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S. HALPERIN 

SPACES WHOSE RATIONAL HOMOLOGY AND DE RHAM HOMOTOPY 
ARE BOTH FINITE DIMENSIONAL 

by 

Stephen Halperin 

1. INTRODUCTION 

Let S be a path connected space with rational minimal 
model (AX,d) - cf [4]. We say S is of type F ([1]) if 
dim X and dim H(AX) are both finite. 

Now H(AX).?H'f (S ;Q) (singular cohomology) while 
X ̂  IT _ „ ( S ) by the definition of AX and of TT ( S ) . Moreover, DK UK 
if S is 1-connected and dim H^(S;Q)<°° for all p then 
XsHom^C TT ... ( S ) ; Q) . In this case dim X-̂  = rank Tr^(S), and the 
condition dim X<°° can be restated as: TT^(S) is finite 
for sufficiently large p. 

Henceforth we consider a fixed S of type F and 
denote by n the degree of its fundamental class: 
H P(AX)=0, p>n. We also adopt the convention that |x| 
denotes the degree of a homogeneous element of a graded 
vector space, and we work over Q as ground field. 

2. THE SPACE T^p(S>» 
In [1] is shown that X P=0, p>2n-l. Here we will 

show that at most one element in a homogeneous basis of 
X has degree >n. More precisely, let q be the largest 
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integer with X^^O. According "to E 3 D , q is odd. 
Theorem 1. Suppose q>n. The algebra (AX,d) is "then of 
"the form AXs A ( y , x ) ® A Z , where: 
(i) Z P = 0, p>n (ii) |x| = q 
(iii) dx = y (some k>2 ) . 

Moreover, if d is "the differential in AZ obtained 
from d by putting y=x=0 in AX, then H P(AZ,d)=0, p>|y|. 
Corollary : H(AX,d) s (Ay/y k)®H(AZ,d), as Ay/yk-modules . 
Proof: Write X o c ^ = P and X e. v e n=Q. Define a second dif­
ferential d in AX by the conditions d :X^AQ and d-d : 

a a a 

X^P.AX. By [2], H P(AX,d a) = 0, p>n. 
Fix a homogeneous basis y^ of Q. 
Since d^ maps the indecomposable elements of (P®AQ)^ 

injectively into (AQ)^ + ~*~ and since it maps (P®AQ)^- onto 
(AQ)̂ -"1""1" there is an indecomposable x 1e(P®AQ) C^ such that 
d x, has the form a i 

(1) d x, = a 1 
yk1 
i1 

yk1 
i1 k >0 . 

v 

Choose x 1 so that |y^ | is minimized and so that 
(once y^ is fixed) k 1 is maximized. 

Denote by (AW,d f) the differential algebra obtained 
from (AX,d ) by dividing by y. . We observe first that k k a 1i 

2 r 
y. •...*y. =$ is not a coboundary m AW. Indeed, if we 

2 xr 
could write $ = d T ̂  we would have d ¥=$ + y. whence 

a J 1 1 l 9 

It would follow that one of the 
d (x -y a i y i 

k 
w)=yi 

k + 1 
nj 
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3^+1 
constituent monomials of y- * was of the form d v, 

l q 

v an indecomposable element of (P8AQ)^ and this would 
contradict our hypothesis on x-ĵ  above. 

Now (AW,d') is if the form (Ax ,0)0(AY,d"). Hence 
k 2 k 

y. • . . . «y.17 is not a coboundary in ( AY,d") . In particu-
X2 "Lr 

lar, if n T is the maximum degree in which H(AW)*0, 

(2) n T > q + 
r 

\> = 2 
k |y. I . 

On the other hand by [2; Theorem 3] 

(3) n» = n +|y. | - 1 . 
1 

It follows that |y. !>(q-n) + 
r 
2 
k |y. I 

V 
and hence k =0, 

v>2. We thus obtain (calling y^ simply y x) that d ax 1=y 1 

for some k. 
Write AX=A(y x,x 1)®AZ 1. The induced projection 

prAX+AZj determines a differential d^ in AZ 2. We show 
now that 

(4) H P ( A Z 1 9 d Q ) = 0 if |y! I or p>4-

Indeed if m is the maximum degree in which H(AZ 1 9d)*0 
:hen by [2; Theorem 3 3 

n = m + (k-1) |y! I . 
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k 
Since d^xj = yi we nave 

q + 1 = k| y iI 

and -these "two equations imply (1). 
In view of [1] we have 

(5) Q = (yi)©Q <' y 1 I and X = (xi)©X <' nI . 

Now we show "thai: 

(6) H l y i l ( A X < | y i l 9 d ) = Hl yll + 1(AX <l yil,d) = 0. 

Because ([2]) there is a spectral sequence converging 
from H( »^ ) ^ 0 H( ,d) it is sufficient to prove (6) 
with replacing d. Now (5) shows that the projection 
p restricts to a map p x : ( AX < ^ y 1 • , d Q )•>( AZ x , d"a ) which is 
injective in degrees ^|yj|+1 and surjective in degrees 
— Iyl J - Thus (6) follows from (4). From (6) we may deduce 
an element ne(AX <' y 1'nP•AX)' y 1' such that d(yi+fi)=0. 

Since X < n=(y i)@Z 1 we conclude that H(AX < n,d a)= 
AyX®H(AZ!,d ), using (4). Since q+l=k|y 1| it follows 
further from (4) that dim H q + 1(AX < n,d)<l. Moreover, if 
(yi+^) k were a d-coboundary in AX < n then y^ would be a 
d^-coboundary in AX < n, which is impossible. Hence 
(y1+Q) =dx for some indecomposable element x. Put 
y = y 1 + £! and choose an automorphism of AX which fixes y and 
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carries x "to an element of X. 
q - e . d . 

Remark. Call (AX,d) except:ional if one is in "the case of 
Theorem 1, and ordinary otherwise. One sees easily that 
if (AZ,d) is ordinary, then (AX,d)s(A(x,y),d)®(AZ,d). 
There are, however, simple examples in which (AZ,d) is 
also exceptional and the isomorphism of the corollary 
cannot even be made multiplicative. 

3. DIMENSION OF H*(S). 
Theorem 2. dim H*(S)=dim H(AX)<2 n. This inequality is 
sharp when S is an n-torus. 
Proof: In [1] is shown that 

dim H*(S) < q 
1 

2b . 

where 2bx-1,...,2b^-l are the degrees of a basis of P. 
Moreover it is shown there that Yb.<n. If b.>l then 

_ ^ i i 
q ib. n 

2b.<2(b.-l)2 and so n 2b.<2 x<2 . 
i i 1 i 

q . e . d . 

4. LEFSCHETZ NUMBER. 
Suppose f: S->-S is a continuous map. It induces 

<S>: (AX,d)-K AX,d) , and H(<|>) : H(AX)-*H(AX) is identified 
with f*, so that in particular the Lefschetz number of f 
is given by 
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L(f) = 
P 

(-1)P trace H P( cj>) . 

To calculate L(f) we extend the coefficients (by tensor-
ing) to C. Let ijj be the semisimple part of cj>. It is a 
semisimple automorphism of AX and hence we can suppose 
it preserves X. Because \\> is the semisimple part of cj> 
it is a polynomial in <f> in each (AX) P, and so commutes 
with d. Since also preserves X it commutes with d^. 
Hence 

L(f) = £(-l)PHPU,d) = I(-DP trace H P(ij,,d a). 

Choose a homogeneous bases y l 5...,y^ and xx,...,x 
of Q and P such that ^y^ = ot^y^ and ipx̂  = 3.. x.. , and such that 

(I<s) and 3_.(j<t) are the eigenvalues distinct from 1. 
Putting yi=...=y s~0 we arrive at a factor model (AX,d a) 
of the form ( A ( y g + 1 , . , y r ) ® A ( x̂ _ + 1 , . . , x^ ) , d^ ) ® ( A ( x x , . . . , 
x^),0). The Lefschetz number of the induced endomorphism 
~ij> is the product of the Euler characteristic x of the 

t 
first factor with n (1-3-). 

i = l 1 

Define a model (AX®AU,D) extending (AX,d ) by putting 
U = ( u u ) and Du^=y^. A spectral sequence converges 
from H(AX®AU) to H(AX,d ) and so we conclude that 

L(f ) • 
s 

i=l 
:i-a±) = X 

t 
i = l 

ci-$ i). 
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Finally lei: |y^|=2a^ and |x i|=2b^-l. We can apply 
[2] to obtain 
Theorem 3: With the notation above q-1 >r-s. Moreover, 
L(f)=0 if q-t>r-s, and 

L(f) = 

t 
1 :i- B ±) 

q 
TT t+1 

b. 
1 

S 
1 1-«.) 

r 
s + 1 

a • 
if q-1 = r-s. 

Remark: Let cf> denote the linear part of cj> . Then 4> is 
the action of f on TT , (S) . If S is 1-connected this is 
dual to the action of f„ in TT*(S). In this case ct.(i<r) 

# i and $.(j<q) are the eigenvalues of f„ corresponding to a J ft 
basis of 7T5,. (S)®C. Thus L(f) can be computed from f ̂ . 

Physical Sciences Division, Scarborough College, 
University of Toronto. 
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