Astérisque

CALLE JACOBSSON

On local flat homomorphisms and the Yoneda ext-algebra of the fibre

Astérisque, tome 113-114 (1984), p. 227-233

<http://www.numdam.org/item?id=AST_1984__113-114__227_0>

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On local flat homomorphisms and the Yoneda

Ext-algebra of the fibre

Ъy

Calle Jacobsson

0. <u>Introduction</u>. Let R be a local noetherian ring with residue field k. The n-th deviation of R, $e_n(R)$, is the dimension of a functorially defined k-vector space $V_n(R)$ (cf. Gulliksen [8]). We have $e_1(R)$ = emb.dim. (R), and the equality for the Poincaré series of R;

$$P_{R}(z) = \sum_{j=0}^{\infty} \dim_{k}(\operatorname{Tor}_{j}^{R}(k,k)) z^{j} = \prod_{j=1}^{\infty} \frac{(1+z^{2j-1})^{e_{2j-1}(R)}}{(1-z^{2j})^{e_{2j}(R)}}$$

Let $A \rightarrow B$ be a local flat homomorphism with fibre \overline{B} , A and B having residue fields k and 1 respectively. T. Gulliksen [8] has shown that we then have a long exact sequence of 1-vector spaces, which L. Avramov [3] has shown splits into exact sequences of six terms:

$$0 \rightarrow \mathbb{V}_{2n}(\mathbb{A}) \otimes_{\mathbb{A}} \mathbb{1} \rightarrow \mathbb{V}_{2n}(\mathbb{B}) \rightarrow \mathbb{V}_{2n}(\overline{\mathbb{B}}) \xrightarrow{\mathbb{V}_{2n-1}(\mathbb{A})} \mathbb{V}_{2n-1}(\mathbb{A}) \otimes_{\mathbb{A}} \mathbb{1} \rightarrow \mathbb{V}_{2n-1}(\mathbb{B}) \rightarrow \mathbb{V}_{2n-1}(\overline{\mathbb{B}}) \rightarrow 0$$

Put $\delta_{2n} = \dim_1(I_{2n})$ and $\delta_{2n}(\overline{B}) = \max_{A,B} \delta_{2n}$.

It is easy to see that $\delta_2 = e_1(A) - e_1(B) + e_1(\overline{B})$ in some cases can be greater than zero, but for the higher δ -s M. André [2] and L. Avramov among others has put forward the following conjecture

CONJECTURE 1: For all local noetherian rings \overline{B} we have $\delta_{2n}(\overline{B}) = 0$ for n > 1. In other words, for all local flat homomorphisms $A \rightarrow B$ with fibre \overline{B} , we have

$$P_{A}(z) \cdot P_{\overline{B}}(z) = P_{B}(z) \frac{(1+z)^{\delta_{2}}}{(1-z^{2})^{\delta_{2}}}$$
 with $\delta_{2} = e_{1}(A) - e_{1}(B) + e_{1}(\overline{B})$.

The conjecture is obviously true if \overline{B} is a complete intersection.

C. JACOBSSON

M. André [1] has proved the conjecture in the case where $\operatorname{char}(\mathscr{k}) = 2$, and he has also shown [2] that all but a finite number of the δ -s are zero. More precisely, $\overset{\infty}{\Sigma} \delta_{2n}(\overline{B}) \leq e_1(\overline{B})$ - depth(\overline{B}) with equality if and only if \overline{B} is a complete internet section.

In this paper we show that the number $\delta_{2n}(\overline{B})$ is not greater than the dimension of the 1-vector space of the <u>central</u> elements of degree 2n of the graded Lie algebra underlying the Yoneda Ext-algebra $\operatorname{Ext}_{\overline{B}}^{*}(1,1)$. Using this, we prove the conjecture for local rings \overline{B} attached by a finite sequence of Golod epimorphisms to a regular ring, e.g. Golod rings and quotients of regular rings by ideals generated by monomials in the elements of some regular sequence.

1. Liftings and special variables

This section is a slight reformulation, suited to our purposes, of some parts of the paper [2] of M. André. Let the fibre \overline{B} be a fixed local noetherian ring in the following.

Let $A \rightarrow B$ be a local flat homomorphism with fibre \overline{B} as above, and let X be a minimal A-resolution of k. Then $X \otimes_A B$ becomes a minimal B-resolution of \overline{B} , so $X \otimes_A B \xrightarrow{\sim} \overline{B}$ (\overline{B} in degree 0) induces isomorphism in the homology.

When we start to construct a minimal \overline{B} -resolution of 1 by adjoining a variable T_1 to kill a cycle t_1 , we can lift this cycle to a cycle \widetilde{t}_1 of $X \otimes_A B$, and adjoin a variable \widetilde{T}_1 to kill \widetilde{t}_1 . The mapping $X \otimes_A B \langle \widetilde{T}_1 \rangle \xrightarrow{\sim} \overline{B} \langle T_1 \rangle$ then induces isomorphism in the homology. If we continue in this way to lift successively cycles t_i to cycles \widetilde{t}_i , and to lift variables T_i to variables \widetilde{T}_i , then all the mappings $X \otimes_A B \langle \widetilde{T}_1, \ldots, \widetilde{T}_i \rangle \xrightarrow{\sim} \overline{B} \langle T_1, \ldots, \widetilde{T}_n, \ldots \rangle$ will induce isomorphisms in the homology. The resulting complex $X \otimes_A B \langle \widetilde{T}_1, \ldots, \widetilde{T}_n, \ldots \rangle$ will be a B-resolution of 1, which is not necessarily minimal.

<u>Definition</u>: A cycle \tilde{t}_n of degree 2j-1 in $X \otimes_A B \langle \tilde{T}_1, \dots, \tilde{T}_{n-1} \rangle$ is called a <u>special cycle</u>, and the variable \tilde{T}_n of degree 2j, $d\tilde{T}_n = \tilde{t}_n$, a <u>special variable</u>,

228

if there exists a derivation \tilde{j} on $X \otimes_A B \langle \tilde{T}_1, \dots, \tilde{T}_{n-1} \rangle$ such that $\tilde{j}(\tilde{t}_n) = 1$ and $\tilde{j}(X \otimes_A B) \subseteq X \otimes_A B$. The special variables occur exactly when the B-resolution above is not minimal.

We need the following two important results due to M. André, concerning special variables.

THEOREM A: For any local noetherian ring \overline{B} , the number $\delta_{2j}(\overline{B})$ is less than or equal to the number of variables T_n of degree 2j in a \overline{B} -resolution of 1 that can be lifted to special variables \widetilde{T}_n for some A and B as above. The total number of such variables is less than or equal to $e_1(\overline{B})$ - depth(\overline{B}), with equality precisely when \overline{B} is a complete intersection.

Consequently, Conjecture 1 can be proved by showing that only variables of degree two can be lifted to special variables.

THEOREM B: Let \widetilde{T}_n be a special variable. We can then modify the cycles \widetilde{t}_i i > nwith boundaries, in such a way that we can adjoin all the variables \widetilde{T}_i $i \neq n$ before having adjoined \widetilde{T}_n . Having done so, we have $X \otimes_A B \langle \widetilde{T}_1, \dots, \widetilde{T}_{n-1}, \widetilde{T}_{n+1}, \dots \rangle =$ $= \Omega \oplus \Omega \widetilde{t}_n$ where Ω is an acyclic differential subalgebra containing all \widetilde{t}_i and \widetilde{T}_i , excluding of course \widetilde{t}_n and \widetilde{T}_n .

2. The Yoneda Ext-algebra of the fibre \overline{B}

Using the Eilenberg-Moore spectral sequence for Hopf algebras (cf. Avramov [5]).

$$\mathbb{E}_{2}^{p,q} = \mathbb{E} \mathbb{E} \mathbb{E}_{\mathbb{H}(\mathbb{Y})}^{p,q}(1,1) \Rightarrow \mathbb{E} \mathbb{E} \mathbb{E}_{\mathbb{Y}}^{p+q}(1,1)$$

with $Y = X \bigotimes_A B$ and consequently $H(Y) = \overline{B}$ (in degree q = 0 only), we see that $\operatorname{Ext}_{\overline{B}}^*(1,1) \cong \operatorname{Ext}_{X \bigotimes_A B}^*(1,1)$. We can thus choose any lifting $X \bigotimes_A B$ of \overline{B} , as above, to study the Yoneda Ext-algebra of \overline{B} .

We are now able to state the main result of this paper.

THEOREM 1: Let \overline{B} be a local noetherian ring with residue field 1. A variable T_n , in a \overline{B} -resolution of 1, that can be lifted to a special variable \widetilde{T}_n , corresponds to a <u>central</u> element of the graded Lie algebra underlying the Yoneda Ext-algebra $\operatorname{Ext}_{\overline{D}}^*(1,1)$.

Conjecture 1 will thus follow from the conjecture below.

CONJECTURE 2: For any local noetherian ring \overline{B} with residue field 1, the centre of the graded Lie algebra underlying $\operatorname{Ext}_{\overline{B}}^*(1,1)$ is finite-dimensional and concentrated in degrees one and two.

This conjecture - if true - would correspond to results of Y. Felix, S. Halperin and J.-C. Thomas [7] on the centre of the homotopy Lie algebra $\pi_*(\Omega S) \otimes Q$ of a finite, simply connected CW complex S. The conjecture would also generalise a result of L. Avramov [4], i.e. if $\operatorname{Ext}_{\overline{B}}^*(1,1)$ is abelian, then \overline{B} must be a complete intersection.

<u>Proof of Theorem 1</u>: The set of variables $\{T_i\}$ is in a one-to-one correspondence with a vector space basis of the graded Lie algebra underlying $\operatorname{Ext}_{\overline{B}}^*(1,1)$. The Lie algebra structure is given by the action of the derivations associated with the variables T_i . Suppose T_n can be lifted to a special variable \widetilde{T}_n , starting with $X \otimes_A B \xrightarrow{\longrightarrow} \overline{B}$ as in Section 1 above. Since we have seen that $\operatorname{Ext}_{\overline{B}}^*(1,1) \xrightarrow{\sim} \operatorname{Ext}_{X \otimes_A B}^*(1,1)$, it is enough to study the derivation j_{\sim} associated with \widetilde{T}_n (cf. L. Avramov [5]).

it is enough to study the derivation j_{T_n} associated with \widetilde{T}_n (cf. L. Avramov [5]). This derivation is defined by $j_{\widetilde{T}_n}(X \otimes_A B) = j_{\widetilde{T}_n}(\widetilde{T}_i) = 0$ i < n, $j_{\widetilde{T}_n}(\widetilde{T}_n) = 1$ and is then extended to all higher \widetilde{T}_i -s. If $j_{\widetilde{T}_n}(\widetilde{t}_i) = s_i$, $ds_i = 0$, then we define $j_{\widetilde{T}_n}(\widetilde{T}_i) = S_i$ with $dS_i = s_i$. This is always possible to do since $X \otimes_A B\langle \widetilde{T}_1, ..., \widetilde{T}_n, ...\rangle$ augmented to 1 is acyclic, and since T_n can not have unit coefficient in t_i , neither can \widetilde{T}_n have unit coefficient in \widetilde{t}_i .

When \widetilde{T}_n is a special variable, Theorem B gives us that \widetilde{T}_n does not occur in any of the cycles \widetilde{t}_i . Thus, we have $j_{\widetilde{T}_n}(\widetilde{t}_i) = 0$ for low degree \widetilde{t}_i i $\neq n$, and using induction we can define $j_{\widetilde{T}_n}(\widetilde{T}_i) = 0$ i $\neq n$ and as before $j_{\widetilde{T}_n}(\widetilde{T}_n) = 1$.

Let \widetilde{T}_{m} be some other variable. The associated derivation, having $j_{\widetilde{T}_{n}}(X \otimes_{A} B) = j_{\widetilde{T}_{m}}(\widetilde{T}_{i}) = 0$ for i < m, $j_{\widetilde{T}_{m}}(\widetilde{T}_{m}) = 1$ is to be extended to all \widetilde{T}_{i} -s. Using Theorem B above, we first adjoin all the variables except \widetilde{T}_{n} ($n \neq m$), to get

$$\begin{split} & X \otimes_A B \left< \widetilde{T}_1, \dots, \widetilde{T}_{n-1}, \widetilde{T}_{n+1}, \dots \right> \ \cong \ \Omega \oplus \ \Omega \widetilde{t}_n \ . \ \text{Since} \ \ \Omega \ \ \text{is an acyclic algebra containing} \\ & \text{all} \ \ \widetilde{t}_i \ \ \text{and} \ \ \widetilde{T}_i \ \ i \neq n \ , \ \text{inductively we have} \ \ j_{\widetilde{T}_m}(\widetilde{t}_i) = s_i \in \ \Omega \ \ \text{and} \ \ \text{we can define} \\ & j_{\widetilde{T}_m}(\widetilde{T}_i) = s_i \in \ \Omega \ \ \text{for all} \ \ i \neq n \ . \ \text{But since} \ \ j_{\widetilde{T}_m} \ \ \text{has negative degree,} \ \ j_{\widetilde{T}_m}(\widetilde{t}_n) = \\ & = s_n \in \ \Omega \ \ \text{and} \ \ \text{we can also choose} \ \ \ j_{\widetilde{T}_m}(\widetilde{T}_n) = S_n \in \ \Omega \ . \ \ \text{Thus, we see that we can define} \\ & j_{\widetilde{T}_m} \ \ \text{in such a way that} \ \ \widetilde{T}_n \ \ \text{does not occur in any} \ \ j_{\widetilde{T}_m}(\widetilde{T}_i) \ . \end{split}$$

Let $\Sigma a_i \widetilde{T}_n^{(i)}$, where \widetilde{T}_n does not occur in any a_i , be an element of $X \otimes_A B \langle \widetilde{T}_1, \dots, \widetilde{T}_n, \dots \rangle$. We have

$$j_{\widetilde{T}_{m}} \circ j_{\widetilde{T}_{n}} (\Sigma a_{i} \widetilde{T}_{n}^{(i)}) = j_{\widetilde{T}_{m}} (\Sigma a_{i} \widetilde{T}_{n}^{(i-1)}) =$$

$$= \Sigma (j_{\widetilde{T}_{m}} (a_{i}) \widetilde{T}_{n}^{(i-1)} + a_{i} j_{\widetilde{T}_{m}} (\widetilde{T}_{n}) \widetilde{T}_{n}^{(i-2)}) .$$

On the other hand we have

$$\begin{split} \mathbf{j}_{\widetilde{T}_{n}} \circ \mathbf{j}_{\widetilde{T}_{m}} (\Sigma \mathbf{a}_{i} \widetilde{T}_{n}^{(i)}) &= \mathbf{j}_{\widetilde{T}_{n}} (\Sigma (\mathbf{j}_{\widetilde{T}_{m}} (\mathbf{a}_{i}) \widetilde{T}_{n}^{(i)} + \mathbf{a}_{i} \mathbf{j}_{\widetilde{T}_{m}} (\widetilde{T}_{n}) \widetilde{T}_{n}^{(i-1)})) &= \\ &= \Sigma (\mathbf{j}_{\widetilde{T}_{m}} (\mathbf{a}_{i}) \widetilde{T}_{n}^{(i-1)} + \mathbf{a}_{i} \mathbf{j}_{\widetilde{T}_{m}} (\widetilde{T}_{n}) \widetilde{T}_{n}^{(i-2)}) . \end{split}$$

This shows that \widetilde{T}_n corresponds to a central element of the graded Lie algebra underlying $\operatorname{Ext}^*_{X\otimes_A B}(1,1)$, proving the theorem.

3. A class of local rings where the conjectures are valid

Let $R \rightarrow S$ be a Golod epimorphism of local rings. Let g_R and g_S be the Lie algebras underlying the Ext-algebras of R and S respectively. Then we have an extension of graded Lie algebras (cf. Löfwall [10], Avramov [5])

$$0 \longrightarrow L(W) \longrightarrow g_{S} \longrightarrow g_{R} \longrightarrow 0,$$

where L(W) is the free Lie algebra on $W = s^{-1}(Ext_R^{>0}(S,1))$, s^{-1} changes the degree by +1 and 1 is the residue field of R. (This can serve as a definition of a Golod epimorphism; for other definitions we refer to L. Avramov [5] and G. Levin [9].) If g_R has no central element of degree greater than two, then such an element in g_S must be contained in L(W). But L(W) is free, so that W must be

C. JACOBSSON

one-dimensional. Then W must also lie in degree two, since otherwise $\operatorname{Ext}_{R}^{1}(S,1) = 0$, S is a free R-module and W=0. The case where W is one-dimensional occurs exactly when S = R/_(r), r being a non-zero-divisor of R belonging to the square of the maximal ideal of R. Consequently, g_{S} does not have a central element of degree greater than two, and we have proved

THEOREM 2: Let $R \longrightarrow S$ be a Golod epimorphism of local noetherian rings. If Conjecture 1 and 2 hold for R, then they also hold for S.

This theorem immediately gives the following corollary.

COROLLARY 1: Conjecture 1 and 2 both hold for a local noetherian ring \overline{B} , which can be attached to a regular ring by a finite sequence of Golod epimorphisms, e.g. if \overline{B} is a Golod ring, or if \overline{B} is a quotient of a regular ring by an ideal generated by a set of monomials in the elements of some regular sequence.

We can convince ourselves that such a "monomial" ring is Golod-attached to a regular ring (cf. J. Backelin [6]), by using a theorem of G. Levin [9]. The theorem asserts that $R \longrightarrow R/_{rI}$ is a Golod map if r is neither unit nor zero-divisor of R and if rI is contained in the square of the maximal ideal.

If \overline{B} is the quotient of the regular ring R_0 by an ideal generated by monomials in the R_0 -sequence x_1, \ldots, x_n , we start by taking away the group of monomials divisible by x_1 . From the remaining monomials, we then take away those divisible by x_2 , and so on. Starting with R_0 and dividing out by the ideals generated by these groups of monomials, one group at a time, we of course end up with \overline{B} . But by reversing the order of the groups, all these maps will be of the form $R \longrightarrow R_{x_1I}/x_1$, x_1 not a zero-divisor of R, and will thus all be Golod maps.

<u>Remark</u>: Recently C. Löfwall [11] has proved that Conjecture 2, and thus also Conjecture 1, is valid for local rings \overline{B} having $\underline{m}^3 = 0$ for the maximal ideal \underline{m} , with the possible exception for such rings with gl.dim. Ext $\frac{*}{r}(1,1) = 2$.

232

ON LOCAL FLAT HOMOMORPHISMS

We wish to take this opportunity to thank Jan-Erik Roos and Clas Löfwall for helpful discussions and encouragement, and we also wish to thank Christer Lech, Rikard Bøgvad and Jörgen Backelin.

References:

- M. André, Algèbre homologique des anneaux locaux à corps résiduel de caractéristique deux, Springer Lecture Notes 740 (1979), p.237-242.
- [2] M. André, Le caractère additif des déviations des anneaux locaux, submitted to Comm. Math. Helvetici.
- [3] L. Avramov, <u>Homology of local flat extensions and complete intersection de-</u> fects, Math. Annalen 228 (1977), p.27-38.
- [4] L. Avramov, <u>Differential graded models for local rings</u>, to appear in Proceedings of a conference in commutative algebra and algebraic geometry, Kyoto University, Japan, December 1981, RIMS Kokyuroku 446.
- [5] L. Avramov, <u>Small homomorphisms of local rings</u>, Journal of Algebra 50 (1978), p.400-453.
- [6] J. Backelin, <u>Monomial residue class rings and iterated Golod maps</u>, to appear in Math. Scand.
- [7] Y. Felix, S. Halperin, J.-C. Thomas, <u>The homotopy Lie algebra for finite com-</u> <u>plexes</u>, Publications Mathématiques de l'IHES n° 56, (1982), p. 387-410.
- [8] T. Gulliksen, G. Levin, <u>Homology of local rings</u>, Queen's Papers in Pure and Appl. Math., n^o 20, Queen's Univ., Kingston, Ontario, 1969.
- [9] G. Levin, <u>Lectures on Golod homomorphisms</u>, Preprints, Dep. of Math., Univ. of Stockholm, n^o 15, 1976.
- [10] C. Löfwall, <u>On the subalgebra generated by the one-dimensional elements of the Yoneda Ext-algebra</u>, Reports, Dep. of Math., Univ. of Stockholm, n^o 5, 1976.
- [11] C. Löfwall, On the center of graded Lie algebras. In these proceedings.

233