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THE STRUCTURE OF П* (ΩS) 
by 

Stephen HALPERIN 

1 . INTRODUCTION : In this lecture S will always denote a simply 
connected CW complex with finitely many cells in each dimension. Associated 
with S are the two algebraic invariants : 

* 
(i) Its cohomology, H (S) , 

and 
(ii) The homotopy of the loop space, TT^(ŒS). 

These are both graded groups each of which carries additional structure : 
* 

H (S) is a graded commutative (associative) algebra and *rr̂ (ŒS) is a 

graded Lie algebra, the homotopy Lie algebra for S 

These two invariants are Eckmann-Hilton dual to each other, and 

play symmetric roles in the two major approaches to rational homotopy theory. 

At a deeper level, however, the duality breaks down. A simple instance of 

this is the enormous difference between free graded commutative associative 

algebras and free graded Lie algebras ; the latter have a very much richer 

product structure. This can be seen, in particular, from the fact that for 

graded Lie algebras the subobject of a free object is again free. There is 

no analogous result in the other category. 
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S. HALPERIN 

Let me recall how the Lie algebra TT̂ (P-S) is defined. Of course 
7T (Q-S) = 7T , (S) is the group of homotopy classes of base point preserving p p+1 
continuous maps fiS , with the standard addition. If f : -+- ftS , 
g : S q fiS then the map S9 x S q -* QS given by 

(x,y) I > f(x)g(y)f(x)~1g{y)~1 

is null nomotopic on sPv s q and hence defines a map 

[f,g] S ? ^ - S15 X S q/ Sp v sq — > «S 

This is the Lie bracket , 
A theorem of Serre guarantees that ^p^) ^ s a finitely 

generated (abelian) group for each p . Hence TT̂ (ftS) ® 5 is a graded 
connected rational Lie algebra of finite type (finite dimensional in each 
degree). It is the rational homotopy Lie algebra of S . One the first results 
in rational homotopy theory was the remarkable theorem of Quillen [.Ql : 

every graded connected Lie algebra over <£ of finite type arises in this way. 
Here I will be concerned with the following question, and variations 

thereof. 

PROBLEM 1 : What conditions are imposed on the rational homotopy Lie 

algebra of S if S is a finite complex. 

This may be regarded as an analogue of the well known 

PROBLEM 1' : What conditions are imposed on a discrete group G if K(G,1) 
is a finite complex ? 

Now let me restate problem 1, with its variations. 

PROBLEM : What conditions are imposed on the rational homotopy Lie algebra 
of S if 

1. S is a finite complex. 
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or 
2. dim H (S ; C) < 0 0 . 

or 
3. S is a closed manifold. 

or 
4. S has finite rational category : catQ(S) < 0 0 

The restrictions on S in problems 1 and 2 are equivalent (for 
this problem), the restriction in 3 is stronger while that in 4 is weaker. 

I include problem 4 because almost all the results we have up to now 
are answers to it (which then apply to the other problems) ; shortly I will 
attempt to explain why. 

As far as problem 3 is concerned, it is known that with the 
exception of the spheres a manifold cannot have a free rational homotopy 
Lie algebra. I am unaware of any other restrictions which do not also 
hold for finite complexes. 

As to problems 1 and 4 we have available the beautiful 

Conjecture (Avramov-Felix) . If cat (S) < 0 0 then IT. (Q.S) ® g) contains  o 
a free Lie algebra with at least two generators. 

Henceforth I shall always assume catQ(S) < 0 0 , and attempt 
to survey known results on TT̂  (Q.S) © $) . Let us denote the integers 
dim IT (S) 0 C by P (S) and call them the Hurewicz numbers for S . p p 
Results fall into three classes : 

(i) Restrictions on the p (S) . 
P 

(ii) Restrictions on the Lie structure. 
(iii) Spaces of low category. 
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Before beginning the survey, however, it seems reasonable to recall 

the definition of catQ(S) and explain its role here. 

2 . THE ROLE OF RATIONAL CATEGORY. The rational category of S is the 

Lusternik-Schnirelmann category of the localization S^ , normalized so that 

cat (point) = 0 . It is majorized by the L-S category of S and by the 
o 

largest n such that Hn(S : Q) ̂  O . 

Its usefulness stems from the result of Felix-Halperin 

[ F - H] that if cp : S T induces an injection T*('s) -5iS->7T+(T) <g) $ 

then cat (S) ̂  cat (T). This implies in particular that in any fibration o o 

S F — — S — — S B in which p ^ is surjective, catQ(SF) ^ catQ(S). 

CONJECTURE : If 2 ̂  cat (S) < 0 0 then there exists such a fibration with  o 

1 ¿ cat (S ) < cat (S) ~ O F 

This conjecture implies the Avramov-Felix conjecture. 

REMARK : An unpublished result of Felix-Halperin-Thomas asserts the existence 
* 

(if dim TT*(S) © C = 0 0 and dim H (S ; £) < °°) of a Postnikov 
* 

decomposition S^ —^ S —>.S in which dim H (S ; $)) = 0 0 ! 
F B F 

3 . RATIONALLY ELLIPTIC SPACES : There is a profound difference in the 

behaviour of S of finite rational category depending on whether 

dim TT̂ (S) © £ is finite or infinite. In the first case S is called 

rationally elliptic and according to [F-H] 

dim H (S;Ç) < 0 0 and cat (S) > dim 7T ,, (S) ® Ç . o odd 

* 

Furthermore [Hj , the algebra H (S ; 5) must satisfy Poincaré duality, 

and the degree n , of the fundamental class is given by 

n = E P P 

p odd p 

H ( P - D P . 
p even 
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Friedlander and'Halperin (Vr-Hj have completely solved the problem of 
characterizing the Hurewicz numbers of rationally elliptic spaces. Indeed 

r 2a ± q 2b.-1 
let £(t) = t + 2 ^ t be any polynomial with non negative 
integral coefficients and zero constant and linear terms. Then 
f(t) = V P (S)t^ for rationally elliptic S if and only if for each s 

1 — P 

and each i, < < i ^ r there exist j.<...< j < q and 
I s Jl Js ^ 

k £ a such that 

* v l J = O 
S 

XI k v u = 2 ' v = 1 ' s ' and 

b . 
s 

£ k ^ % 
V = l,...,s 

In particular, setting s = r one sees that 

x . d e= f E'-» pPp = ° • 

Th.ey also deduce the relations 

dim TT̂  ( S ) & Q = X I p .p + |Y I ^ n 
p even 

and 

p odd 
p (p+1) ^ 2n . 

Since QHJ the largest p for which p^ ^ O is odd it follows that 

P p = O , p < 2n and 
Ï 1 Pp s 1 • 
p=n 

Finally let me mention the inequality 

dim H*(S) £ 2 n 
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As to tfye Lie structure, one sees trivially that the Lie algebra 

is nilpotent because dim 7T*(S) ® f) < 0 0 .It can in fact easily be abelian, 

and there does not seem to be any reasonable structure theorem. 

4 . RATIONALLY HYPERBOLIC SPACES. If cat (S) < °° and dim TT̂ (S) ® © 
o * 

is infinite, S is called rationally hyperbolic. The justification for this 

is the result of Felix-Halperin-Thomas [F-H-T] 

THEOREM : If S is rationally hyperbolic there exists an infinite sequence 

P l ' P2'"' w i t h pi+l = ^j.Pi_1 * "̂ L i n t e 9 e r I N U 2 ' c a t

0(
s)+l]) and there 

is a constant C > 1 such that 

Pi 
P p (S) £ C 1 

Let R denote the radius of convergence of the series I . . .t 1 : S P^t^j 

1 
RS 

lim sup 
p -*- 00 

Pp1/p 

This theorem then implies that R < 1 . Indeed, if m = cat (S) and 

e = 1/2(m+1) m+1 
it follows from [ F H T ] that 

1/Rs > (ePp)1/p 
all p . 

Suppose now that HP(S ; $) = O , p > n . A result of Babenko £B] 

shows that R g is the radius of convergence of the Poincaré series 

dim HP(f2S;f))tP for QS . It can also be shown that there is a constant 

C > 1 , depending only on n such that 

1/Rs > cn. 

Finally in [F-TJ Felix and Thomas give a lower bound for ~- for a large class 

of spaces S , including all formal spaces with dim H (S;£) < 0 0 : R g < r where 

r is the least modulus of the roots of dim HP(S;£)tP = O . 
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5 . LIE STRUCTURE FOR RATIONALLY HYPERBOLIC* SPACES. Suppose S is rationally 
hyperbolic. As we have just seen this implies that the integers dim TT̂ tftS) ® Q 
are unbounded. Thus the following theorem of Felix-Halperin-Thomas £F-H-T] 

guarantees the existence of enormous numbers of non zero brackets in the rational 
homotopy Lie algebra. 

THEOREM : Suppose catQ(S) = m and dim TT^S) ffi = °° .If 
Oij ,. .. ,(Xm £ TT2k(ftS) ® $ are linearly independent then either the OL generate 
an infinite dimensional sub lie algebra, or for some B E Π* (Ωs)and 
some i , 1 < i < m , (ad OL)^ t O , for all q . 

COROLLARY : A space of finite category and finite cocategory is rationally 
elliptic. 

For any (graded) Lie algebra L , its upper central series is the increasing 
sequence of ideals in L in wich Ẑ 0** = O and Z^i+1'* projects to the 
centre of 1>/Z^ . Put Z = U Z ^ . The theorem above implies the 

i 

COROLLARY : if Z(S) = k\^ S^ i s associated with the Lie algebra TT̂ (ftS) <8> $ 

where cat (S) = m and dim 7T. (S) (55 © = 0 0 then o 

dim Z2k(S) < m , all к 

If S is 7T-formal it then follows that dim Z (S) ̂  m and 
even 

dim Z(S) < «> ; it seems reasonable to make the 

CONJECTURE : If dim 7T. (S) ® f> = 0 0 and cat (S) < 0 0 then 
ж О 

dim Z(S) < 0 0 

Finally, from FHT we have the 

115 



S. HALPERIN 

THEOREM : If cat (S) < 0 0 and dim IT. (S) g) f> = 0 0 / then the Lie algebra  o 
7T*(°-S) Q is not solvable,, 

6 SPACES OF LOW CATEGORY : A well known result going back to Toomer T 

asserts that cat (S) =1 if and only if TT (f2s) ® $ is a free graded Lie o 
algebra. One possible attack on the conjectures is thus by induction on cato(S) 

In fact by a collection of ad hoc techniques the Avramov-Felix conjecture 
has been established when catQ(S) = 2 and S is not TT-formal ( F-H-T' ) . 
It is unclear how to proceed when cat (S) = 3 

o 
7 . QUANTITATIVE RESULTS : When HP(S ; Q) = O , p > n it should be 
possible to obtain estimates in terms of n for the size of the 0 and 

P 
for the location of non-trivial Lie brackets. For instance it is shown in 

\_F-H] that for some N , 
k+n 
E 

p = k+l 
Pp > 1 if k > N 

when S is rationally hyperbolic . 

Felix has conjectured that this should be true for all N s£ n 
It can in fact be shown that for rationally hyperbolic S 

nk 
L 

p = k+l 
Pp > 1 k > 1 . 

and it is this fact which gives the estimate 1/ R
S « c

n > * referred to in sec.4. 
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