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QUASI PERIODIC FLOW NEAR A CODIMENSION ONE SINGULARITY  
OF A DIVERGENCE FREE VECTOR FIELD IN DIMENSION FOUR 

by 

B.L.J. Braaksma and H.W. Broer 

CHAPTER 1 - INTRODUCTION, RESULTS 

§1.1 Introduction 
It is the aim of this paper to prove that within the class of all 

C00 one parameter families of divergence free (or volume preserving) 
vector fields on M4 , the phenomenon of invariant three-dimensional tori 
with a quasi-periodic flow, occurs openly. 
Our study will be local: we consider generic unfoldings of a specific 
codimension one singularity, all within the class of vector fields in 
dimension 4 with divergence zero. 
From a slightly different viewpoint such unfoldings are (local) one pa­
rameter families in which the unfolded singularity appears as a bifur­
cation. 
For each of our unfoldings it will be shown that, if the parameter ranges 
over a neighbourhood of the bifurcation value, uncountably many invariant 
3-tori with quasi-periodic flow come into existence. 

Basically we follow the ideas contained in Moser [12], which have 
to be adapted for our bifurcation problem. 

In Broer [3] a general study was made of bifurcations of singulari­
ties in volume preserving vector fields, by investigating generic one 
parameter families of such vector fields. Also see [5]. It appeared that 
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QUASI PERIODIC FLOW 

in our studies with one parameter, compared to the classical bifurcation 
theory for vector fields without the restriction of volume preservation, 
only the dimensions 3 and 4 are exceptional. Compare e.g. Arnol'd [1]. 
The present study treats one of the exceptional bifurcations in dimension 
4. It illustrates the fact that in this divergence free case structural 
stability is not generic. In dimension 3 we found a similar bifurcation, 
for which in [4] analogous results were obtained. 

Below we shall also make some remarks on the same 4-dimensional 
bifurcation, but now without the restriction to divergence zero. In 
this case the bifurcation has codimension two. We consider a result 
claimed by Guckenheimer [8] concerning a normally hyperbolic invariant 
manifold which occurs in an open set of two parameter unfoldings. This 
manifold contains uncountably many quasi-periodic orbits and we shall 
present an indication of a proof for this, illustrating our methods 
developed from [12]. 

All the phenomena that we describe, are strongly associated with 
the fact that by normal form techniques (see e.g. [15, 3])one may assume 
that the considered unfoldings are symmetric up to some order. This means 
that, in a certain sense, they are close to cases with infinite codimension. 
Or, in a different terminology: our unfoldings are nearly integrable. 
(Also compare Bróer en Van Strien [6].) 

We express our gratitude to F. Takens for introducing us into these 
problems, and both to him and J. Moser for valuable private communications. 

Also we are very grateful to F. Klok and G. Vegter for carefully 

reading the manuscript and to Maria de Werker for her typing. 
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§ 1.2 Statement of the problem 
On !R consider a divergence free C vector field, which has the 

origin as a singular point. Assume that the eigenvalues of the linear­
ized vector field are ± iâ  and± iô ' ̂or some OL^ > 0 and > 0. 
One easily sees that such singularities have codimension one, i.e. 
that they may occur in generic one parameter families - or arcs - of 
divergence free vector fields. This is a consequence of the fact that 
in the divergence free case the trace of the linear part in a singula­
rity must be zero. 
So let us consider such a C arc X = xy (x) , where y is a real parameter, 
which unfolds the above singularity in x = 0 € B of the vector field X . 
In Broer [3] a normal form theorem was obtained, which implies the 
following: 
If for all j 1, j2 € 7L with 1 £ |jj + |j2| £ m we have that 
ĵ â  + J2a2 ̂  ®' i-*e' no resonances up to order m, then modulo a C , 
volume preserving, y-dependent change of coordinates, one may write 
Xy = IF + py, where 
i. Both X and p are divergence free, 
ii. The Taylor expansion of p = py(x) vanishes up to order m- 1, 
iii. In toroidal coordinates (r̂ , (p̂) and (r̂/ ty^) on Jt , the vector 

field X has the system form 

76 



QUASI PERIODIC FLOW 

(1.1) 
cp. = a.(r2, T\, y) 
r. = r.g.îrj, r\, y) i = 1, 2, 

where 3̂ 0,0,0) = and gi(0,0,0) = 0 for i = 1, 2. 
The last property expresses that X possesses toroidal symmetry. 

Also compare Takens [ 15]. The natural number m> 4 lateron will be fixed suffi­
ciently large. Observe that our resonance condition is open and dense. 

The angles cp̂  and cp̂  are defined modulo 2TT. 
If we forget both angular components, from X we obtain a reduced vector 
field X*1, defined in the (r , r)-plane. In this plane we blow up, or 
rescale with M , i.e. for y / 0 we introduce new variables r. and r« 
defined by r„ = r„ 1 1 1 u2 and r2 r2 y 

y 
Let Y be the transformed vector field: 

Y (rl' r2) 1 
u1 
Yy(r r2 y 

Note that Ŷ  (r̂ , r2) -»-Oasy + Oory + O, uniformly on compact sets, 
but if we consider 

Y (rl' r2) 1 
y 
Yy(rr r2) 

u 
then for Z we write 

(1.2) 
*1 = VVl + 2C2̂2 c3 sgn{y}] 

+ Oí и 
;2 = ̂2(2C1̂  + V2 c sgn{y}) 

uniformly on compact sets, where ĉ , ĉ  and ĉ  are real constants. 
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We again impose some generic (and open) conditions: 

Cl * °' C2 ^ 0F C3 * ° AND Cl C2 

In studying the phase portrait of zy it is no essential restriction to 
assume that >̂  0 and that ĉ  _> | | # otherwise replace y by -y, Zy 

y 
by -Z , or permute and r^. 

Our present study deals with the case where > > 0, which in 
[3] was labelled I. Also we restrict ourselves to the situation y > 0, 
the parameter y varies in a righthand neighbourhood of 0. 

0 y Define Z to be the limit of Z as M 0 and observe that the family 
{zy}̂ >Q is smoothly parametrized by y. 

r T 0 00 According to L3J, theorem 3.5, this vector field Z is C -stable within 
the class of all such reductions of symmetric, divergence free vector 
fields to the (r̂ , r^)-plane. Fig. 1 depicts the phase portrait of Ẑ . 
(cf. [3], fig. 3, case I,-.) 

r2 

0 

fig., i 

This stability means, that for some ŷ  > 0, sufficiently small, and 
for all y € [0, PQ]# the vector field ZY possesses an invariant 'circle1. 
The inner region of this 'circle* is foliated by an orbit cylinder, which 
shrinks towards an elliptic singularity. 
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For the corresponding symmetric vector field X (now y 7* 0) we blow 
down again and add the two rotational components. Thus we find an in­
variant 3-sphere, the inner region of which is foliated by a 1-para-
meter family of invariant 3-tori, shrinking towards an invariant 2-torus. 
(Also the foliation contains two transversal 3-discs.) 
Note that, as a consequence of the blow down operation, the characteris-
tic distance in the phase portrait of X asymptotically equals vy. 
In the 4-disc under consideration we shall study Xu = Xu + pu . Observe 
that p̂  can be regarded as a small perturbation for y > 0 and small: the 
size of this perturbation is controlled by taking y close enough to zero. 
It is our aim to establish persistence of 3-tori which have sufficiently 
independent frequencies. The result is formulated in §1.4 as theorem D. 

§1.3 A suitable normal form 
We continue our preliminaries by constructing an even more suitable 

normal form for the system Xy , restricted to the open 4-disc with the 
torus-foliation. We shall work in the rescaled coordinates r̂  and r̂ , 
such that the size of our 4-disc is of order 1. 
Observe that by taking the limit for y I 0, in these coordinates we 
uniformly obtain 

-0 9 8 
X = a i ^ + a2lK^ 

and that ^X^^J>Q is smoothly parametrized by Vu For simiplicity we again 
write r̂  and r2 in stead of r̂  and r̂  respectively. Observe that now for 
j=l,2 we have a_. = â  (yr̂  ,yr̂  ,y) . 

From the fact that X~y is divergence free we conclude that the reduct­
ion zu preserves the 2-form 

rlr2driAdr2=4 dr5 A < * 2 -
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This means that for r̂  > 0 and > 0 the vector field zy has a hamilto-

nian function 

HW(rl'r2)= ï rîr2(clrî + c2r2 " c3) + ° M 

uniformly on compact sets. 

For small p > 0 we now introduce action angle variables in the (r̂ ,r2>-

plane, following e.g. Arnol'd & Avez [2], app. 26, i.e. we first define 

the action integral 

(1.3) Y0(h,y) : 2n Hy(r1,r2)=h 

1 2 * 
2 rir2dr2 

being the — -th part of the area bounded by the level curve 

H (r^r^) = h, containing a closed orbit of Z . 

Let <PQ denote the corresponding phase angle, defined mod 2TT. 

Observe that, up to multiplicative constants. 

rlr2drlAdr2 = dVdlP0 ' 

u 
while Z now can be written as 

*o = ao(yo'y) 

y0= o 

The following technical proposition will be needed in our further con­

siderations, but first of all it implies that, in the iregion relevant 

to us, (VQ, CPQ) is a set of smooth coordinates. The proof is postponed 

to chapter 2. 
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PROPOSITION 1.1; 

i. yo is a smooth function of h and y; 

ii. (h,0) is positive definite; eyo/dh 
iii. —^- (yn,0) is definite, except for at most finitely many values of 3yQ 0 

the variable yQ. 
Now consider the frequencies â  and a.^ in the new coordinates 

yQ and cpQ. We claim that, up to any order, these functions are inde­
pendent of ipQ. A rough argument for this runs as follows: Using normal 
form techniques as in e.g. [3] near the 2-torus corresponding to the 
elliptic singularity of Z, one may symmetrize the â  up to any finite 
order. This can be achieved using a volume preserving, y-dependent 
change of coordinates, which only effects the plane tp̂  = 0, cp2 = 0. 
Since we are transforming a finite number of terms from the Taylor 
series, the transformation will be real analytic near the 2-torus. In 
this way we find coordinates u and v in the (r̂ ,r̂ )-plane such that 

2 2 2 2 2 up to a high order both = a_. (y (u +v ),y), j ~ 1,2 and yQ = u + v . 
Here we use the unicity of the Birkoff normal form. Since yQ is 
real analytic in the whole region we consider, see fig. 1, it follows 
that the transformation (r^r^) •> (YQ'̂ PQ) puts the functions â  and 
a2 into the desired normal form, i.e. they are independent of tpQ up to 
any order. Remaining, flat terms will be included in the perturbation p. 
Note that, because of our blowing up procedure, these terms are flat 
in y, uniformly in yQ. 

We write for j = 1,2 : 

(1.4) aj(y2yQ,y) = a. + 3_.y + 0(y2) , 

uniformly. Here $̂  and $2 are real constants. A new generic condition 
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is imposed by requiring that $̂  ̂  0 and $2 ̂  0. Also we shall need 
one further generic condition: â #2 " a2̂ 1 ̂  ®' 

Finally we substitute x. = <P. (0<j<2) and y. We consider 
X = X + p in the coordinates xQ, x̂ , x2# ŷ  and . The perturbation 
p is of the form 

(1.5) 
2 

j=0 
fAxtYQtYl) a 3x. 3 

go(x'yo'yi a 
yo 

where x = (x̂ jX̂ x̂ ) and where the functions f̂  and ĝ  have period 2ir 
in the x.. Note that we may write 

go(x'Yo'yi) y i £ З ( Х > У 0 ' у 1 : and 

go(x'Yo'yi) y" (x,y0,yi) 

where f\ and are continuous but only C for / 0: in the expansion 
near yQ = 0 terms with /y^ show up. 
So X now obtains the system form 

(1.6) 

X0 = yl a0(y0'yl> + f0(x'y0'yl) 

Xl = al(yly0'yl' + fl(x'Vyl] 
X2 " a2(yly0'yl' + V ^ O ' V 
yo = go(x'yo'yi) 
yi = o 

which is nearly integrable. The factor ŷ  in the first frequency is 
due to the difference between Z and Y . See above. From now on we 
let X denote the integrable part of (1.6), i.e. without the per­
turbations f., ĝ , so changing its connotion slightly. 
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§ 1.4 Statement of the persistence theorems 

The persistence of invariant 3-tori for the vector field Xy will 
be investigated by means of its normal form (1.6). This system may 
be considered as a particular case of a more general system 

(1.7) 
X = A(y) + F(x,y) 
y = G(x,y) 

which is a perturbation of the completely integrable form 

(1.7a) 
L X = A(y) 
y = 0 

So the perturbation terms F and G are assumed to be small in some 
sense. In (1.7) x and y are both 3-vectors and we suppose that the 
system is 27T-periodic in x = (XQ,X^,X2). 

Such systems (1.7) have been investigated by Moser [12] in the 
case where A, F and G are real analytic. He proved a persistence the­
orem for invariant tori of such systems (cf. [12], theorem 5, also 
compare [lla]). An explicit formulation in the case that (1.7) is 
volume preserving and real analytic will be given in § 1.6, theorem 
A". In this paper we need an analogue of this theorem under the as-
sumptions that A, F and G are Coo . 

First we state a condition for volume preservation of the normal 
form (1.7) : 

PROPOSITION 1.2: 

The system (1.7) is volume preserving if and only if both 
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(i) 
2 
j=0 

aF 
3x. 
1 

aGj 
aYj = 0 and 

(ii) G(x,y) dx Adx^ Adx =0. 

We omit the proof. 
Now we consider a 3-torus y = c, invariant for the system (1.7 ). 

It contains the solutions x(t) = wt + est., y(t) = c, t € IR, where 
u) = A(c). Assume that w satisfies a strong non-resonance condition: 
For some T and y with 3 < T < 4 and y > 0 and for all tri-indices 
v € ZẐ  ̂  {0} we have 

(1.8 (V,U)) Y -T 

Here (v,u)) 
2 
j=0 

V .0) . 
D J 

and v 
2 
1=0 

v. 
For such a) the above solution certainly is quasi-periodic. It is well 
known that for T > 3 (or even T > 2) these frequencies 0) form a Cantor 
set, the measure of which tends to full measure as Y 0. Also note 
that for T fixed, the set of w satisfying (1.8) for some Y > 0, has 
a conical structure: If u) satisfies (1.8) with T and Y , then for 
every s ̂  0 so does so) with T and |S|Y. NOW further assume that A is 
a diffeomorphism on a neighbourhood of c. Let A = (a € jb? \ |a-u)|<̂  d) 

-1 & be a disc where the inverse A is well defined and C with x, = 363. We 
then have 

THEOREM A: 

Let A and c satisfy the preceding assumptions and let K be a posi­
tive constant. Then there exists a positive constant 5, depending only 
on Y, K and the Cl -norm of A-l on A, such that for all perturbations 

c * 3 -1a 3 F and G fc C (1 x A (A) Y JR ) which are 2̂ -periodic in xQ, x1 and 
x and such that the corresponding system (1.7) preserves the volume while 
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(1.9) 
|F(x,y) G(x,y) 6 and 
Id *d 2 
1 x y 

F(x,y) 4 2̂ D D G x y (x,y) K 

for all (x,y) € m x A" (A) and |c | + |̂ 2|= I, then the system (1.7) 
possesses a quasi-periodic solution with frequency a). If the C-norm 
|F|Q+ |G|Q->0, then the distance of this solution to y = c tends to 
zero. 

Theorem A will be proven in § 2.5. One may apply theorem A to sys­
tems without a component y2, as for example (1.6), in the following 
way. Consider 

(1.10) 
x = b(y) + f(x,y) 
y = g(x,y) 

where x = (x̂ ,x̂ ,x2), y = (ŷ ŷ ) and where b, f and g satisfy conditions 
similar to those for A, F and G above, except that of course now b is not 
a diffeomorphism. If we rescale the time t to (l+y2)t , so introducing 
an artificial coordinate y2, we obtain a special form of (1.7) where 

(1.11) 
A (VI- Cl + y2) b(y0,yi) , F(x,y) (1 +y ) f (x,y ,y ) , 

G (x,y) (i +y2) (x,y! for j =0,1 and where G2 = 0. 

Note that now y = (YçiY^rY^ ' 
We assume that (cQrC^) is such that u> = h(cQ,c^) satisfies (1.8) 

and also we assume the following non-degeneracy condition 

(1.12) det 

3bo 
yo 

3bo 
3y. bo 

3b 
1 

3bl 
*1 bl 

3b 
2 *0 

3b2 
3yt b2 

* o for Yo = co' yi = cr 
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Then, from theorem A we immediately conclude 

THEOREM B: 

Suppose that V c IR2 is a neighbourhood of (cq'c^ and that 
b €C£(V,3R3) satisfies (1.12), while w = b(c ,c ) satisfies (1.8). 
Let K be a positive constant. Then there exists a positive constant 

a 3 
6 such that for all perturbation terms f and g € C (I* x V) which 
are 2ir-periodic in x^,x^,x^ and such that (1.10) is volume preserving 
and satisfies (1.9) for all (x,yQ,y1) € 3R3 x v and 1 ^ 1 + | C21 = A' 
the system (1.10) possesses a quasi-periodic solution with frequency 
SOJ. Here s is a scalar and s 1 as |f |Q + Î IQ 0. 

Note that for the conditions of volume preservation and (1.9) one 
has to use the translation (1.11). Cf. proposition 1.2.Also observe 
that the frequency vector u) in perturbing may have slightly changed 
to so), but that in this way the frequency ratios have been kept constant. 
Recent work of Poschel [14] strongly suggests that, also in our vo­
lume preserving context, the surviving invariant tori fill up a set 
of positive measure, tending to full measure as |f|^+ |y|g -*• 0. 

The special case (1.6) of (1.10) is obtained by taking 
(1.13) b0(y) yiao(yo'yi)f Vy) aj(yl yo'yi}' gi 0 

for i = 1, 2 . 

Consider (1.6) for y positive and small, since we investigate 
X = X + p for small, positive y and y = vy. For the determinant 
in (1.12) we have 

2y?(a2ei " al62 
3a0 
eyo (y0.o> 

O(Y41 
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as y1 + 0 , uniformly, because of (1.4) and (1.13) . This explains 
the generic condition 

a«ß2 " а2&1 ̂  и 

made in § 1.3. Moreover, c = (cn,cJ should be chosen in such a way 
that c > 0 is small, 3ao 3y0 (c0.0) 0 and that 

(1.14) a) (cian(cn'ci> ai (cicn'ci) . 4 2, 
a2(ClVCl 

satisfies (1.8), in order that theorem B may be applied. 
These conditions, however, give rise to some problems. Firstly 

we have to establish the existence of c = (CQ'c^)' with ĉ  > 0 and 
small and ĉ  near a prescribed value, such that w, defined by (1.14), 
satisfies (1.8). Observe that if u) satisfies (1.8) and ĉ  0, then 
necessarily y 0- Which brings us to a second aspect of the problem: 
We shall see that in the theorems A and B we have 6 •> 0 as y ->• 0 and 
a priori it is not clear that (1.9) can.be fulfilled. 

Here we have to take into account that the map A, defined via 
(1.13) and (1.11), is singular for ŷ  = 0 . Our genericity assumptions, 
however, guarantee that the image of A implodes in a controlable way 
for ŷ  -> 0. What one needs is, in the theorems A and B, an estimate 
for 6 in terms of y• This problem is similar to that of the "small 
twist", cf. Moser [11]. In analogy with [ll] we give a refinement 
of our theorems. 

In order to obtain such a refinement, it is useful to consider 
theorem A as stated above, and to look at the result which serves as 
a basis for its proof. This result concerns a system with a parameter 
(cf. Moser [12], § 3) 

87 

http://can.be


B.L.J. BRAAKSMA, H.W. BROER 

(1.15) 
x = a + f(x,y,a) 
y = g(x,y,a) 

Here x = (XQ,X^,X2) and y = (yQ,ŷ ,y2), while f and g are small per­
turbation terms, 2ir-periodic in x̂ , x̂  and x̂ . Also the system is as­
sumed to be volume preserving, cf. proposition 1.2. Let the parameter 
a € IR in (1.15) vary in a neighbourhood of a) £ 3R , where OJ satis­
fies (1.8) with y > 0 and 3 < j < 4. The perturbation terms f and g 
will be estimated by several parameters; let 

(1.16) 
6 > 0, e = 6 , N = 6 ,P = <5 , Q = & 
o = 0.93; r = 0.1; s = 2; q = 0.95 

Then we have 

THEOREM C: 

Let y* > 0 and H - 363. Then there exists a positive number 6*, 
only depending on y*, with the following properties: Suppose that 
a) satisfies (1.8) for some Y with 0 < Y _< Y* • Let 0 < 6 _< 6* and 
let f, g € C£(S, IR3), where 

3 3 S = 3R x {y £ 1 y -1 
P 'a € 3R I a - a) Y E 

cf. (1.16) 
and where f and g are 27r-periodic in x^x^x^, constituting a system 
(1.15) which is volume preserving. Finally assume 

(1.17) 

|Nf(x,y,a) j Pg(x,y,a) Y 6 N and 
D D D x y a Nf(x,y,a) h 4 h D D D Pg x y a * x,y,a) 
Hc3| N M 1+1 p G Q 

c3 
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for all (x,y,a) € S and ]^| + |C2| + |C3| = A 

Then there exists a vector a with |a - a) |<_ ye, such that the corres­
ponding system (1.15) possesses a quasi-periodic solution with fre­
quency 0). 

We shall prove theorem C in § 2.4. 
From theorem C we shall derive theorem A in § 2.5, in (1.7) re­

placing y by A *(a) + y for a £ A . Then (1.7) is transformed into (1.15) 
with a € A. Now we may apply theorem C to obtain theorem A. It is pos­
sible to prove refinements of the theorems A and B, which are appli­
cable to the system (1.6). In stead of this we shall give in § 2.6 a 
direct application of theorem C to (1.6). The result is the original 
aim of our paper: 

THEOREM D: 

Let X = X + p be a generic arc of divergence free vector fields 
4 

on IR , as specified above. Then there exists a > 0, such that the 
family ̂ '̂ Ĵ o<y<]j Possesses uncountably many invariant 3-tori with a 
quasi-periodic flow having 3 sufficiently independent frequencies. For any of these X -invariant tdri, there exits an appropriate y', 
close to y, such that Xy possesses a slightly deformed invariant 
torus, again with quasi-periodic flow. Both quasi-periodic motions, 
occurring in XN/y and in Xy1 , have the same frequency ratios. 

REMARKS 
i. If the results from [14], mutatis mutandis, also hold here, then 
the surviving tori fill up a Cantor set of positive measure (relati­
vely tending to 1 as y 0) . Then by Fubini's theorem, we find a set 
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C c: (0,y ) , having positive measure, such that for each y € C the 

vector field X possesses a number of invariant tori, the union of which 

has positive measure. 

ii. Compare the three dimensional analogue [4], where the bifurcation 

parameter plays a different role. In that case, for eaoh value of the 

parameter, fixed sufficiently small, uncountably many invariant 2-tori 

survive the perturbation. 

§ 1.5 A generalization to higher dimensions and some remarks on a  

non-divergence free analogue 

a. It is straight forward to generalize the theorems A,B and C to higher dimen­

sions. Here we present the form which is most in accordance with theorem D. For 

this purpose on nn(n>4) consideran (n-3)-parameter family of divergence free 

vector fields , which forms an almost integrable system in the following way: 

xo fn-2(x'y0''l)0'vi 

Xn-2 * K-2»0'vi + fn-2(x'y0''l) 

y0 • 90(x'y0'P) 

where y = (y ,. •., ŷ  ̂ ) is the vector of parameters and where 

x = (XQ,X^, 2̂  are the angles. The perturbations and so have 

period 2ïï in the XJ , compare (1.10).Analogous to proposition 1.2 the pre­

servation of volume translates to 

3*0 

3yo 

n-2 

3=0 

af. 

ax. 
3 

0 and g0(xfy ,i0dx A ...Adxn_2 = 0. 
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Note that if the perturbation is zero, the vector field possesses an 
invariant foliation of (n-1)-dimensional tori, shrinking towards an 
(n-2)-dimensional torus. This is what the term "almost integrable" 
expresses. 
Analogous to (1.12) we require the following non-degeneracy condition: 

det 3b. 
i 3y. b 

n-2 n-3 
i=0 j=0 

0 

where y. = y. for j = 1, 2, n-3. We abbreviate y = (YQ/Y^ •••'YN 3)• 

As before we single out tori y = c, such that the frequency w = b(c) 
satisfies a strong non-resonance condition like (1.8), which for 
T > n-1 is easy to satisfy. We now state 

THEOREM 1.3: 
For sufficiently small perturbations f_. and ĝ  and each (n-1)-torus 

y = c as above, the system * possesses an invariant (n-1)-torus which is 
a slight deformation of y = c. The motion in this new torus is quasi-
periodic and the frequency is a scalar multiple of w, close to to. 

REMARKS : 

i. Theorem 1.3 is a straight forward generalization of §1.4. 
ii. It is very probable that also for n > 4 the almost integrable 

form * occurs in bifurcation problems. 

b. The rest of this section will be devoted to the same 4-dimensional 
bifurcation as before, but now without the restriction to divergence 
zero. So again we unfold a singularity with eigenvalues ± ia and ± ia9, 

1 ^ 
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for a1 and a2 positive. In this case generalically the singularity has 
codimension two, and we consider a generic 2-parameter family Xyl'y2 
which unfolds our singularity that X̂ '̂  possesses in the origin of !R4 . 
Here u1 and u2 are real parameters. 

This situation was studied before by e.g. Takens [15] and Dumortier 
& Roussarie [7]. Our present concern, however, is with a result formulated 
by Guckenheimer [8]. This result claims the existence of quasi-periodic 
motions with three independent frequencies, associated with a line of 
Hopf-bifurcations, which for an open set of unfoldings occurs in the 
(U1,P2)-plane. Below we shall be more precise. It is our aim to illustrate 
our methods - using Moser [12] - in providing Guckenheimer's statement 
with a sketch of a proof. For the moment we completely restrict to the 
"small divisor side" of the problem, foregoing the difficulties 
related to the "small twist". See §1.4. Also compare §2.6. 

Becoming more explicit: we assume that and satisfy some 
finite non resonance condition as in § 1.2. This yields a normal form 

yl'y2 ~yl'y2 yl'y2 ~ decomposition X = X + p (see e.g. [15]) where X possesses 
toroidal symmetry and p consists of higher order terms. The "unperturbed" 

• 
family X has the form 

(1.1') 
cp. = a. + f.(r1,r2,y1,p2) 
ri = ri{yi + gi(rl'r2'yl'y2)} 

with fI(0,0,0,0) = gI(0,0,0,0) 
3g. 
3u. (0,0,0,0) = 0 for i,j = 1,2. See 

above. 
We number the formulae using the following convention: if a formula in a 
similar form already occurred in a previous section with the number (l,i). 
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then in this section it will be indicated by the number (l,i'). 
Again, in neglecting the angular components, (1.1') is reduced to the 
(r̂ ,r̂ )-plane. Firstly we truncate at the order 3 and write for 

allf al2' a21 and a22 £ IR: 

(1.2') ri = ri(yi + ail ri + ai2 r2) i = 1,2 

Secondly, for simplicity, we impose the following conditions: 

aUa22 ai2a21 °' a22 - a!2 0, an 0 and a22 
all 

0 

Compare [7, 8, 14]. In the (y.,y_)-plane then consider the half-line 
y2 = x v yi o, where X a22lall"a2r 

all(al2"a22) 
One may blowup (1.2*) in the direction of this line, using techniques 
similar to the ones showed in § 1.2. Also compare e.g. [7]. In this * 
using the implicit function theorem, one finds a C -curve L in the 
(ŷ  u2) -plane, which for ŷ  _> 0 and small, is smoothly parametrized 
by its ŷ -coordinate. Moreover: 
i. For y =0 the curve L is tangent to y9 = xvt1 r 

ii. For (y1,y2) € L {(0,0) the reduced system possesses an isolated 
singularity at an asymptotic distance /\T from (r^,^) = (0,0) 
The eigenvalues in this singularity are purely imaginary and 
non-zero. 

Furthermore, if one moves transversally to L the eigenvalues cross the 
imaginary axis with a positive velocity. In [8] it is stated that ge­
neric conditions have to be imposed on the fifth order terms, to en­
sure that we are dealing with a "stable" Hopf-bifurcation. (Cf. Marsden 
& McCracken [10].) 
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So the reduced system possesses a 2-parameter family of hyperbolic 
closed orbits. Let _> 0 parametrise the curve L, while v2 is a Hopf-
parameter, moving transversally to L. Assume that v2IL S ° AND THAT THE 
closed orbits come into existence for v2 > 0. For and positive, 
and both small, we find suitable coordinates cpQ and yQ, defined near the 
closed orbit of the reduced system. See fig. 2. 
Here QPQ is angular, defined mod 2TT, and ŷ  is a normal coordinate. The 
reduced system then can be written as 

y0=y0 n(Y0'Vl'V2) 
y0 = y0 n(Y0'Vl'V2) 

r2 

0 r1 

eo 
eo 

fig. 2 

where the hyperbolicity means that n(0,v̂ ,v2) f 0. 
The symmetric vector field X possesses a corresponding family of in-
variant 3-tori, constituting a normally hyperbolic invariant C00 -mani­
fold M of dimension 5. 
In the 6-dimensional space coordinatised by (tPg,̂  ,op2, vo'vl,v2̂  
we have M - {ŷ  = 0}. 
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Near M the vector field X has the form 

*0 = V W V 
Vl = V W V 
*2 " B2(Y0'Vl'V2) 
Y0 = Y0 N(Y0'Vl'V2: 

Note that we replaced and by the pair (v̂ ,v2>. We recall that 
and v2 are positive but small, and that yQ varies in a neighbourhood 

of 0. 
We now follow the same strategy as before and perturb to 

xVl'V2 xVl'V2 V V 2 
P so obtaining 

(1.6-) 
Y0 = Y0 n(WV2; F(TP'Y0'vl'V2 

Y0 = Y0 n ( W V 2 ; F(TP'Y0'vl'V2 

where cp = (cp̂ip̂  ,(p2> etc., and the perturbations f and ĝ  are 
2Tr-periodic in cp. 
According to Hirsch, Pugh & Shub [9] and to Palis & Takens [13] the 
vector field X, as a consequence of the normal hyperbolicity, possesses 
and invariant manifold M, close to M. The dynamics of X near M is given 
by (1.6') and one may well ask whether M contains quasi-periodic 
motions As is said before, an affirmative answer is given in [8], 
and we shall proceed in indicating a proof of this. 

First we restrict ourselves to a region where 
is bounded away from 0. Here we reparametrize the vector field by 
the factor 1/n(0,v1,v2). So without loss of generality we may assume 
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that in (1.6') we have n(vo'vi'v2̂  s similar to d-12) we now 
require 

det 
3b. i 
3v. b. l 

2 
i=0 

2 
j=0 

* 0 for y = 0. 

As in § 1.4 we introduce an artificial variable which rescales 
the time t to (1 + v̂ )t. Then our system translates to 

(1.7') 
<P = A(yQ,v) + F(tp,y0,v) 
yo= yo + Go((p'Vv) 
v = 0 

where v = (v ,v .v : A(Y0.v) (1 + v ) a(y ,v fv ), 
F((P,yQ,V) (1 + v3) F ( C P ' W V 2 and G0(cp,y v) (i + v3> g0(v,y0,v1,v2) 

Compare (1.11). The non-degeneracy condition (1.12') now obviously 
rewrites to 

det 
8A. 
8A. (0,v 

i2 

i,j-l=0 
* o . 

This implies that the map 1̂'V2'V3̂  v̂i'V2'V3* = Â °'vi 'v2'v3* 
is a local diffeomorphism. It is easy now to find w = A(v) such that 
for some y > 0 and T > 0 we have 

d.8') k + i(j ,io) Y j -T 

for k = -1,0,1 and all j € 2Z ^ {OK Let A = {a € m | |a -UJ| <_ d} 
be a disc where A * is well defined and for a € A write 

v = A"1(a) (yl'y2'y3} 

(Compare the construction following theorem C, § 1.4). So now 
y = (yQ,ŷ  fY2rY^ -*-s cl°se to zero, while (1.7') transforms to 
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x = a + f(x,y,a) 
yo= yo + Vx'y'a) 
yl= y2 = Y3 = ° 

where f and ĝ  have an obvious relation to F and Ĝ . Once more con­
sider a rescaling of the time by a scalar B, i.e. in stead of (1.15') 
write 

x = Ba + Bf(x,y,a) 
y0= ByQ + Bi (x.y.a) 

y,= y, - y3 = 0. 

Here B is close to 1. Recall that a is close to w, in the last system 
replace Ba by c and so obtain 

x = c + f (x,y,B,c) 
yQ = BYQ + g(x,y,B,c) 

yQ=BYQg(x,y,B,c) 

Now B is close to 1 and c is close to a). This form is suitable for our 
purposes, for we can make the following considerations: 
Analogous to theorem C one can also prove a C°° variant of (12], theorem 
3 stating that, modulo smallness conditions - compare (1.9) or (1.17) - , there 
exist c* close to u) and B* close to 1 such that this system, with c = c* 
and B = B*, possesses a quasi-periodic solution with the characteristic 
numbers OJQ,^,^ and 1. 
Then, writing a* 1 . one obtains a quasi-periodic solution with 
frequency B* a) of the system (1.15') and hence of (1.7'). 
Similar methods are used in Moser [12, §6], also see Moser [lla]. 

Recapitulating we conclude the following: Consider the X-invariant mani-

97 



B.L.J. BRAAKSMA, H.W. BROER 

fold M = {VQ =0} which is a 2-parameter family of 3-tori,parametrised by 
and v̂ . Condition (1.12') yields a Cantor set of frequencies u> = b(0,v̂ ,v2 

satisfying (1.8*) for some sufficiently large T and some y>0. To each 
of these frequencies we apply the above procedure and so find a deformed 
X-invariant 3-torus where the flow is quasi-periodic with frequency sio, 
for some s close to 1. Note that, similar to the volume preserving case, 
the parameters and may have shifted in perturbing, but that the 
frequency ratios have been kept constant. 
Also compare remark i. following theorem D, §1.4. 

§1.6 A real analytic analogue 

In this section we present a real analytic form of the theorems 
A and C. This theory is essentially contained in Moser [12]. 

It is included here because it provides us with several tools for our 
treatment of the C00-case. 
We number the formulae using a convention similar to the one in §1.5: 

if a formula in a similar form already occurred in §1.4 with number 
(l,i), then in this section it will be indicated by the number (l,i"). 

a. Similar to (1.7) we consider a system 

(1.7") 
x = A(y) + eF(x,y,e) 
y = eG(x,y,e), 

where e > 0 is a perturbation parameter. 
As above x = (x^x^x^ and y = (y^y^y^, while the functions 
F = (Fo'Fl,FV and G = Ĝ0'Gl'G2̂  30Ce real analYtic in a11 arguments 
and 2n-periodic in x = (XQ,X^,X ). Also we assume volume preservation 
in the sense of proposition 1.2. 
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Consider a 2-torus y=c, which is invariant for (1.7") with £ = 0, such 
that the frequency vector w=A(c) satisfies 

d.8") (V,03) Y i « n for all v€ Z53-{0} 

Also assume the non-degeneracy condition 

(1.18) det 9Ai 
ay. (C) 

. 2 

i,j=0 
+ 0. 

We formulate, in analogy with theorem A: 
Theorem A": 

For sufficiently small e>0 the system (1.7"), as specified above, 
possesses an invariant 3-torus with a quasi-periodic flow of frequency 
03. This torus is an analytic deformation of the torus y= c, the deform­
ation being parametrized by v2 

One easily may restrict to relevant special cases of theorem A". 
For example one may immediately conclude a real analytic analogue of 
theorem B, cf. §1.4. In that case the variable plays a special role: 
the time t is rescaled to (1 + y )t and we have that G = 0. Compare (1.10) 
and (1.11). 
If one imposes as an extra condition that also Ĝ  = 0, then (1.7") becomes 
a 1-parameter family of differential equations like (1.10), parametrized 
by ŷ . This second special case would be more or less in accordance with 
theorem D. 
Presently it will appear that the language of Lie algebras is convenient 
for these situations which are volume preserving and which have some extra 
verticalness conditions (such as e.g. G^= 0 or Ĝ = G^= 0). Cf. [12]. 
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In order to formulate a real analytic analogue of theorem C we have to 

introduce some concepts. 

Consider a real analytic system 

(1.19) 
x = 03 + e f (x,y, £,c) 

y = eg (x,y,£,c) , 

as above 2TT-periodic in x = (x^x^x^). The letter c denotes a 3-dimensional 

parameter. As in [12] we consider a modification of (1.19): 

(1.15") 
x = w+X+ef (x,y,£,o) 

y = eg (x,y,£,c) , 

where X = (X ,X ,X ) is independant of x and y. 

This system is similar to (1.15) if one puts a=u)+X. 

The main result of this section will be that for given f and g there 

exists a modifying term X, analytic in £ and c and which vanishes for 

£=0, such that the corresponding system (1.15") has quasi-periodic 

solutions depending analytically on £ and c and possessing the same 

frequency u) = (o>0,0̂  ,o>2) for all £ and c. 

Here we use that u) is as before, i.e. obeys the diophantic condition 

(1.8"). This result is a direct application of [12], theorem 5. 

We now shall become more precise: 

First consider a normal form 

(1.20] 
£u) + 0(r\) 

n= 0(n) ç-(Ç0.*i'52: ç-(Ç0.*i'52: 

The system (1.15") will be put into this normal form by a change of 
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coordinates 

(1.21) 
x = £+ eu(£,e,c) 

y = n + ev(£,n,e,c) , 

where u and v have period 2n in SQ'ÊJ'^and are real analytic in all 

their arguments. 

Moreover this conjugacy may be chosen volume preserving and linear in n. 

We formulate analogous to theorem C, partly recapitulating this intro­

duction : 

Theorem C"; 

There exists a unique real analytic X- A(e,c) and there exist real 

analytic u = u(£,e,c) and v = v (£,n,e,c) , as above, such that the trans­

formation (1.21) conjugates (1.15") with the normal form (1.20). 

In particular 

(1.22) 
x(t) = o)t+ eu (wt,e,c) 

• y(t) = ev (o)t,0,e,c) t€ B 

is a quasi-periodic solution of (1.15") with frequency oi. 

Remark: 

If the system (1.19) and so (1.15") is vertical in the sense that = 0 

or ÇJj — 0'» then the conjugacy (1.21) may be chosen in such a way that 

v̂  = 0 or v̂  = v̂  = 0 respectively. 

Observe that in that case the normal form (1.20) has the same vertical-

ness property. 
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b. Before we prove theorem C" from [12], we shall derive theorem A" 
o o from it. So consider a 3-torus y=c such that o)=A(c) satisfies 

(1.8"). Firstly we stretch the normal variables near this torus by 
introducing Y= (Y^Y^Y^ via y-c=/eY. 
This transforms (1.7") to 

(1.23) 
k = 0)+ /e F(x,Y,/E,c) 
Y= y/l G(x,Y,/e,c) . 

We now apply theorem C" to the system 

(1.24) 
x= u)+ /i F(x,Y,/e,c) 
Y= /e G(x,Y,/e,c) , 

o o where o>=A(c), but where c ranges over a full neighbourhood of c. 
This yields X= A( c), such that the modified version of (1.24) 
possesses quasi-periodic solution of frequency u). If we can solve 
c from the equation 

(1.25) A (c) = (A) + 

then we clearly have put the obtained quasi-periodic solution into 
our original system (1.7"). In this real analytic case we solve (1.25) 
using the implicit function theorem: for e=0 the equation has solution 
c=co and the non-degeneracy condition (1.18) then assures the existence 
of a (local) analytic curve c=c(/e) with c(0) = co. 
This proves theorem A". 
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c. This section is concluded by giving a proof of theorem C", applying 
[12], theorem 5. For this purpose we introduce the Lie algebra L consist­
ing of all vector fields 

Z _2 
j=0 

(F (x,y) 3x. G.(x,y] 3 
3y. 

where x= (x^/X^x^ and y= (y^ty^ty^)' a11 functions have period 2iT in x 
and are analytic in all their arguments in a neighbourhood of the 3-torus 
Y= 0. 
Also we consider the Lie subalgebra L of L which contains vector fields Z 
as above which preserve the volume in the sense of proposition 1.2. 
Moreover L cz L shall denote the Lie subalgebra of vector fields which 
have the extra verticalness property that = = 0. 

Observe that the perturbation in (1.19) and (1.15"), modulo an translation 
of y= (vQ,ŷ ,y2) over the vector c, is an element of £. 
Also compare (1.23) and (1.24). 

To Z € L we associate its linearised version 

(Z)1 = F(x,0] 9 3x {G(x,0) + G (x,0)y] 3y 

where Ĝ  denotes the derivative of G in the y-directions. 
Thus we obtain another Lie subalgebra of L. 
Define L = L, fl L and L=LA0 L. 1 1 1 1 
Note that contains the infinitesimal generators of the transformations 
of type (1.21). The corresponding Lie group of transformations is denoted 
by Gj. Similarly we have associated with . (Cf. the remark made after 
theorem C".) 
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In [12] a general theory is developed for "arbitrary" Lie subalgebras of 
L. We will restrict to the volume preserving case L and also consider one 
of the relevant vertical subcases L. The following considerations are made 
for L only, but hold for L as well. 

Now consider D = U T - f belonging to L , and the commutator ox l 
0 : Z H- [D,Z], the Lie bracket of D and Z. This commutator defines 
a linear map L1 -»• L^, and its restriction to is a linear map 

Let N and # denote the nullspaces of these respective maps: 
N = N fl L^. The fact that u) satisfies the condition (1.8") implies 
that N has finite dimension. 

L1 -> L1 

A typical element of N has the form 

A э 
Эх (y + My) 3 

3y 

X and y being constants in ZR , and M a constant 3x3 matrix. More­
over, if the range O(L̂ ) is denoted by R and if 9{L^) = R^, then 

N 9 Rx = Lx and iV © R = L 

where ® denotes the direct sum of vector spaces. 

According to [12], theorem 5, under these circumstances we have 
that for each vector field 

{ça + e f (x,y,e) 3 
3x 

e g(x,y,e) 3 
3y 

of type (1.19), belonging to L, a unique modifying 

X(e] 3 
3x {y(e) + M(e)y} 3 

3y 
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exists in N, such that the sum of these two is conjugate to the nor­

mal form (1.20). The conjugacy is a transformation in G^, so of type 

(1.21) . 

Our proof of theorem C" now is completed by the observation, that 

modifying terms in N have y(e) s 0 and M(e) s o. This is easily seen 

from proposition 1.2. Note that we suppressed the parameter c. 

This formal argument will be illustrated by a brief digression 

into the method of Moser's proof. 

We have to find u and v̂  from (1.21) and X from (1.15"), such that 

(1.21) conjugates (1.15") and the normal form (1.20). 

Expanding formally as a power series in e we write 

(1.26) 

u(Ç,e) u1^) + 0(e) 

v(£,n,e) = v*(Ç) + vSçJn + 0(e) and 

X(e) eX1 + 0(e2) 

On the level of first order terms the conjugation property now can be 

expressed as 

(1.27) 

1 
Û Ü) 

f(£,0,0) + X1 . 

1 
U^Ü) 

g(S,o,o) 

1 
U^Ü) 

gy(£,o,o) 

If one writes for the perturbation, the conjugation and the modify­

ing term - up to higher order terms -

(1.28) 

F = f(£,0,0) 
9 

er 
(g(£,o,o) g (£/0,o)n: 3 

3n 
U uX(0 3 

3£ 
(v1^) V^On} 3 

3n 
N x1 3 

3£ 
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then the equations (1.27) take the form 

(1.29) [D,U] = F + N, 

which is suitable for the Lie algebra talk we held before. 

Note that indeed [D,N] = 0, meaning that NE N. To discuss the above 

equations we expand in Fourier series 

f(£,0,0) 

j ta 3 

f e L V,£ etc. 

and write formally 

u(£) 
v €52* 

1 
u 

i(v,Ç) 
e etc. 

Now (1.27) takes the form 

(1.30) 
^ 1 i(v,u) u f̂ , i(V,ü))V̂  V i (v,w)V g 

y\j 
for v ̂  0 and 

0 = f + A . 

Note that by proposition 1.2 we have gQ = 0 and ĝ Q = 0. Condition 

(1.8') yields unique real analytic solutions 

V 1 i n 
v ̂ 0 

G 
i (v.oi) 

i(v,£) 

i(v,£) 
V 5̂0 

gyv 
i(V,(x)) 

i(v,£) 
e 

and a real analytic 

u1^) 1 
uo v ¿0 

G 
i(v,u>) 

i(v,£) 

where u* remains arbitrary. 

Form proposition 1.2 it is evident that for F € L also U € L. 

Similarly we have that U € L as soon as F € L. 
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Finally we conclude from (1.30) that 

л = -f 

Note that from (1.30) it follows that the operator 0 has eigenvalues 
i(v,u>) , v€ Z3. 
Also note that if we choose u* = 0, then the solution u* (£) also 
becomes unique and the whole problem has a unique solution N € N, 

U € R. The desired transformation (1.21) in now is obtained by 
taking exp(eU) . Cf. [12], §5c. 

If one proceeds in this way, determining coefficients in a 
power series expansion in e,a formal solution is obtained for the 
modifying term X and the conjugation (1.21). A convergent construction 
can be performed as in [12], but in chapter 2 we shall present such a 
construction with less assumptions, in order to prove theorem C. 
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CHAPTER 2 - PROOFS 

§ 2.1 Introduction 

The main problem is the proof of theorem C concerning system 

(1.15). We recall that x = (x^x^x^, y = (y ,y fy2) and that the 

righthand side of (1.15) is 2-iï-periodic in x̂ , x̂  and x^. We will 

consider two cases for this system: 

Case I: the system is volume-preserving, i.e. (cf. proposition 1.2) 

2 

j=0 

3f. 
3x. 
J 

3g 
ay. 0 

2TT 

0 
^0 

2ir 
dx1 

2TT 

0 
dx2g(x,y) 0 

Case II: the system is volume-preserving and ĝ  = ĝ  = 0 (vertical-

ness condition). 

In the language of Lie algebras (cf. § 1.4c)) it is easy to verify 

that the vector fields corresponding to systems in case I and in 

case II form a Lie algebra L and L respectively, where L c: L c L. 

Note that our differentiability assumptions are less than those in 

§1.4. 

Theorem C will be proven by the construction of a coordinate 

transformation U : x = u(£,n), y = v(£,n) which transforms system 

(1.15) into a form similar to (1.20): 

(2.1) £ = a) + cp(£,n), n = i/>(£,n) 

where cp(£,0) = ip(£/0) = 0. This yields a quasi-periodic solution on 

an invariant torus of (2.1), and therefore of (1.15), corresponding to 

n = 0. The conjugacy U will be volume-preserving, u - £ and v will be 
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2ir-periodic in £Q, Ŝ , £2' whereas in case II also = n̂ , = n2, 
Note that now (2.1) will also be volume preserving and in case II it will be 
vertical as well. 
Compare § 1. 4c. We do not express this in Lie-canguage, because U is only 
C1 and (2.1) only C°. Moreover we may choose the conjugacy to be of 
the special form: 
(2.2) x = £ + u(£>, y = n + v(£) + V(C)n 

where u and v are 2ir-periodic 3-vectors and V is a 2TT-periodic 
3 x 3-matrix (compare §1.4). Note that the condition that U is volume 
preserving implies that the averages of v and V over the set 0 <_ <_ 2TT, 
j = 0,1,2 are zero. 

The construction of this coordinate transformation proceeds via 
an iterative procedure. In each step a result of the following type 
will be applied: given a differential equation which is a perturbation 
of x = a), y = 0 with certain bounds on the perturbation terms, one can 
construct a coordinate transformation of the form (2.2) 
which transforms the given differential equation into another which 
belongs to L or L and is a perturbation of £ = 0), n = 0 with certain 
smaller bounds on the perturbation terms. This result should be such 
that it is possible to set up a sequence of coordinate transformations 

^1' ̂ 2' ̂ 3' "' ' such that 0 ^2 ° ° ̂ n conver9es to a trans­
formation U of the form (2.2) which conjugates (1.15) with (2.1). 

The transformations U reduce in particular the main terms in 
the righthand side of (1.15) and its iterates, i.e. the terms corres­
ponding to a = a) + X, and these transformations will depend on the value 
of a: Therefore the coordinate transformation will transform x, y and the 
parameter a to coordinates £, n and a parameter a. The limit trans­
formation U will reduce a = o) + Xtoa = u). Compare Moser [12]. 

109 



B.L.J. BRAAKSMA, H.W. BROER 

Because of the presence of small divisors these requirements 
restrict severely the type of result mentioned above and they are the 
reason that it is of a very complicated nature. The iteration step 
will be formulated as theorem 2.4'in §2.3. In §2.2 some auxiliary 
results needed for the proof of theorem 2.4 are give. 
In §2.4 the iteration procedure is carried out in order to prove 

theorem C. In §2.5 and §2.6 we apply theorem C to prove the theorems 
A and D respectively. 

§ 2.2 Preliminary lemmas 

In this section we discuss three auxiliary results, one on a periodic 
differential equation, one on a smooting operator and one on the exponential map. 

a. Let k, n € IN and let g € Ck(IRn,IR) be 2IT-periodic in 
Ô'̂ l' ***' ̂ n-1* Let ̂  denote tne mean of 9' i.e. 

[g] l 
(2*)n 

2TT 

0 
d̂ 0 

2ir 
0 d^n-l^> 

moreover |g|̂  will denote the C -norm of g, cf. § 1.4. Consider the 
differential equation 

(2.3) u to g(S) 

where to is an n-vector satisfying the small divisor condition: there 
exist positive constants y and T such that 

(2.4) (j /03) Y j —x for all j 6 E {0] 
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Compare (1.8). Here u_u) abbreviates 
n-1 
i=0 b 3u 

3u 
We require that 

u € C (]Rn ,3R) Now we have 

LEMMA 2.1: 
Let the above assumptions be satisfied with k > n + T and 

[9] = 0. Then there exists a unique 2TT-periodic solution u of (2.3) 
with [u] = 0. Let Lg denote this solution. There exists a positive 
constant K, independent of g and y such that 

|Lg 0 K Y g k 
PROOF; 

We have g(£) 
j€Z5 j ei(j,S> where 

Jj [g(5) e-l(j,C): 

Since g € C we may integrate by parts k times to obtain 

"'s k 
n 

J -k I x4 
If we write u(£) = X û  ei<j.e> then (2.3) implies that for all j: 
i(j,o))u_. = g_.. Since gQ = [g] = 0, all u_. are uniquely determined if 
we require [u] = 0. Now 

u. 3 gi 
(j /0)) Y n er T-K g k if j 7* 0. 

Since 
ji<o 

j T-k is convergent for k > n + x we see that 

(2.5) (Lg ) (£) 
TK 

gi 
i(j ,U>) Lg ) (£) 
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is the unique solution of (2.3) with [u] = 0. Moreover 

|Lg 
0 

K 
Y 

|Ç 

where K = n 
j#0 

j 
!T-K 

QED 

Compare § 1.4, formula (1.30) and what follows. 

Also compare e.g. [11]. 

b. Following Moser [11], § 3b, we use a smoothing operator. 

Let n,m€lN,£>0,N>l and b. < c, M. > max (1,2/. . J 
3 3 3 j j 

for j = 0, 1, ..., m-1. 

Let A = { (x,y) € 3Rn x IRm | b̂  <_ <_ ĉ , j =0, 1, . .., m-1} 

and A, - {(x,y) 6 3Rn x Bm| b. + MT1< y. < c. - M?1, 0 < j < m-1 
1 ' 3 3 - 3 - 3 3 - -

Then we define the smooting operator 

T : C(A, ]Rh) c (A , m11) 

where h € U , by means of a convolution as follows: 

Let x € C°° (3R,EO be such that x(x) = 0 if |x| 1, and 

+00 

—oo 
xPx (x) dx 

1 if p = 0 

0 if 0 < p < A. 

Then define 

Y (x,v) 
n-1 

j=0 
Nx (Nx. 

m-1 

j=0 
M. x(M.y.): 

for (x,y) € lRn x Mm. Finally, if f € C(A, IR ) , we define 

(Tf)(x,y) 
A 

X(x-£,y-n) f(£,n) dCdn , 
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for (x,y) € 
Thus T leaves polynomials in xQ, x^f ..., Kn_±r yQ, y^, vm_i' of 
degree less than I in each variable, unchanged. 
If f is 2 -periodic in x̂ , x̂ , x̂  ̂ , then the same holds for 
Tf. One now may prove 

LEMMA 2.2: 

If f € C(A, IR ) , then 

3 51 
c1 

3x '1 3y "2 
Tf (x,y) c£ N ̂

1 
M 2̂ f 0 

for all multi indices £̂  and £2 and (x*y) ^ 
Here c is a constant depending on x, n/ m and C = (Cj'^ only-

If f € C (A, 3R ) , then 

(f - Tf) (x,y) c SUP 
£1 C2 £2 

N 
51 M 

£2 
A 

£1 52 

KP 
Ci 

3* 
2̂ f 

if (x,y) e Ar 
Here c is a constant independent of f, M and N. The norms |•| are 
those in C(A, IRh) . Compare § 1.4. 

a a0 a -1 For M = (M_, M4 , ..., M .) and a € ZSm we write M = M_ . ... M m. . 0 1 m-1 0 m-1 

For aproofsee [ll], §3b. For use later on, we note the following 
corollaries of both lemmas: 
Assume n= 3,m= 6,f€ C(A, 3R ), f is periodic in the first three 
scalar variables with mean [f] = 0. 

Let k > x + 3 and let L be defined as in lemma 2.1 with n = 3. Then 
there exists a constant K > 0, independent of f and y such that 
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(2.6) I (LTf) (xfy) I < Y_1 KNk|f| , for (x,y) € A 

If, moreover, C = (€w€9)# then there exists a constant K(£) > 0, 
independent of f and y, such that 

(2.7) 3 
Cl ^2 
3x 3y 
Cl 2̂ 3x 3y 

(LT f) (x,y] . Y K(C) N 
x,y] 

Cl ^2 
3x 3y 

for (x,y) e A . 
Formula (2.6) immediately follows from the lemmas 2.1 and 2.2, where­
as for (2.7) we use that that the differential operator Cl ^2 

3x?1 y?2 and L 
commute 
(The latter easily follows from 2.5.) 

c. We need one more technical result in proving theorem C. 
As we indicated in §2.1 in this chapter the Lie algebras 
L c: L c L consist of C vector fields, where I will be specified 
later on. Compare § 1.4 where everything is real analytic. We recall 
the notion of the exponential map exp, which associates to a vector 
field its time-1 flow. Observe that exp is well-defined in L̂ . We 
have exp:'L -> G^r while exp (L^) c G1 and exp(L^) c G^. 
Here G1?G2 and G^ are the Lie groups, corresponging to L^iL^ and l1 , 
consisting of C -diffeomorphisms of type (2.2). Compare §1.4c. 

Our last lemma reads 

LEMMA 2.3: 

There exists a positive constant such that for all X G 

and all 1 _< p <_ I : 

|exp X - id I < KA |x| 
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This result can be proven usin̂ JGronwall1s lemma. 

A straight forward extension of this lemma holds if the 

vector fields depend smoothly on some extra parameters. 

§ 2.3 A transformation theorem for the iteration 

In this section we consider a transformation theorem that will be 

used to generate the Newtonian iteration procedure for the construction 

of the conjugacy in theorem C. Compare e.g. [ll]. 

Let F be the system 

F 
x = a + f(x,y,a) 

y = g(x,y,a) 

where f and g are of class C (I € ]N ) with range IR and domain 

S = IR3 x { y € ]R3 | |y| £ j-} x {a € !R3 | \a - w\ <_ y e}, and 2ir-periodic 

in xQ, x^ x2. Note that F has the form (1.15). 

Here P, y and e are positive numbers, while u> € TR3 satisfies the 

small divisor condition (1.8). The number x in (1.8) lies between 

3 and 4. 

We recall the fact that F is supposed to belong to L (or L). 

We shall transform F by means of a change of coordinates U 

U 

x = £ + u(£,a) 

y = n + v(£,n,a) 

a = a + ü)(a) , 
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where v(£,n,a) = v(£,a) + V(£,a)n, u, v and w are 3-vectors and V 
oo 3 3 

is a 3 x 3-matrix of class C in (£,a) if £ € 3R , a € 3R , 

|a - to| _< y £+, which are 2ir-periodic in E,^, E,^. Here e+ is 

some positive number, to be specified later on. 

Again recall that U should respect the nature of F. 

The system F is transformed by U into the system $: 

O 
£ = a + <p(S,n,a) 

p(S,n,a) 

defined on a set S+ = TR x {n € IR | |n. | <. p~ } x {a € | |a- u)| £ Y e), 

where P+ > 0 is to be specified later on and where cp and i|> are of 

class C on S+, 2ir-periodic in £Q, ̂  and £2* We write $ = U*F 

Note that F € L (L) and ¿/6 G (G ) imply that $ € L (L) . 

The perturbation terms f, g, cp and I|J will be estimated by several 

parameters which we recall form §1.4 (see (1.16)): 

(2.8) 

Let 6 > 0, e = 6°, N = 6 r, P = 6"s Q = 6"q and M = 6 t 

where a = 0.93; r = 0.1; s 2; q = 0.95; t = 2.01. 

Let 6+ 6K where K = 1.03. 

Also we set e+ = 6+r N+ = 6+r etc. 

We then have 

THEOREM 2.4 

Let Y* > 0 and £ = 363. There exists a positive number 6*, only 

depending on y*, with the following properties: 

If 0 < 6 < 6* , 0 < y < Y* and F € L (L) satisfy the above assumptions 

with 
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(2.9a) |Nf(x,y,a)J Pg(x,y,a) Y N 6 

(2.9b) C1 Z7 Co 
|d *D 2D 3 
1 x y a 

Nf(x,y,a) n W 3 D D D 
x y a 

Pg(x,y,a) 

Y 
1 C 

E 
C fi 

P Ç2 1 
Ç3 

for ail (x,y,a) € S, and tri-indices ç̂ , £0, £3 witn 

I çl I + I ç0 I + I ç3 I = A, then a C°° transformation ;U € G 1 (Ĝ ) can be 

chosen such that $ € L (L) satisfies 

(2.10a N+ <p(Ç.,n,a) P ij> (£,n,oi) YN+6+ 

(2.10b) D D £ n a N+(p(£,n,a) n W 3 D D 
£ n a 

YN+6+ 

Y 
C is 

C C 
2 

2̂ 
2 
C3 

for all (£,n,a) € S+ and tri-indices ç̂ , ç0, with 

IC1I + |c2| + |c3| = A, while U satisfies 

(2.11) 

|w(a) + 0 - d)| YN+6+ 

ID/D 2 u(E,a> K 1 
7 C (Y r 1 

£9 
(5 

I Dr D v(E,a) K N 
7 *1 1 

P Y 
-1 
1 

C 
1 

nV2 V(Ç,o) K N 
*7 «1 

M N P 1 
-1 
Ö4 

1 6 

for all Ç € IR , a € 3R with |a - a)| £ y e+, and tri-indices ç̂ , £2< 

The constant K only depends on y* and ç = (çir-Ç9). 
c 1 z 

PROOF 

The transformation £/ conjugates F and $, which can be expressed 

as 
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(2.12) 
(id + D~u)<P + D.ua = w(a) f (£ + u, n + v, a + w) 
(id + V)ip + {dSj + D^vn) (a + Cp) g(S + u, n + v, a + w) . 

We have to find u, v and w such that cp and i|> are small compared 
with the bounds on f and g. In stead of determining U € G ̂ (^^) we 
shall construct an infinitesimal generator 

U £ L ̂ LJ and then we define U = exp (U) 

We apply the same procedure as in §1.4. We determine U from 
(1.28) and (1.29) with the following substitutions: U, N and F from 
(1.28) are replaced by 

U = u(£] 3 
35 {v(£ V(£)n) 3 

3n 
w(a 

3£ 
and 

(Tf) (E.O.o] 3 
3£ 

(Tg) (£,0,a) D (Tg) (£,0,a)nj 3 
3n 

respectively. 
Here T is the smoothing operator of § 2.2, operating on the variables 
x =(xQ,x1,x2) e IR3 and y = (y0,y1,y2,aQ,a1,a2) € IR6 (so y3 = aQ, 
y4 = , Y5 = a2) with the choice 

(2.13) 
I = 363, N N+, c -b. 

3 
p-1 M. 

3 
M = 6 t 

if 0 j 0 and 
c. 3 0) . 3 Y£, M 3 Y£, M Y_1Q C+1 j 5 

So we determine u and v such that 

(2.14) 
D u(£,a)u: (Tf)(£,0fa) • to(a) 
D v(£,a)u) (Tg)(E,0,a) 
D V(5,a)w D (Tg)(£,0,a) 
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Observe that, according to lemma 2.1, the equations (2.14) are sol­
vable if the right hand sides have mean [»]= 0. Since F € L , we 
have that [g] = 0 and therefore [Tg] = 0 and [D̂ (Tg)] = 0. So the 
equations for v and V are not problematic. 
The equation for u is somewhat more subtle: the "parameter" w(a) is 
necessary to balance [(Tf)(.,0,a)]. Compare § 1.4, formula (1.27). 

So first we set 

(2.15) w(a) = -[(Tf)(.,0,a)], i.e. a = a + [(Tf)(.,0,a)]. 

We consider this equation for |a - u)| < ye and look for solutions in 
|a-ü)|< y(e - Q~ ) 
If |a-w \ <_ y(e - Q+ ), then, according to lemma 2.2 and (2.9A) we 
have | [ (Tf) (. ,0,a) ] | _< Y<$CQ- NOW if 6* is sufficiently small then 

(2.16 CO 1 Q+1 D for 0 < 6 <_ 6* 

in view of (2.8). Hence 

|[(Tf) (.,0,a)]| < I a - a| if |a - a>| = y(e - Q ) • and 

|a -o)| < ye 

By an extension of Rouché's theorem (cf. Deimling [6A, p.45]) the 
function a H- a - a + [(Tf)(.,0,a)] now has at least one zero in the 
disc |a-w| <_ y(e - Q+1) for any a with |a —CJ| <_ ye+. So (2.15) has 
a solution in |a-u)| <_ y(e - Q+*) as soon as |a-a)| _< ye+ and the 
first line of (2.11) follows. 

Lemma 2.2 and (2.8) imply that for |a - a)| <_ y(e - Q *) also 

|Da Tf(x,0,a)I c Q 6 

119 



B.L.J. BRAAKSMA, H.W. BROER 

Here and in the following numbers c, c, ĉ , K̂ , k1 etc. 
always denote constants independent of f, g, 6 and y. 

From (2.8) it follows that |D_Tf| < ̂  if 0 < 6 <_ 6* , with S*~ 

sufficiently small and positive. Hence (2.15) has at most one 
solution in |a. — a)| < y(e-Q 

Combining this with the previous result we see that (2.15) has a 
unique solution in the disc |q - u>| <_ y (e - Q+*) if |a - o>| <̂  Ye

+* 
CO 

This solution is C by the implicit function theorem, because Tf 
CO 

is C . We now solve (2.14) using lemma 2.1 and (2.15), (2.16). It so 
follows that for |a - w| <_ ye+ there exists a unique solution 
U of (2.14) with [u] = [v] = 0 and [v] = 0, which is 2TT-periodic 
in £Q, $1, $2,£3^ and of class Coo . 
As in § 1.4 one shows that U € L ̂  (L ). 

From (2.8), (2.15) and the corollaries of lemmas 2.1 and 2.2 we 
may derive the estimates (2.11) where u, v and V are replaced by 
u, v and V respectively. 
In view of lemma 2.3 this yields (2.11) in its original form. 

Next we prove (2.10a) for $ = U*F with help of (2.12), (2.11) 

and (2.9). From (2.12) and (2.14) we deduce 

(2.17) <P = (id+ D u) 1 -D̂ ua+ D̂ u(̂ ,a)u) + f (£ + v,n + v,a) - (Tf) (£,0,a) 

where ip = <p(£,n,a), u = u(£,a), v = v(£,n,a), a is determined by 
(2.15) and where (£,n,a) € S+. 

If (£,n,a) € S + then we have by (2.11) and (2.8) 
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(2.18) |v(£,n,a)| K^N7  

О + 
N 
P öd 

M 
p <-L 

- P 
if 6* is sufficiently small positive and 0 < 6 < 6*. 

Hence 

(2.19) In + v(£,n,a)I P-1 m-1 if (£,n,a) € S. 

and 6* is sufficiently small. So the function f(£ + u, n + v, a) i 

(2.17) makes sense if (£,n,a) € S+. 

From (2.8) and (2.11) we also deduce that 

(2.20) I(id + Du)"1 2 if a - a) R* 

and 6* is sufficiently small positive. 

Now we consider 

(2.21) -D ua + D UÜ) = -Du (a - <D) + D (U - U)Ü> . 

The first term can be easily estimated using (2.11) and (2.8): 

(2.22) |D u(ü) - a) KtN8 YSE 10 Y6 Lf w - a ye 

and if 6* is sufficiently small. 

In order to estimate the second term we consider exp (tU) for 

0 _< t 1 and therefore introduce the following notation, which 

suppresses a: 

(exp (tö)) .5, 
TV 

x(t,£) 

k y(t,£,n) 

+ u(t#5) 

n + v(tfE,n), 

so u(£) = u(l,£) and v(^,n) = v(l,£,n). 

We then have that x(t,£) and y(t,£,n) satisfy the following diffe-

121 



B.L.J. BRAAKSMA, H.W. BROER 

rential equations 

(2.23) 

_d_ 
dt x(t,£) = ù(x(t,£)) x(0,£) *= £ and 

_d_ 
dt y(t,£,n) •• v(x(t,5)) .v(x(t,£), y(t,£,n)), y(0,£,n)=n 

Since u(t,£) 
t 

0 
u(x(sr̂ ))ds, it easily follows 

(2.24) 

|u(t,£) 
*l=lo 

for t > 0 and 

|u<£) u<£) I 2 ulolul, 

From (2.23) we derive 

(2.25) d 
dt E g u(t,C) 

D ù(x(t,£)) (id + D u(t,£): 

which by Gronwall's lemma yields 

|D u(tf£> a|u|1 if 0 < t < 1 

Now multiply (2.25) on the right by to and use the fact that 

|D U(X)CO| cye 

(a consequence of (2.14), (2.15) and (2.9)). 

This yields by Gronwall: 

(2.26) |D-u(t,S)to| CY<5 if 0 < t < 1 . 

Now by (2.25): 

D (u- u) (£)to 
1 

0 
{D u(x(t,£)] D u(£) } co dt + 

1 

0 
Dxu(x(t,£))D u(t,£) todt . 
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The second integral, with help of (2.26) is easily estimated by 

clu^ Y<5. 

For the first integral we use (2.14), (2.15) and the mean value 

theorem. This yields as an upper bound 

|(Tf)x 
1 

0 
|u(t,£)Idt 

"l'U5LO 

by (2.24) and lemma 2.2. 

We now conclude 

(2.27) D (u - u) (Ç)u>| 10 Y6+ 

using (2.8), (2.9) and (2.11) and the fact that 6* is small. 

Now consider the last part of (2.17). 

We have 

(2.28) 

If(Ç + u. n + v, a) (Tf)(£,0,a) 

|f(Ç + u, n + v, a (Tf) (£ + u,n + v, a) 

I(Tf)(Ç + u,n + v, a) (Tf)(£,0,a) 

Using lemma 2.2 and (2.9) we deduce 

(2.29) f(£ + u, n + v. a) (Tf)(P + u, n + v, a) 

cy sup I* 
VN 

C 1 C C 
1 

3̂ 1 
1 

r 
2 

r 
0 

1 CI E N+ 
2 

if |n + v| £ P X-m"V |a- u)| <_ y(e - q"1) . In the last part of 
D N * Q N (2.29) we used —• < — and -f- < — which is a consequence of (2.8) . M — N+ Q+ — N+ 

Because of (2.19) we may apply (2.29) with u = u(£,a) , v = v(£,n,a) 

if (C,n,a) € S . From (2.8) it follows that the right hand side of 
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(2.29) is o(Y<$ ) as 6 + 0. 
To the last part of (2.28) we apply the mean value theorem and 

then use lemma 2.2. Thus we get 

(2.30) 

|(Tf)(£ + u,n + v, a) - (Tf)(£,0,a)| < 

I |Dx(Tf)| |u| + |D (Tf)| |n + v| < 

. c y& (N Iu| + N|n + v|; 

if |n + v| £P"1-M"1, |a - to| <_ (e - q"1) . We apply (2.30) with 
u = u(£,a), v = v(£,n,a) and a = a+w(a) for (£,n,a) € S+. 
Cf. (2.19) and (2.11). 
Using (2.8), (2.11) and (2.19) we deduce 

(Tf) (£ + u, n + v, a) - (Tf) (£,0,a) = o(y6+) as 6 -> 0. 

Combination of this result with the estimate on (2.29), (2.28), (2.27), 
(2.22) and (2.17) shows that 

(2.31 |<P(€,n,a) | 1 \ Y<5. if (£,n,a) e S+ , 

provided that 0 < 6 _< 6* with 6* sufficiently small. 

We now indicate an analogous estimate on ty, which together 
with (2.31) will imply (2.10a). 

From (2.12) and (2.14) we deduce 

(2.32) ip = (id + V)"1 {-(D v + D^) (a + cp) (Drv + DrV )to € £ n 

+ g(£ + u, n + v, a) (Tg)(£,0,a) - D (Tg)(£,0,a)n> , 

where = ij>(C,n,a) , cp = cp(£,n,a) , u = u(£,a) , v = v(£,n,a) , 
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v = v(£,a), V = V(£,a), v = v(£,a) and V = V(£,a) . 

As before we have from (2.11) 

(2.33) I (id + V) I < 2 if I a - a>| <_ ye+ 

and 6* is small. 

From (2.11) and (2.31) we deduce 

(2.34) (D̂ v + D̂ Vn) (a + <p + to) I K.N N P 6(1 M X 
P+ 'S + 2 V 

if (£,n,a) £ S+. Using (2.8) we may show that this bound is 

Y N P"1 6 o(l) as 6 -v 0. 

We now have to estimate 

D (v - V)Ü) D (V - V)no) 

This can be achieved analogous to the estimate (2.27). We now use 

the second part of (2.23) which falls apart into 

d 
dt 

v(x(t,£)) v(x(t,£)) and 

El 
dt 

V(x(t,E)) V(x(t,£)] 

We so obtain 

(2.35) D̂ (v - v)o) D (V - V)noj| 1C Y N P"1 (5 

if (£,n,a) € S and 6* is small. 

In order to estimate the last part of (2.32) we consider sepa­

rately several differences. From lemma 2.2 and (2.9) we derive si­

milarly to (2.29): 
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(2.36) |g(£ + u, n + v, a) - (Tg)(£ + u, n + v, a)| c Y N A N 
P 

if |n + v| < p -1 - M~1, |a - u| _< y(e - Q+ ) Because of (2.8) the 
righthand side is y N+P+ 6+o(l) as 6 0. 

An application of the mean value theorem, lemma 2.2 and (2.9) 

may be used to show that 

(2.37) 

I(Tg)(£ + u, n + v, a) (Tg) (£,n, a) | 

|Dx(Tg)||u| + |Dy(Tg)| v C 1 r m u MIV 

Cl | Y«(N+|u| M|V 

if |n| and |n + v| <_ p"1 - M 1, |a - cn| < y(e - Q X) 

Finally we have by lemma 2.2 and (2.9) 

(2.38) 

|(Tg)(£,n,a) (Tg)(£,0,3) D (Tg)(£,0,a)n| 

5h|2 sup 
C 

3nC (Tg)(?,n,a) | C | - 2, n C|- 2 

c|n|2 M2|gl c|n|2M2|Y6 

if n P-1 a - a) Y(e - Q,1) 

Now let u = u(£,a), v = v(£,n,a) where |n| < P , 
|to - a| <_ ye+. Then |n| < P~ - M~ , |n + v| <_ P~ - M~ (cf. (2.19) , 

|a - o)| £ y(e - Q+*)/ and u and v satisfy (2.11). Now combine (2.32) 

with (2.33) - (2.38), and take into account (2.11) and (2.8). Then 
we may derive 

(2.39) i/> (£/n,ot) _1 
2 

N+P+ if (£,n,a) € S Es 

if 6* is sufficiently small positive. With (2.39) thus (2.10a) follows. 

126 



QUASI PERIODIC FLOW 

We next consider (2.10B). As in Moser 111] we blow up F, U and $ 
by x = Nx, I = N £, y = P y, n = P n, a = Y_1Q a, a = y~1Q a. Let 

f(x,y,a) * N+f (— 
J. 

y 
p+ 

a 
{я1 

g(x,y,a) p+g X 
N4 P4 a 

q etc. 

Then we get 

F x 
N 

+ 
Q 
a f(x-y.a). y = g(x,y.a) 

Ü x I + u(£,a), y n + v(£,n,a) a a + w(a) 

i I = Yn+ 
q 

a + (p (£,n#a) , n = iK£,n,ci) 

From (2.8) and (2.9) we deduce 

(2.40) 

IF |g| 
P 
+  
P 

iNfl pg| P NYÓ _< Y, 
S S ^ 

| D ~ W 3 R 

x V a 

D~ D~ D~ g x y a YT 
P 
+ 
P 

N N 
l 

Y 

if $1|+|$2|+|$3 a |y| 1 a Q+W 
Y 

q+e 

Here Q e >_ 1. From this we may conclude that 

If(x,y,a) 
l 

|g(x,y,ä) l V 

where l.l denotes the C -norm on |y|< 1, la 
q+w 
Y 

<Q+E, Kl 

is a constant depending on I, but independent of Y AN(* 6(cf. Moser 

[11]; we use a Taylor approximation of order i and obtain bounds for 

the Taylor coefficients from this and (2.40)). Moreover, we may 

deduce from lemma (2.9) and (2.8) 

127 



B.L.J. BRAAKSMA, H. W. BROER 
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IN (Tf N 
+ 

p 
+ 

Y a 
^ + 

It* P (Tg) VN 
+ 

1_ 
p+ 

a 
^ + 

It 

*- I (Tg) 
y N + 

P 
+ 

Y a 
^ + 

t < KY(N+|f|0 p + k l 0 ) i v 

Note that since $ = £/*F we have to consider the C£+1 -norm of the 
transformation U. But u l+1 and |v| l+1 

are bounded because of 
(2.11) and (2.8); the bounds are independent of <5 and y. 

Now cp and \j) are determined by (2.17) and (2.32) so 

<p = (id + Dpu)"1 'D-U N (a) - a) f(C + u, n + v, a) 

- N+(Tf $ 
N 0, Y a 

^ + 

and 

4> = (id + V) 1 Dpv(P (a - a>) P 4-
N 
+ 

CP) 

+ g(| + u, n + v, a) P (Tg) $ 
N c,y a 

^ + 

- (Tg) y 
$ 
N 0, Y a n n } 

Using the estimates above we see that -1~ Y <P and Y-1w have C -norms 
which are bounded by a constant independent of y and 6. Hence 

Cl 52 ^ D D N 1 E, n a 4 4>(£,n,a) «1 *9 ^ 
D D D P 
€ n a + 

^ (u,n,a) 
I c J | c , | I c J 

£ C N+ s+ Q+ Y 
H c J 

If 6* is sufficiently small positive, then N > C and we obtain (2.10D ). 

QED 
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§ 2.4 A proof of theorem C by iteration 

In this section we shall prove theorem C, applying theorem 2.4 
repeatedly to a system F€L(or L) of, the form (1.15), in order to set 
up an iteration process which reduces the error terms. For a global 
description see § 2.1. 
Note the equivalence of (1.17) and (2.9). 

Proof of theorem C: 
We start the iteration process with F̂  = F. 
In stead of 6, e, P, S etc. we write 6̂ , ê , P̂ , etc. We apply 
theorem 2.4 and denote S+, U and $ by Ŝ , and F̂  respectively. 
We may apply theorem 2.4 again to F̂ , since F̂  satisfies the assumptions 
on S with 6 = $I = (<$Q)+ = SKQ- Thus we obtain a transforamtion v2 and 
a conjugate system F0 defined on S^. Proceeding in this manner we 
obtain at the ntnstep 

U 
n 

x = £ + u (£,01) 
y = n + vn(C,a) + vn(£,a)n 
a = a + w (a) n 

and 

F 
n 

£ = a + cp (£,n,a) n 
n = i|/ (C,n,a) n 

U and F are defined on 
n n 

S = IR3 x {N € ]R3 I |n| < P"1} * {a € m3 I la - al < Y e } , 

n n where P = PK and e = eK . n n 
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Observe that F € L (or L) and that U € G, (or GJ for all n. n n i l 
From (2.10) we deduce that 

(2.41! <P (£,0,o>) 0 and i|> (£,0,oj)-*-Oasn->~. n n 

Now consider U = U.OU^O 0 U ,which maps S into S = S. We may 
n l 2 n ^ n 0 

write 

U 
n 

x = £ + u (£,a) 
y = n + v (£,a) + V(£,a)n n n 
a = a + w (a) . n 

Here 

I I ^ N u = I u., v = I (id + V, n . . j n . , 1 1=1 1=1 
(id + V.^) v. 

V = (id + VJ n 1 (id + V ) - id n and 

w = w„ + w0 + n 1 2 + w 
n 

where the arguments in the functions have to be chosen properly: if 
u = u (£,a) then u. = u.(£.,a.) with (£.,a.) = U}l) (£,a) . Hence n n 3 3 3 3 3 3 3 n 

(2.42) 
luj 1 1 U . I , I V J i=l J 

n 3-1 
I ( n 
i=l h=l 

id + Vh|) |v | 

|v I ' n' 
n 
I 
j-1 

*n(l + |v |) and |w I < I |w. 

Now apply (2.11): 

(2.43) 
[ W I <_ y e = y e 

|D| un(C,a)| K$(N7+|$|s)Kn etc. 

Hence w (03) , u (£,o)) , v (£,oj) and V (£,oj) converge as n °°, uniformly n n n n 
in £, to ŵ , uoo(£), voo(£) and Voo(£) respectively. 
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We now prove that also the derivative of U^r with respect to 
3 

£ and n, converges on S , where S shrinks to 3R x {0} x {co}, n n 

We have 

D U — Di/ .Di/,.. ., .DU , n 1 2 n 

where 

D U 
n 

id + D- u £ n 0 

Dr(v + V n 
i E n n 

id + V 
n 

Note that here we suppress the parameter a. So for the convergence 

of D U it is sufficient to prove the convergence of 

oo 

n=l 
(id + P J) n where J 

'1 

l 1 j 
and 

wn sup 
S 
n 

Dr u Dc V 
C n 

D£Vn 
V1 

But this convergence follows from (2.43). 

Hence Un + Uoo as n -v » for r\ = 0, a = w uniformly in £, while 

D V converges in the same sense. Since is linear in n we may 

extend Uoo to a map 

x = £ + u (5) , y = n + v (£) + V (£)n , a = w + w (ÜJ) 
oo oo oo oo 

~ c± 1 
Here u (£,u)) u (£) , v (£,OJ) v (£) and V (£,OJ) -> V (£) in C -norm, n °° n 00 n 00 

Therefore the original system F with a = o> + (to) , by means of 

£/ , is transformed into 

F 00 
£ = ÜJ + ̂ (£,11) 

n = ^(^n), 
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where ̂(£,11) and ̂ (^n) are defined and continuous on Ŝ  = 
= m3 x {n G ]R3 | |n| £ d̂ } for some d̂  > 0. 

Because of (2.43) we have ^(£,0) = ^(£,0) = 0. 

QED 

§ 2.5 A proof of theorem A 

In this section we give a proof of theorem A, using theorem C. 
In L(or L) consider a system of the form (1.7). As we remarked al­
ready after the formulation of theorem C in § 1.4, for a £ A 

we replace y by A 1(a) + y. So now y is close to zero. This transforms 
(1.7) into (1.15) with a € A, where 

f(x,y,a) = A(A *(a) + y) - a + F(x,A 1(a) + y) and 
g(x,y,a) = G(x,A (a) + y) . 

We now apply theorem C to this system. Note that we have 

(2.44) A(A"1(a) + y) - a = c9(|y|) . 

The application is straight forward. We have to restrict y to a disc 
lyl < Cy in order to fulfill (1.17a), using (2.44). 

§ 2.6 A proof of theorem D 

Below we shall prove theorem D directly from theorem C. We have 
to deal with problems related to the "small twist", see [ll], as 
indicated in § 1.4. Also we shall present a proof of proposition 1.1 

concerning the action variable ŷ . 
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a. Consider a 1-parameter family as specified in §§ 1.2 and 
1.3, which has the system form (1.6) being a special case of (1.10), 
compare (1.13). Recall that ŷ  = /\x , which has to be chosen suffi­
ciently close to zero, in order to control the size of the perturbation. 
In order to solve the problems, mentioned in § 1.4 on behalf of system 
(1.6), we first state 

LEMMA 2.5: 

For y > 0 consider the set Ky = {oj € 3R3 13 j £ ffl3 : | (j # <*>) | < Y | j | T} 

and for C > 0 let D$ be any disc in TR^ with radius £• Then, for 

t > 2 and y < C we have 

2 
measure (D D K ) <_ C y C / 

where C depends only on T. 
omit the nroof. Recall that in our case 3 < T < 4. 

Subsequently we introduce the variable y^, which rescales the 
time t to (1 + y2)t« We restrict y2 to the interval [|>2]. So the 
system obtains the form (1.7), transforming (1.10) via (1.11). Let 
us consider the map y A(y) , y = (yQ,ŷ ,y2), more closely. For 
y0 = 0 the determinant in (1.12) exactly is the Jacobian determinant 
of A and, as we saw in § 1.4, its value is 

2y31(a231 - a^) 3an 
*y0 (y0,0) 4 

o(y ) 

as y -> 0, uniformly. Now consider any interval [p ,pJ, with 
3ao 

0 < P« < p0/ where -— (.,0) is definite. According to proposition 
1 2 9v0 

1.1 there are many such intervals. We are then given a positive 
number nQ, depending on p and p , such that the map A, restricted 
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to [P1/P2] x t°'n
0^ 

1,2 
2 is a diffeomorphism onto its image. 

Now choose q1 and q̂  with P l < q l < q2 < P2 . For sufficiently small 
positive n the image A(W) of the set W = [q1,q2] 1n 

2 
3 
2 

1 
2 

2] 

contains a 3-disc with a radius of order n . This can be seen using 
(1.4) and (1.13). Then we apply lemma 2.5 with y = n^+0t for some 
a > 0, to be specified lateron. If n is sufficiently small, we so 
find many frequencies u) in A(W) , which satisfy (1.8) with this y. 
Let c E W be such that a) = A(c) is such a frequency. 
We now also have that A * is a diffeomorphism of a disc A = 

{d G IR3 I |d w|<$n3} where A *(A) c w. Here we require that 
0 < n < n^- We may choose suitable and £ > 0 independent of the 
choice of c. 

b. Our proof of theorem D now proceeds in the same manner as in 
e.g. § 2.5. For d £ A we replace y by A *(d) + y. As in § 2.5 this 
transforms our system to a system of type (1.15): 

x = d + f(x,y,d) 
y = g(x,y,d) 

where f(x,y,d) = A(A~ (d) + y) - d + F(x, A~ (d) + y) and 
g(x,y,d) = G^A'^d) + y) 

Once more observe that y is close to zero. 
Recall that the perturbations F and G are of order nm, uniformly in 
the whole region. Eventually we shall fix m and choose sufficiently 
small. From now on we use the notations from §§ 2.3 and 2.4. We choose 
y* =1 and determine the associated 6* as in theorem 2.4. So first 
we set <_ 1, for then y <_ y* . 
In applying theorem C to our situation we have to choose 
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6 € (0, min {6*,j}) . 
We restrict ourselves to the domain 

S = JR3 x {y € m3 I |y| < P"1} x {d € 3R3 j |d - u)|£ ye} 

See (2.8). We need that 

(2.45) 3 
ye <_ Cn 

Also we have to satisfy the smallness condition (2.9). For these 
purposes we shall make appropriate choices for n̂ ,m,6 and a. 

First consider (2.9A) which is fulfilled if 

Ifl < 2 ys and lai i h I & 

for (x,y,d) € S. 
-1 -1 We write A(A (d) + y) - d = DA(A (d))y + HOT. 

Since I DA(y) I is of order 1 in our region we have 

|A(A_1(d) + y) - d| < C |y| 

where only depends on and q̂ . So we require Ĉ P 1 _< ̂  y6 
or equivalently (cf. (2.8)) 

(2.46) 6 < j f < " 4 Cl 
1 

4C1 
3+a 
n 

Next use |F(X,A (d) + y) | <_ C^r^ and require that C2nm <_ — y 6 
or equivalently 

(2.47) m-3 -a 
Л 

1 
4C 6 

Similarly for the term G we obtain C^T\m <_ ̂ y ~6 or 
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(2.48) m-3-a 
n 

1 
2C2 

s2.9 

If we choose 6 = c3 n +a, according to (2.46),then (2.47) is easy 
to satisfy for m > 6 + 2a and n small. Also (2.48) is easy to ful­
fill if m >11.7 + 3.9 x a and n small. So choose m =12 and a = 1/39 . 
Then (2.9a) is satisfied for sufficiently small n. 
Note that indeed ye < £n3 for sufficiently small n, see (2.8), 
proving (2.45). 

We proceed in considering (2.9b). The derivatives in the x-
and y-directions are no problem by our choice of n in part a. of 
this section. Remains the d-direction. Note the argument A *(d) in 
f and g. Also note that d is close to u>, not to 0. However, we may 

2 
derive from (1.4) with u = y^ 

|D̂ 3 A_1(a)I C4 n 
l-2kj 

So we require for k= 1,2, I : 

l-2k ̂  1-k k c4 n 1 Y Q 

which is fulfilled for sufficiently small n. Application of theorem 
C is allowed and it yields a quasi-periodic solution of (2.50) with 
frequency u). So our vector field X possesses a quasi-periodic orbit 
with the same frequency ratio's. 
Since we can apply this result to each appropriate c, theorem D is 
proven. 
c. Our considerations will be concluded in giving a proof of pro­
position 1.1. First we carry out some manipulations, in order to give 
the action integral y a more suitable form.Modulo reparametrisation 
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and an appropriate change of coordinates of type 2 2 2 2 a r1# n = 3 r2 

We may write 

H°(£,n) = Sn (Ç + n - 1) £ > 0, n > 0 

hamiltonian to Z via the standard form d £ A di) . 

The elliptic singularity of tP is at (£,n) = (-j, -j) . Then write 

u=£-^-,v = n-^, and again modulo a reparametrisation 

0 2 2 2 2 H (u,v) =u +v +uv+3uv+ 3uv u > 3 V з 
is the hamiltonian of Ẑ (u,v) via du A dv. Of course now the 
elliptic singularity is at (u,v) = (0,0). The orbit cylinder of 
Z° is {H°(u,v) = hj-Q̂ Ĵ  . Finally we substitute p = u + v, 
q = v and obtain 

rfi, x 2 ̂  3 2 ̂  . . 2 1 2X H (p,q) = p + - q + 3q(p - - q ) 

which belongs to a reparametrised Z via dp A dq. Note that 

H°(p,q) = h 2 = I 4h-3q (1-q) 
P 4 l+3q 

fig. 3 

4h 

9 
<-3q2(l-q) 

~ 3 q1(h) lo q2w 2. 3 q3(h) 1 q 
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Let q1(h), q2<n) respectively q̂  (h) denote the zero's of the poly-
2 

nomial 4h - 3q (1-q) in climbing order, see fig. 3, then 

Yn(h,0) _1 
2i 

q2(h 

q< (h) 
4h-3q (1-q) 

l+3q dq and 

3*o 
8h (h.O) 

1 q2(h) 

q< (h) 
dq 

(l+3q)(4h-3q (1-q)) 

We have that yQ(0,0) =0 and y 4-F0) = j . 
Concerning the smoothness of yQ(h,y) we only have to worry 

about the variable h near h = 0. So consider the Birkhoff normal 
form 

Hy(yQ,cp0) B1(u) Yo 32(y) YQ + 0(yp 

We shall show that $ (0) ̂  0 which yields 

Y0(h,U) 1 
B.Cu) h -

B2(v1) 

(3 (VOR 
h2 + 0(h3) 

As a matter of fact we compute 1/8̂ (0) directly from the second 
elliptic integral, by substituting a new variable T by 

q = qx (h) + T {q2 (h) - ̂  (h) 

and expanding as a power series in /h: 

q<(h) 2 
3 /3 n 1 q 0(h3/2) 

q5(h) 2 /3 & 2 
3 s (̂h3/2: 

q3 (h) 1 4 
3 s Oh 9 

Note that q (h) + q (h) + q (h) si . 
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ayo 
8h (h,0) 

1 
v3 

1 

0 

di 
T ( L -T) {1+3^^37 (Q^-Q, ) > IQ3-Q1-T (Q2-Q< ) 

L 
eh 

1 

0 

L-|/3 (2x-L) *̂ +4 (2x-L) 2h 
T(L-T) 

dx + c9(h3/ ) 

1 
ir/3 

B 2'2J 
2 
3ir 'h 

1 

0 
2T-1 
T(1-T) 

dt 

2 
TT E [4 B(|,|) 4 В 3 

2 1> B(ì,ì) + o(h3/2) 

1 

/3 
• h + 0(h) 

So we find 3(0) = /3 and ß (0) = -3/3 

This proves (i). 

In order to see (ii) one may have a quick glance ar the second 

elliptic integral, but also a more elementary investigation of 

will suffice. 

A proof of (iii) can be given as follows: First note that on 

the interval 0 < y0 < 1/2 the function a0(y0'0) is real analytic. 

Then, near ŷ  = 0, we obtain from the Birkhoff normal form: 

a0(yn,M) B1(u) 26 (U) yo Q(Y2o) 

such that 
9an 

9*n 
(0,0) = 232(0) 0. 

We now are finished as soon as we have shown that near the boundary 
i 3ao 

point yn — "T- the derivative -r— also has a constant sign. 0 2 3yQ 

For this purpose we realize that in general 
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3ao 
yo 

1 

Yo 
ah 

3 

a2Yo 

eh2 

where 

e2Yo 

3h2 
(h,0) 

1 
2TT/3 

1 

0 
12 3q-+3T(q -q ) 

l+3q +3T(q -q 
q3"qi"T(q2"qi) 
q3-qi-T(q2-ql) 

Here q' dq. 
dh and abreviates 

R(l-T){l+3q +3T(q -q q3-qfT|q2"ql) 

We now expand as a power series in g Ë1 h, and obtain in analogy 
to previous calculations: 

ql 1_ 
3 

4 
3 2 g cm g 

3 

q2 2 
1 2 

v3 g • 
2 
3 

2 
g 

?(g3 

q3 
_2 
•3 Tf g _2 

3 
g2 0(g3) and so 

q1 0(1) <2 1 
g/3 Q(1) q3 l 

g/3 0(1) 

Now the expression in accolades can be easily estimated. It appears 
-i 3ao 

that the coefficient of g1 is negative. This shows that -— also is 
i Y° 

negative near yQ = - . 
QED 
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