and U is obtained 
by adjunction of an even special variable S , d S = s € Y , Z by a variable 
T , dT = t € U. Then there is t' € Y , with t* and t homologous such 
that Y <= V c z where V = Y<T« ; dT' = tf> and Z = V<S; dS = s> , also s 
is a special cycle of V . 

Explanation. S is called a special variable and dS a special cycle if 
there is a derivation j such that j(dS) = 1 . 

The proof of the theorem follows easily from the following two lemmata. 

Lemma 1 Suppose X is a DG B-algebra and R is a variable of odd degree. 
Then the inclusion map 

X —+ X<R; dR = OXS; dS = R> 
is a quasi-isoaorphism. 

Lemma 2 Suppose Y is a DG B-algebra and s is a special cycle of odd 
degree. Then there is a DG-algebra X of Y , such that 
Y ~ X<R; dR = 0> . 
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If char(l) = 0 lemma 1 is true also for R of even degree. Lemma 2 may 
be generalized to 

Lemma 3 Suppose Y is a DG B-algebra and S € Y an element such that 
there exists a derivation j with j(S) = 1 . Then there is a DG sub-algebra 
X of Y such that Y X<R; dR = s> where s = dS € X . 

We will prove lemma 3 for the case when S is of even degree. To do this 
we will first prove 

Lemma k Suppose S is an element of even degree in a DG algebra Y 
and j a derivation such that j(S) = 1 . For each y € Y let y' 
denote the element y - j(y)S + j2(y)S^2' - ... (jn(y) = 0 for big 
enough n). Then y = y1 + j(y)'S + j2(y)%,S^2' + ... and j(yf) = 0 . 

Proof The second claim follows from the fact j ( j n (y )S ( n ) ) = j n + 1 ( y ) S ( n ) h 

j n ( y ) s ( n " 1 ) The first follows from 

I j n ( y ) ' S ( n ) 

n=0 n,k=0 
(-n kj n + k(y)s ( k )s ( n ) 

p=0 j
p(y) 

n+k=p 
,l)ks(k)s(n) k 

since if p>0 n+k=p 
(_l)ks(k)s(n) 

n+k=p 
( -s ) ( k ) s ( n ) = (s - s ) ( p ) = 0 . 

Proof of lemma 3: 
Put X = {y € Y; j(y) = 0} . Define T: X<R; dR = s> Y as the inclusion 
map on X and T(R) = S . The map o: Y X<R; dR = s> is defined by 

2 (2) 

c(y) = yf + j(y)'R + j (y)'R + ... . The map T is a map of DG algebras 
and x is an isomorphism if T o a = id̂  and a o T = id^<p> . 
Lemma h gives the first equality and for the second it is enough to prove 

(2) k that if y = a + a S + a Sv ' + ... with a. G X , then j (y)f = a . But 
jk(y) = n>k 

a S n 
Jn-k) j k (y) ' - 1>0 

(-D 1 ó k + 1 (y)s ( 1 ) 

1>0 n>k+l 
a S n 

(n-k-1) (1) 

Z a 
n-k>0 r 1=0 

n-k 
s(n-k-l)(_s)(l) = 

n-k>0 
a n(S-S)(- k> = a, 
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APPENDIX 

The definition of Extp(k,k) as a Hopf algebra when F is an augmented  
differential algebra. 

When F = R is a local ring Assmus [7] has defined a diagonal on TorR(k,k) 
in the following way (modified by Avramov). 

Let P be a resolution of k over R and €: P —• k 
the augmentation. Then Tor (k,k) = H(k 8 R P) and the diagonal is defined 
as the composition 

H(k ®R P) 
H(e®l) 

H(P ®R P) 
H(p) 

H(P 8 R P ® p F 8 R P) 
K 

(1) 
~ H(P B R P) 8 H ( p ) H(P 8 r P) 

H(e®l) 8 H(e8l) 
H(k « R P) 8fc H(k 8 R P) 

where p(x 8 y ) = x 8 1 8 1 8 y and K is the Kunneth isomorphism. The fact 
that the dual of this map coincides with the (opposite of) the Yoneda product 
was proved by Levin [9 , Th. 2.3.3]. 

F 
If F is a DG (differential graded) augmented algebra, Tor (k,k) is 

defined in [13]. It may be computed as H(k 8^ Y) where Y is any DG 
F-roodule such that H(Y) = k and Y* is Fw -flat (the sign § means: 
Forget the differential). Also in this case Assmus1 definition of the diagonal 

F 
makes sense, and Tor (k,k) is, as in the case F = R , a Hopf algebra which 
as an algebra is a free T-algebra, i.e. a free graded commutative algebra with 
divided powers. A proof with all details of this fact has recently been 
carried out by Avramov [ ̂  ] . Another approach to prove this goes as 
follows. Gulliksen [ 9 ] has proved that the acyclic 
closure Y of F has the property that k 8 p Y has zero differential. 
This shows that Tor F(k,k) is equal to T(V), the free T-algebra on a graded 
vector space V . A Hopf-r-algebra structure on Tor F(k,k) is obtained 
precisely when V* is given a graded Lie algebra structure ( 
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The Lie algebra structure on V is defined in the text of this paper, 
using the isomorphism V s H(DerF(Y)). This Lie product induces a product 

* F 
on the enveloping algebra of V , which is equal to the dual of Tor (k,k) 
and denoted by ExtF(k,k) . Also, Extp(k,k) = (k ®p Y)* = HomF(Y,k) = 
= HHonip/YjY) . Hence Extp(k,k) is in a natural way an associative algebra, 
defined by composition of maps. This the enveloping algebra of V . Indeed, 
there is a map of Lie algebras H(DerF(Y)) —• HHomF(Y,Y) and HHorn̂ CY,Y) 
is generated as an algebra by the image of this map. From this it follows 
that there is a surjection U(V ) —• HHom^YjY) and this is a bisection 
because of the standard assumption of locally finite dimensionality. 
Now the question arises if this product coincides with the dual of Assmus* 

F 
diagonal on Tor (k,k). One has to be a bit careful with the choice of Y. The 
map HHonip(Y,Y) —• HHomF(Y,k) is not always an isomorphism (but if F = R , R 
a local ring, then Y may be any R-projective resolution of k). It is however 
an isomorphism if Y is the acyclic closure of F , or if Y is an 
F-resolution of k in the sense of Moore [13]. Anyway, whatever Y is, one 
may consider the product of those elements of HHom^Yjk) coming from 
HHomF(Y,Y) . The following theorem is due to Sjodin [15, Theorem 5l . 

*F Ŷ 
Theorem Let F k , Y • k be augmented DG algebras and 

F —• Y a morphism of augmented DG algebras such that H(e.y) i s ^ 
isomorphism and Y^ is F̂ -flat. Let A be defined by (1) (with P=Y , 
R=F , 6=^) and let f,g € ZHomp(Y,Y). Consider H(1 8 eyof) and H(1 9 e^og) 

as elements of Homk(H(k « F Y), k) (identifying k 8 p k and k ). Then the 
product of these elements induced by the dual of A is H(1 8 e^ofog). 
Proof We will repeat Sjodins proof, since the reader might have some 

difficulties to find the reference and also, if he finds it, he might have 
some difficulties with the notations used there. The proof depends on the 
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following diagram, where p^. k « k k k is the canonical isomorphism and 
likewise y: H(k 8 Y) 8 k —• H(k 8 p Y). Also we write e as short for ey. 

H(k8FY) H 0 8 g ) H(kSFY) 

* 18H(l8g) 
H(k8FY)8H(k8FY) - H(k8FY)0H(k®FY) 

1«H(1«E) 

H(k V) "(Heof), k 

H(18eof)81 
H(k8pY)8k • k8k 

By examining the definition of A it is easy to see that the left square is 
commutative, the middle square is commutative since H(l8e) is a counit 
for H(k8_Y) (for a proof of this, see [ h]). The right square is commutative F 
since H(l8eof) is k-linear. Hence, 

A*(pko[H(l»eof) 8 H(l8eog)]) = ŷ o(H(l«eof) 8 1)o(l 8 H(l8e))o(l 8 H(l8g)oA = 

= H(1 8 eof)oH(l8g) = H(1 8 eofog). 

Remark 1. The proof depends only on the fact that H(l8e) is a counit on 
F 

H(k$FY) = Tor (k,k). When this is proved (which is an easy check of diagrams, 
see 15,p.32] or k and when it is proved that the composition of maps on 
HHom (Y,Y) induces a Lie algebra structure on V where H(k8_Y) = T(V) 

* 
(which is most easily seen by identifying V and H(Der_(Y))), then we get 

r 

a proof of the coassociativity of A and of the compatibility of A with 
the divided powers. Remark 2. In some cases there are other possible definitions of the product 
on ExtF(k,k) . Suppose Extp(kfk) = Ext̂  x dj(k,k) as Hopf algebras and 

>2 

(AX,d) is a minimal model (i.e. X is a graded vector space, dX c A- x , 
d is of degree -1 , A has the same meaning as T which we have used above). 
This occurs if e.g. F and (AX,d) are equivalent under the equivalence 
relation generated by quasi-isomorphisms (maps inducing isomorphism in 
homology). Let L be the graded Lie algebra such that Ext_(k,k) = U(L) . 

r 
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Then L may be interpreted as sX with Lie structure induced by the dual 

of the map d̂  : X —»• X A X (with an unpleasant sign involved). The proof 

of this may be found in [8]. 

If the augmented DG algebra F is an augmented k-algebra, it is possible 

to generalize the use of the Bar-resolution which is available in the 

non-differential case. If I is the augmentation ideal of F , the tensor 

algebra on I now has two differentials, one arising from the coproduct 

on I and one arising from the differential on I . The total complex is 

easily seen to be a differential algebra which induces an algebra structure 

on the cohomology, which by definition is Ext_(k,k) as a vector space. That 

r 

this product is the right one may be seen by an explicit "lifting" formula 

(the same as in the classical case). Details may be found in [k] . Or at 

least the formulas, the rest is left to the reader ... 
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