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On the structure of the homotopy Lie algebra of a local ring. 
ъу 

Luchezar L. Avramov 
and 

Stephen Halperiri 

In this note R denotes a commutative noetherian local ring R with (unique) 
maximal ideal m and residue field R/m = k. There is a functorially attached 
to R graded Lie k-algebra TT*(R) , which we call the homotopy Lie algebra of 
R. For the definition of this functor, in a considerably larger setup, cf. [3]. 
The dimensions e. = dim, TÎ CR) appear in the well known expression 

pH(t) (1 +1) e1 :i + t 3 ) ,e3 
(1 - t2) 

e2 :(1 - 1 4 ) e4 

for the Poincaré series 
pR(t) 

i>0 
din̂  Tor?(k,k)t1 

The rings for which TT*(R) is finite-dimensional have been characterized by 
Gulliksen [7] as being the complete intersections (the definition of this class 
of rings is recalled in [39 §U]). In fact, it is known that when R is a 
complete intersection, Tf^R) = 0 for all i > 3> and a question raised in 
Q$, p 15*+] and taken up in [l] as conjecture Ĉ s asks whether the vanishing 
of a single e£ (i > 1) characterizes complete intersections. This is known to 
be true for small values of i : = 0 <=> R is a field; = 0 <=> R is regular; 
-ê  = 0 <=> = 0 <=> R is a complete intersection (cf. e.g. [8]). 

The following result settles the conjecture for i large enough; in the context 
of graded augmented (skew-commutative) algebras over a field of characteristic 0, 
it is already given by Felix and Thomas in [6] . 

Theorem 1. If R is not a complete intersection, there exists an integer i(R), 
such that for i > i(R) one has Tf̂ R) + 0. 

Few classes of rings for which the non-vanishing of all the ê 's is known have 

been exhibited so far. In these Proceedings Lofwall shows this is the case when 

m = 0 (and R is not a complete intersection). We add to the list: 

Proposition 2. Assume dim̂ (m/m ) - depth R < 39 or R is Gorenstein with 

dimk(m/m
2) - depth R = k. Then either R is a complete intersection, or 
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e. ̂  0 for all i. 
1 
(Note that the existence of infinite arithmetic sequences of indices for which 
e. ̂  0 have been obtained in pll) • l 1— 
The proof of Theorem 1 makes essential use of a result on the Lie algebra 
structure of IT*(R), which can be formulated as follows: 

Theorem 3« If R is not a complete intersection, there exist elements 
a€ TT 2(R), 3 € TT(R) such that for all n > 1: 

(ada)n 3 ^ 0 
where (ada)y = [«»Y] • 

The proof of the second theorem depends on the use of the minimal models for 
DG algebras, introduced in [2, 3]» and parallels an argument of [U] . Note also 
that in the context of rational homotopy groups of finite CW complexes, a 
stronger non-vanishing result for iterated Whitehead products is available [5] . 

As an immediate consequence we have several characterizations of complete 
intersections in terms of the Lie algebra structure: 

Corollary. The following are equivalent: 
(1) R is a complete intersection; 
(2) TT>2(R) is abelian; 
(3) TT*(R) is nilpotent; 
(h) TT*(R) is Engel (i.e. (ada) n^ = 0 for each a €. TT*(R) and some 

integer n(a) > 1, depending on a). 
Note that going down is trivial; in the opposite direction only (2) => (1) 
was known earlier [2]. 

Proofs will be published elsewhere. 

References 
[l] L.L. Avramov, Free Lie subalgebras of the cohomology of local rings, 

Trans. Amer. Math. Soc. 270 (1982), 589-608. 
[2] L.L. Avramov, Differential graded models for local rings, RIMS Symposium 

on Commutative Algebra and Algebraic Geometry, RIMS Kokuyroku 446, 80-88, 
Kyoto University, 198l. 

[3] L.L, Avramov, Local algebra and rational hcmotopy, these Proceedings. 
[4] Y. Felix, S. Halperin - Rational LS category and its applications, 

Transactions of A.M.S., Vol. 273, n° 1 (1982) p. 1-37. 

154 



LIE ALGEBRA OF A LOCAL RING 

[5] Y. Félix, S. Halperin, J.C. Thomas - The homotopy Lie algebra for finite 
complexes, Publications Mathématiques de l'I.H.E.S. n° 56 (1982) p. 387-410. 

[6] Y. Félix, J.C. Thomas - The radius of convergence of Poincaré series of 
loop spaces, Inventiones mathematicae, Vol. 68, fasc. 2 (1982) p. 257-274. 

[7] T.H. Gulliksen, A homological characterization of local complete inter­
sections, Comp. Math. 23 (1971), 251-255. 

[8] T.H. Gulliksen and G. Levin, Homology of local rings, Queen's papers in 
Pure and Appl. Math. 20, Kingston, Ont., 1969. 

155 


