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On local flat homomorphisms and the Yoneda  
Ext-algebra of the fibre 

by 
Calle Jacobsson 

0. Introduction. Let R be a local noetherian ring with residue field k . The n-th 
deviation of R , e

n(R) » is tne dimension of a functorially defined -̂vector space 
Vn(R) (cf. Gulliksen [8]). We have e-̂ R) = emb.dim. (R) , and the equality for the 
Poincaré series of R ; 

PR(z) -
CO 

j=0 
dim̂ (Tor?(&,&))zJ CO 

j=1 
(1 +Z 2j-l 

e2j-l (R) 

(1 -z 2h 
e2j (R) 

Let A -* B be a local flat homomorphism with fibre B , A and B having re­
sidue fields h and 1 respectively. T. Gulliksen [8] has shown that we then have 
a long exact sequence of 1-vector spaces, which L. Avramov [3] has shown splits 
into exact sequences of six terms: 

0 - V2n< A ) ®kl - V2n(B> - V 2 n W 
r
V2n-l(A> V - V2n-1<B> - V2n-1<B> •* 0 

» 2n 
0 T3 

Put 6 2 n = dim^I^) and 6_ (B)= max 60 . 
2 n A, B 2 n 

It is easy to see that 6^ = ê (A) - e-̂ (B) + e-̂ (B) in some cases can be 
greater than zero, but for the higher 6-s M. Andre [2] and L. Avramov among others 
has put forward the following conjecture 

CONJECTURE 1: For all local noetherian rings B we have <$2n(B) = 0 for n > 1 . 
In other words, for all local flat homomorphisms A -* B with fibre B , we have 

PA(z) • P (z) = PB(z) (1 +z) 
«9 

(1 -z2) ,62 with 62 = ex(A) - ei(B) + e^B) . 

The conjecture is obviously true if B is a complete intersection. 
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M. Andre [l] has proved the conjecture in the case where char(/fc) =2 , and he 
has also shown [2] that all but a finite number of the 6-s are zero. More precisely, 
oo 
^ ̂ 2n^ — el( B)~ dePtn(B) with equality if and only if B is a complete inter-
n=l 
section. 

In this paper we show that the number ^2n^^ *"s not Sreater tnan tne dimen­
sion of the 1-vector space of the central elements of degree 2n of the graded Lie 
algebra underlying the Yoneda Ext-algebra Ext*.(l,l). Using this, we prove the con-

B 
jecture for local rings B attached by a finite sequence of Golod epimorphisms to a 
regular ring, e.g. Golod rings and quotients of regular rings by ideals generated by 
monomials in the elements of some regular sequence. 

1. Liftings and special variables 

This section is a slight reformulation, suited to our purposes, of some parts 
of the paper [2] of M. Andre. Let the fibre B be a fixed local noetherian ring in 
the following. 

Let A -* B be a local flat homomorphism with fibre B as above, and let X 
be a minimal A-resolution of k . Then X® AB becomes a minimal B-resolution of 

A 
& , so X ®^B —->B (B in degree 0) induces isomorphism in the homology. 

When we start to construct a minimal B-resolution of 1 by adjoining a va­
riable T̂  to kill a cycle t̂  , we can lift this cycle to a cycle t̂  of X®^ B » 
and adjoin a variable T̂  to kill t̂  . The mapping X 8^ ( l - j ) B ^T^ then 
induces isomorphism in the homology. If we continue in this way to lift successively 
cycles t̂  to cycles t̂  , and to lift variables T̂  to variables T̂  , then all 
the mappings X ®^B ̂ T^,. .. ,T̂ ) ~ > B (T̂ , ... >T^ will induce isomorphisms in the 
homology. The resulting complex X®^B (lf̂ ,... ,T n,..will be a B-resolution of 
1 , which is not necessarily minimal. 
Definition: A cycle *tn of degree 2j-l in X ® < 1̂ ,.. . J T ^ ^ is called a 
special cycle, and the variable T n of degree 2j , dT^ = t:r , a special variable, 
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if there exists a derivation j* on X ® AB < ... ,Tn-1> such that TC^) = 1 
and j'CX 0AB) C X 0AB. 

The special variables occur exactly when the B-resolution above is not minimal. 
We need the following two important results due to M. Andre, concerning special 
variables. 
THEOREM A: For any local noetherian ring B , the number 6̂ (̂B) is less than or 
equal to the number of variables T r of degree 2j in a B-resolution of 1 that 
can be lifted to special variables T^ for some A and B as above. The total num­
ber of such variables is less than or equal to ê (B) - depth(B) , with equality pre­
cisely when B is a complete intersection. 

Consequently, Conjecture 1 can be proved by showing that only variables of de­
gree two can be lifted to special variables. 

THEOREM B: Let be a special variable. We can then modify the cycles t̂  i > n 
with boundaries, in such a way that we can adjoin all the variables T̂  i ̂  n be­
fore having adjoined T r . Having done so, we have X $AB (T^,. .. ,T?n-̂ ,Tn+̂ , . . = 
= ©f2tn where ^ is an acyclic differential subalgebra containing all t̂  and 
T. , excluding of course t and T . l ' 6 n n 

2. The Yoneda Ext-algebra of the fibre B 

Using the Eilenberg-Moore spectral sequence for Hopf algebras (cf. Avramov [5]) 

E2 = Extjĵ Cl,!) ExtpCl.l) 

with Y = X ® ̂B and consequently H(Y) = B (in degree q=0 only), we see that 
j|5 ^ $ 

Ext (1,1) = ExtVA?, „(1,1) . We can thus choose any lifting X® AB of B , as above, "F A A 
to study the Yoneda Ext-algebra of B . 

We are now able to state the main result of this paper. 

THEOREM 1: Let B be a local noetherian ring with residue field 1 . A variable T , 
n' 

in a B-resolution of 1 , that can be lifted to a special variable T r , corresponds 
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to a central element of the graded Lie algebra underlying the Yoneda Ext-algebra 
Ext* (1,1) . B 

Conjecture 1 will thus follow from the conjecture below. 

CONJECTURE 2: For any local noetherian ring B with residue field 1 , the centre 
of the graded Lie algebra underlying Ext*_(l,l) is finite-dimensional and concen-

B 
trated in degrees one and two. 

This conjecture - if true - would correspond to results of Y. Felix, S. Halperin 
and J.-C. Thomas [7] on the centre of the homotopy Lie algebra TÎ Ĉ S) $ Q of a 
finite, simply connected CW complex S . The conjecture would also generalise a re­
sult of L. Avramov [4], i.e. if Ext*_(l,l) is abelian, then B must be a complete 

B 
intersection. 

Proof of Theorem 1: The set of variables {T̂ } is in a one-to-one correspondence 
with a vector space basis of the graded Lie algebra underlying Ext.*_(l,l) . The Lie 

B 
algebra structure is given by the action of the derivations associated with the va­
riables T̂  . Suppose T n can be lifted to a special variable , starting with 
X0 4B^>B as in Section 1 above. Since we have seen that Ext*_(l,l) ~ Ext* A B X 6*A 

it is enough to study the derivation associated with T n (cf. L. Avramov [5]). 
This derivation is defined by j>p̂  (X0A.B) = j^ (T.) = 0 i < n, ĵip, (T n ) = 1 and 

~ n ~ n n is then extended to all higher T.-s. If j~ (t.) = s. , ds. = 0 , then we define 
1 f x 1 1 

j«y (T\) = S i with dSi = s i . This is always possible to do since X^B^Tp .. ,Tn,. £ 
augmented to 1 is acyclic, and since T r can not have unit coefficient in t̂  , 
neither can T have unit coefficient in t. . 

n 1 When T is a special variable, Theorem B gives us that T does not occur in n v & n any of the cycles t\ . Thus, we have j,̂  (t.) = 0 for low degree <t. i # n , and I ^ l I 
using induction we can define j~ (T.) =0 i ̂  n and as before j~ (T ) = 1 . 

T 1 T n 
An in 

Let T m be some other variable. The associated derivation, having j~ (X&^R) = = j~ (T.) = 0 for i < m , j~ (T ) = 1 is to be extended to all T.-s. Using JT I JT m l 1m ±m ^ 
Theorem B above, we first adjoin all the variables except T r (n ̂  m) , to get 
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XOAB<T1...,Tn-1,Tn+1,...> = ^^O^^tn 
Sirice ft is an acyclic algebra containing 

all *t. and T. i ̂  n , inductively we have j~ (t/) = ŝ  € ft and we can define 
1 1 m̂ 

(T.) = S. € ft for all i ̂  n . But since j~ has negative degree, j,>, (tn) = 

= s £ ft and we can also choose j~ (T ) = S € ft . Thus, we see that we can define n T n n m 
j~ in such a way that T does not occur in any j~ (T.) . 

Tm n m 

Let Za.T^^ , where T does not occur in any a. , be an element of i n ' n j 1 ' 

X <2>AB <TX,.. . ,Tn,. . .) . We have 

j~ oj~ ( Ea.T^) = j~ ( Ea.T^ M )) = 

= Z(j~ (a.)T(i-1} + a.w (T )T(i"-2)) . JT i n iJT n' n Am m 

On the other hand we have 

j w oj~ ( Ea.T*0)- j~ (Z(j~ (a,)T^i} + a.j~ (T ÌT*;1 X))) = T n T m in T n T m i n i T m n n 

= Z(jfgghfghfgh a.j~ (T )T ( i _ 2 )) . iJT n n 

This shows that T r corresponds to a central element of the graded Lie algebra 

underlying E x tx# B ^ ' ^ ' Provinê tne theorem. 
A 

3« A class of local rings where the conjectures are valid 

Let R -> S be a Golod epimorphism of local rings. Let ĝ  and gc be the 

Lie algebras underlying the Ext-algebras of R and S respectively. Then we have 

an extension of graded Lie algebras (cf. Lofwall [10], Avramov [5]) 

0 L(W) —> gs gR —> 0 , 

where L(W) is the free Lie algebra on W = s *(Ext̂ °(S,l)) , s * changes the 
K 

degree by +1 and 1 is the residue field of R . (This can serve as a definition 

of a Golod epimorphism; for other definitions we refer to L. Avramov [5] and G. Levin 

[9].) If gR has no central element of degree greater than two, then such an ele­

ment in gg must be contained in L(W) . But L(W) is free, so that W must be 
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one-dimensional. Then W must also lie in degree two, since otherwise Ext̂ (S,l) =0, 

S is a free R-module and W=0 . The case where W is one-dimensional occurs 

exactly when S = R^(r) ' r êinê a non-zero-divisor of R belonging to the square 

of the maximal ideal of R . Consequently, gg does not have a central element of 

degree greater than two, and we have proved 

THEOREM 2: Let R—>S be a Golod epimorphism of local noetherian rings. If Conjec­

ture 1 and 2 hold for R , then they also hold for S . 

This theorem immediately gives the following corollary. 

COROLLARY 1: Conjecture 1 and 2 both hold for a local noetherian ring B , which can 

be attached to a regular ring by a finite sequence of Golod epimorphisms, e.g. if B 

is a Golod ring, or if B is a quotient of a regular ring by an ideal generated by 

a set of monomials in the elements of some regular seuqence. 

We can convince ourselves that such a "monomial" ring is Golod-attached to a 

regular ring (cf. J. Backelin [6]), by using a theorem of G. Levin [9]. The theorem 

asserts that R— > R/ rj ^s a Golod map if r is neither unit nor zero-divisor of R 

and if rl is contained in the square of the maximal ideal. 

If B is the quotient of the regular ring R̂  by an ideal generated by mono­

mials in the Resequence x̂ ,...,x , we start by taking away the group of monomials 

divisible by x̂  . From the remaining monomials, we then take away those divisible by 

x 2 , and so on. Starting with R̂  and dividing out by the ideals generated by these 

groups of monomials, one group at a time, we of course end up with B . But by re­

versing the order of the groups, all these maps will be of the form R— > R/ X j»
 xi 

i 
not a zero-divisor of R , and will thus all be Golod maps. 

Remark: Recently C. Lofwall [11] has proved that Conjecture 2, and thus also Conjec-

— 3 

ture 1, is valid for local rings B having m =0 for the maximal ideal m , with 

the possible exception for such rings with gl.dim. Ext*(1,1) = 2 . 
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