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STRUCTURALLY STABLE  
CONFIGURATIONS OF LINES OF PRINCIPAL CURVATURE 

by 

J.SOTOMAYOR and C.GUTIERREZ 

ABSTRACT : Sufficient conditions are established for the 
stability of the configuration defined by the umbilical points and 
the families of lines of principal curvature of a compact orientable 

3 
surface immersed in R , under small perturbations of the immersion. 
1. INTRODUCTION 

Directions tangent to a surface M immersed in F3 along which 
it bends extremally are called principal directions. The quantities 
K^k measuring the bending are known as principal curvatures. The 
points on M at which K=k are called umbilical points. Outside the 
set U M of umbilical points, the principal directions define a pair, 
£ M and ^ M , of line fields, mutually orthogonal called principal line 
fields on M; £^ corresponds to the directions of maximal principal 
curvature K and ^ M to those of minimal principal curvature k. The 
family of integral curves #M(resp. f^) of £^ (resp. t^) is called 
principal maximal (resp. minimal) foliation of M, or rather of the 

3 immersion of M in R . 
To every surface M immersed in R3 it is associated the triple 

PM = ^M'^M'fM^ wnicn wil1 be called in this paper the principal con­ 
figuration of M, or rather of the immersion of M in R3 . 

The local study of principal configurations received considerable 
attention in the classical works of Cayley [2], Darboux [3], Picard 
[lO], and Gullstrand [4], among others. These authors attempted to 
describe the principal configuration of a surface around an 
umbilical point. However, the arguments used in their conclusions do 
not always fit the standards of present day rigour, as was pointed 
out by Hartman and Wintner[7] . 

The global structure of principal configurations is known only 
for very rare classical surfaces: surfaces of revolution and 
surfaces which belong to a triply orthogonal system of surfaces 
[12]. In the first case the principal foliations are contained in 
the parallel and meridian curves and the umbilical points form 
meridian curves. This follows from the remark, probably due to Dupin, 
according to which two surfaces M^,Mg intersecting with constant 
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angle along a curve which is a principal line of M 1 is also a 
principal line of Mg. In the case of triply orthogonal systems of 
surfaces, the principal foliations of a surface of one of the 
systems are obtained intersecting the surface with the elements of 
the other two systems. This result can be used to visualize the 
principal configuration of the ellipsoid 

E(0) 2 
a 2 

Y 
b 2 

2 
z r2 

1, o<a<b<c. 

This is done by considering E(0) as an element of the triply 
orthogonal family of "confocal quadrics" E(X), H 1(^), H 2(X), defined 
by 

2 
2 * 

a 

y 2 

b2-X 
z 2 

c2-X 
= 1, 

with * < a 2 for E(X) (ellipsoids), a 2<*<b 2 for H , ) (hyperboloids 
of one sheet) and b2 <X<c2 for H2(*) (hyperboloids of two sheets) See 
Fig. 1.1. 

Fig.1.1.; from [12]. Principal configuration of E(0). 

In connection with the global features of principal 
configurations one must also mention Caratheodoryfs Conjecture, 
relative to the number of umbilical points on a convex surface. It 
has been asserted that this number is greater than or equal to 2, for 
analytic surfaces [6,8]. For smooth, i.e. C°°, surfaces the problem is 
open. 

The study of the relation between the principal configurations 
and the focal set of a surface, which is the caustic set of Geometri­
cal optics, was initiated by Gullstrand [4]. The study of the struc­
ture of the caustic set fits the context of Thorn's Theory of Catas­
trophes. The structural stability of the focal set at umbilical 
points under small perturbations of the surface leads to the so 
called hyperbolic and elliptic umbilical points [11,13]. 
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LINES OF PRINCIPAL CURVATURE 

Recently, physicists have investigated the statistical propor­
tion in which the umbilical points considered by Darboux in [3] as 
well as the hyperbolic and elliptic umbilical points appear in op­
tical experiments [ l] . 

This paper is devoted to the study of the global features of 
3 

principal configurations on surfaces in E which remain 
qualitatively undisturbed under small perturbations of their 
immersions. The main result of this work establishes sufficient conditions 
likely to be also necessary for a compact, oriented, surface M of 

r 3 3 class C , r^4, in R , or better said for its immersion a :M R , 
to have a C S structurally stable principal configuration. This means 
that for any other surface fi, sufficiently C S close to M (i.e.fi=a(M), 
where S is an immersion sufficiently C S close to a ), there is a 
homeomorphism h:M -* fi which maps onto U^, maps lines of 3^ onto 
lines of 3^ and lines of onto lines of jpjj. 

The sufficient conditions for principal structural stability 
established in this paper are expressed in terms of the umbilical 
points which must be of D (for Darboux)-type (See section 3), the 
principal cycles i.e. the compact principal lines, which must have 
hyperbolic Poincaré first return map (See section 4) and the 
assymptotic behaviour of non-compact principal lines, specially of 
umbilical séparatrices i.e. principal lines which approach the 
umbilical points and which separate regions of different patterns of 
approach to these points. 

Some aspects related to principal configurations and which bear 
some connection to the local part of this paper can be found in the 
classical works of Darboux and Gullstrand, mentioned above. However, 
surprisingly enough, neither in the classical nor in the current 
literature seem to have been focalized the study of surfaces with 
isolated - hyperbolic or not - principal cycles, not to mention the 
possibility of more intricate recurrent principal lines. 

In [5] it is proved that hyperbolicity constitute the generic 
case for principal cycles. On the other hand, the presence of non-
trivial recurrence turns to be exceptional, at least in the Co -sense. 
There have also been constructed examples of non-trivial recurrent 
lines of principal curvature on tori and spheres immersed in R3 . 
The first example is related to irrational rotations, while the 
second happens to be of oscillatory type. 

The main result of [5] is that every immersion of a compact 
oriented surface in R3 , can be aproximated in the C2 -topology by a 
C°° immersion which satisfies the conditions for Cs-principal 
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structural stability, s^ 3, established in this paper in theorem 

2.2.4. 

In section 2 below are formulated in precise terms the main re­

sults of this paper. Their proofs are given in sections 3 to 5. 

2. FORMULATION OF THE MAIN RESULTS: 

1. Preliminaries 

Let M be a compact connected, oriented, two dimensional smooth 

(i.e. Coo ) manifold. An immersion a of M into R3 is a map such 

that DotP : TMP R3 is one to one, for every p€M. Denote by 

JY =Jr (M,R3 ) the set of Cr -immersions of M into R 3 . When endowed with 

the Cs-topology, s^r, this set is denoted by c9 r , s = c9 r , s(M,R 3) . 

Associated to every a € Jr is defined the normal map Na:M-»S2 : 

N a(p) = ex (p) a v(p) a

u

( p ) A a v ( P ) l 
where (u, v) : (M,p) -» (R2 ,0) is a positive chart of M around p, 

o (p) ëtt(p) 
Ou 

D ap b 
•ou p>) 

A denotes the exterior product of vec-

tors in R3 , determined by a once for all fixed orientation of R3 , and 

i i - < . > 1 / ? 3 
is the euclidean norm in R . 

Since DNa(p) has its image contained in the image of D<a(p) the 

endomorphism uu^rTM-^TM is well defined by 

Da . uu = DN a a 

It is well known that u> is a self adjoint endomorphism, when TM 

is endowed with metric < , > =a < , >, induced by a from the eucli-

dean metric <,> in R3 . Clearly N_, is well defined and of class 

c*" 1 in M. 

Let K = det ou and 
CL CL 

U = - 1 
2 
trace w be the Gaussian and Mean a 

curvatures of the immersion a 

A point p€M is called an umbilical point of a if 
*2 
a 

( P ) - V P ) = 0 - This means that the eigenvalues of are equal 

at p. The set of umbilical points of a will be denoted by U . 

Outside U the eigenvalues of w are distinct and given by 

a H 5 

a • K . 
a 

Their opposite values K = W 
a a 

M2 
a 

Ma and 

K = W 
CL * 

M2 
a 

Ma are called respectivelly maximal and minimal 

principal curvatures of a. The eigenspaces associated to the prin-
cipal curvatures define two Cr—2 line fields £a , mutually orthogonal 

in TM (with the metric < > a), called the principal line fields of 

They are characterized by Rodrigues equations [12] 
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LINES OF PRINCIPAL CURVATURE 

a v € TM : uu v + K v -=0} a a 

a [ v 6 TM ; V +kav = 03 

The integral curves of £a (resp.la) are called lines of 

maximal (resp. minimal) principal curvature. The family of such 

curves i.e. the integral foliation of £a (resp. la) in M - Ua will 

be denoted by 3ft (resp. FA) and called the maximal (resp. minimal) 
principal foliation of &. 

The triple P = (U 3 C ) will be called the principal confi­
guration of a. 

An immersion a € &r is said to be Cs-principally structurally  

stable, s ̂ r, if there is a neighborhood &(a) of <x in c9r,s such 

that for every 0 € #(a) it is possible to find a homemorphism 

h = hg :M -* M such that n(ua)=U£ and nlM~Ua is a topological 

equivalence simultaneously between 3^ and 3̂  and between fa and Ba . 

Shortly it is said that h maps ̂ a to Ba or that h is a topological 

equivalence between and . 

Bellow are provided sufficient conditions, likely to be also 
r s necessary, for an immersion a € J , r^ 4, to be C -principally 

structurally stable, s^ 3. 

2. Sufficient Conditions 

These conditions are expressed in terms of the umbilical points 

U , the principal cycles i.e. the compact lines of 3 and -A and a ot ' a 
the assymptotic behaviour of non compact principal lines, specially 

of umbilical séparatrices. 

The concept of Cs-principal structural stability of a € êr at  

a point p£M can be formulated as follows: For every neighborhood 

V(p) of p in M there must be a neighborhood v(a) of a in Jr,s such 

that for 3 € v(a) there must be a point q =q(3) in V(p) and a 

homemorphism h:W(p)-*W(q) between neighborhoods of p and q, which 

maps p to q and maps «*alw(p) and falw (p ) respectively onto 

3B |w(q) and fa |w(q). 

2.1. Propostion. An immersion a f *9r , r^ 4, is C3 -principally 

structurally stable at a point p€ provide the following 

condition is satisfied: 

Condition D: There is a chart (u,v):(M,p) -* (R ,0) and an isometry 

r of R3 with r(a(p)) = 0 such that 

(Toa)(u,v)=(u,v k 
2 
u2+v2 + t u3 

b 
2 
uv2 c 

6 s3 0((u2+v2)2) 

where 
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T)b(b-a) ̂  0, and 

6)either one of the following inequalities hold 

D, : a/b > (c/2b)2 + 2 

D2 (c/2b)2 + 2> a/b> 1, a ̂  2b 

D3 : 1 > a/b. 

The local principal configurations are illustrated in Fig. 2.1. Con­

dition D amounts to a condition given by Darboux in [3]• 

p ̂  K 
CL 

Di D2 D3 
Fig. 2.1 

The index i refers to the number of umbilical séparatrices [9] 

of D^, i = 1,2,3 in each of the foliations **affa* Séparatrices are 

drawn in heavy lines in the picture. 

The concept of principal structural stability can be localized 

at principal cycles in the following way: 

An immersion a € *Pr is Cs-principally stable at a principal 

cycle c if for every neighborhood V (c) of c in M there is a 

neighborhood of a in Jr such that for 3 £ #(a) there is a 

principal cycle d=d(P), of 3, contained in V(c) and a homeomorphism 

h:W(c) -* W(d) between neighborhoods of c and d, which maps c to d 

and maps 3 |w(c) and f-Jw(c) respectively onto 3 |w(d) and P ft|w(d) 
CL ex CL 

2.2 > Proposition: An immersion a € Jr , r^ 3, is C3 -principally struc­

turally stable at a principal cycle c provided one of the following 

conditions, which are equivalent, is satisfied: 

Condition H: 

Hi> c 

DhA 

K2a Ka 

^ 0, 

Hg) The cycle c is a hyperbolic cycle of the foliation to 

which it belongs. That is, the Poincaré first return map h associated 

to a transversal to c at a point q is such that h'(q) ̂  1. 

2.3. Definition. Let Sr = Sr(M) denote the set of a € c9r, r^ 4, such 

that 

a) Q. satisfies condition D of 2.1 at every point p € U 

200 



LINES OF PRINCIPAL CURVATURE 

b) & satisfies condition H of 2.2 at each of its principal cycles c. 
c) The limit set of every principal line of a is the union of umbi­

lical points and principal cycles. 
d) There is no umbilical separatrix of & which is a separatrix of two 

different umbilical points or twice a separatrix of the same umbi­
lical point. 

2.4 Main Theorem. Let r ̂  4 and M be a compact oriented two 
dimensional monifold. The set Sr = Sr(M), defined in 2.3, is open in 
CLR?3 jr,3 (M,R3) r 3 

and every a € S is C -principally structurally stable. 
In [5] it is proved that Sr is dense in c9r' . A proof of the 

density of Sr in Jr,s, s^ 3, which seems far fetched at this 
moment due to the difficulty in obtaining Cs approximations 
by immersions which verify condition c of 2.3, would lead to the 
actual characterization of the set of Cg -principally structurally 
stable immersions. 
3. UMBILICAL POINTS 
Here it will be studied the umbilical points of type D, defined in 

(2.2.1). In 1. will be shown that condition D does not depend on 
(u,v) or t1. The local principal configurations will be established in 
2. The proof of (2.2.1) will follow from this analysis. 

1. Invariance of Condition D 
Let a (R2,0) (R3,0) be an immersion of class C4 , which has o 

as umbilical point and is of the form a(u,v) =(u,v;h(u,v)), where h 
is a C4 function of the form 
(1) h(u,v) k 

2 
u2+v2) a 

6 u3 
d 
2 u2 V 

b 
2 uv2 c 

6 v3 + r(u,v) 
where r = 0 (u2+v2)2) By means of a rotation in the (u,v)-plane, it 
will be assumed that d=0. 

According to [3,12], the differential equation for the lines of 
principal curvature of a is given by 
(2) [bv +M1(u,v)] dv2-C(b-a)u+cv +M2(u,v)] dudv [bv+M«(u,v)] du2 = 0. 
Each M., i=l,2,3, is of class c2 and M.(u,v) = 0((u2+v2)). 

Consider the case M. s 0 in (2). 
Equation (2) can be written 
(3) bv dv du 

,2 [(b-a)u+cv] dvx du' - bv = 0. 
Let b(b-a)^0 i.e. T) of Prop. 2.2.1, be satisfied. The following 
can be remarked: 
a) From the homogeneity of (3), dv du is constant along any straight 

line passing through the origin. 
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b) dv du 4 0 along the line {u=0}. 
c) The line {v=tu) is a solution of (3) if and only if t=0 or t= t±, 

i=l,2, where 

t1 c 
2b (c/2b)2 a/b + 2 

T2 c 
2b '(c/2b)2 a/b + 2 . 

d) The condition i1 . T2 <-1 (resp. T1 .T2 >-l) means that the rays 

l1 ={V=T1U , u > 0} 

l2 = ̂  V=T2U ' u> °3 
determine in the semi plane {u>0} an angle which is greater (resp. 
smaller) than TT/2. 

In synthesis it can be said, in geometric language, that when 
T) of (2.2.1.) is satisfied, then 
1.1) D1 of 2.2.1. is satisfied if and only if {v=o} is the unique 

real solution of (3). 
1.2) D2 of 2.2.1. is satisfied if and only if the rays Q̂={v--=0, 

u>0}, and ^2 are contained in an open right angular sector, 
and are different from each otTier. 

1.3) D3 of 2.2.1. is satisfied if and only if there is no closed 
right angular sector which contains the three rays lo,l1,l2 
It follows that once T) of (2.2.1.) is satisfied. The condition 

f) as well as the type D^D^.Dg do not depend on the chart (u,v) 
or on the isometry r used in 2.2.1. In fact, another chart (u'.v*) 
and isometry FF would give another function 

hf = k 2 (u»)2 
(v')2 

6 
(v')3 bj_ 

2 u'(v')2 
cj 
6 ( V ) 3 h 

+ 0(((u') 2 (v»)2)2) 
to which would be associated another equation (3f) which, 
nevertheless, is related to (3) by a change of variables (u,v) -» (uf ,vf ) 
which is an isometry. This isometry preserves the relations expressed 
in 1.1), 1.2) and 1.3), since it maps the rays lQ>li>l2 into the 
correspondant rays Io I', I' of equation (3f). 

On the other hand, condition t) of (2.2.1.) also does not depend 
either on the chart (u,v) or the isometry F, since it can be proved 
to be the coordinate expression of the transversality condition of 
j2a at the umbilical point to the submanifold of umbilical second 
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order jets of immersions. 

2. Local Principal Configurations 

Assume the notation of 1) above. Consider the vector field 

Y = P Ò 
5u 

Q _ò_ 
ÒV 

where 

P = 2(bv +M 1) 

Q = (b-a)u + cv + M 2 - p [(b-a)u + cv + M 2] 
i2 4(bv+M1)(bv +M 3) 

where P is 1 or-1 according, to b-a > 0 or b-a < 0. 

When P^O, dv 
du 

RI 
solves equation (2). Therefore Y is tangent 

to one of the principal foliations of & except possibly when P = 0. 

When M i=0, i = 1,2,3, and p is an umbilical point of type Dg, 

(i.e. b-a > 0), the phase portrait of Y is illustrated in Fig. 3.1. 

The points in the ray t ={v = 0, u^O} are singularities of Y. 

Fig. 3.1 

To analyze the phase portrait of Y in general, in an angular 

sector which contains I , it is convenient to perform the blowing 

up 

H : 

u = s 

v = ts + v(s) 

Here v = v(s) is the unique solution of P(s,v(s))=0, with v(0)=0. 

Since 2b = ÒP, 
a 

0,0) ¿ 0, 
2 

v is well defined and of class C , by the 
Implicit Function Theorem; also v'(0)=0. 

The map H is a diffeomorphism of the plane s>0 onto the 

plane u>0; it maps rectangles onto distorted angular sectors. 

Call Z = H Y = S Ò 
Os 

T er 
ot 

the induced vector field 

H^ Y (s,t) DH -1 
H(s,t) 

Y(H(s,t)) 

Therefore, the functions S and T are given in the plane s>0 by 

(1) 

S = 2[bts + bv(s) + M,(s,st + v(s))] 

T = 
1 
s - tS - v'(s)S + S x - p 

s2 
1 

s s 2 ] 
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where 

Sl = (b-a)s+cst +. cv(s) + M2(s,st + v(s)) 

S 2 = 2Cbst + bv(s) + M3(s,st + v(s))] 

The following expressions hold: 

(2) 

S(s,t) = 2(b st+st U(s,t)), with U(0,0) =0. 

S^s.t) = (b-a)s + c st + s U,(s,t), with U,(0,0) = 0 

S2(s,t) = 2b st + s U2(s,t), with u 2 ( o , o ) 
*u 9 

at 
; o , o ) = o. 

where U, U.̂ , U 2 are functions of class C . 

In fact, defining 

U(s,t) = 
0 

1 ÒM 1 

öy 
s, r st + v(s)) dr, 

it holds, by Hadamard's Lemma, that 

S(s,t) = 2(b st + b v(s) + M,(s, v(s)) +st U(s,t)) = 

= 2(b st + st U(s,t)), 

since b v(s) + M,(s, v(s)) = 0, by definition. Write M2(s,st + v(s)) = 

M2(s,v(s)) + st 
1 

'0 

Ò M2, 
ay 

s, r st + v(s))dr. Write V 1(s) = 
1 

fg 
v'(rs) dr, 

and M2(s,v(s)) = s 
1 1 

0 

5M2 

SX 
(rs,rv(s)) 

sM2 

by 
rs, rv( s) )V1( s) dr 

Therefore, 

c v(s) + M2(s,st + v(s)) = s cV1(s)+vJ(s)+V1(s)V^(s)+tvJ(s,t)] , 

where 
vj(s) = 

1 

0 

6 M 2 

ôx 
(rs,rv(s))dr , 

Vj (8 ) = 
1 

'0 

6M 

by 
(rs, rv(s))dr, 

v 1 s,t) -
1 

0 

sM2 

by 
s, rst + v(s)) dr 

Define 
LJ, =c V1(s) vj(s) V1(s)V^(s: t vï(s,t) 

Which is certainly of class C 1 in a neighborhood of (0,0). 
Analogous definition leads to 

U 2 = 2bV
1(s) +V~(s) V 1(s) V2(s) 

12 
v 2 ( s ) tV2(s,t) 

where 
V2 
1 is obtained by the same integral expressions as V'1 

substituting M 2 by Mg. 

Let Z be defined by 2f = w(s,t) Z = § 
Q 
òs 

Î 
Q 
òt 

where 

w(s,t) ts C- tS - v
f (s)S + S x + p- 4 + S S 2 ] 
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It follows that 

S = S w(s,t) 
(3) 

ï = t • S s 
2 (v'(s))2 _S_ 

st 
S 
s 2v'(s) s' 

2 2 s 
2 s 

- 2 vf(s) S 
st 

s i 
s 

s 
st 

, S2, 
s ' 

Using the expressions (2) it follows that § and T are actually 

restrictions of class C 1 functions in a neighborhood of (0,0), which 

are denoted by th? sane symbols. In fact, 

S = 2(b+U(s,t))[-tS -vT(s)S + S 1 + (b-a)s R(s,t)] 

where R(s,t) is of classe C since it is defined by 

R(s,t) (1 + 
c 
b-a 

U1 
b-a 

2 2t 

(b-a) 2 

(b+U) (2bt + U 2) 

The extension of T is given by 
T = t(2(b +U)t)2 + (v'(s)r(2(b+U)r t + 

+ 2vf(s) tz(2(b+U))2 - 2t(2(b+U))((b-a)+ct + U, ) -

- 2v,(s)(2(b+U))((b-a)+ct+U1)-(2(b+U)) (2bt+U ). 

The first partial dérivâtes of § and f are given by 

öS, 
OS 

0,0) 4(b-a)b 
Sa 

òt 
0,0) = 0 

ÒT 
Os 

0,0) - 2v»(0)(2b)(b-a) - 2b 
Ô U 2 
òs 

:o ,o) 

bf 
òt 

(0,0) - 4b(b-a) - 4b2. 

The Jacobian matrix of Z at (0,0) is therefore given by 

D Z(0,0) = 

4(b-a)b 

x 

0 

-4b(2b-a) 

which is hyperbolic, provided condition D is assumed. 

In cases D, , D« the origin is always a saddle point of Z. In 

fact, the determinant of DZ(0,0) is A = -16b3 

t i ­
fi 
b (2-

a 
b 

which is 

negative since in case D̂ ^ (resp. D^) the two factors are always 

negative (resp. positive). 

In case D2> ^ is negative (resp. positive) if, with the 

notation of l.c), T 1 . T 2 > 0 (resp. Tj . T 2 < 0). This situation corresponds 

to taking the u-axis along one of the rays or ^(resp. along the ray 
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t v 

H 

s u 

Dl' D3 

t 
T2 

H 

v 

s u 

D 

D2 

Fig. 3.2. 

Applying H to the orbits of 2, it follows that there is a unique 

principal line of class C 1 which approaches the umbilical point and 

is tangent to each one of lines which pass through 0 and solve (3). 

This is the case for types D-̂  and Dg. This unique principal line is 

the umbilical separatrix; it is the image by H of the saddle 

separatrix of 2. In case D 9 the unicity holds only for the 

séparatrices tangent to the rays t^, £ 9, when lQ is contained in 

the sector determined by these rays. In fact ^ and correspond 

by H to saddles of 2, while £ Q corresponds to a node. In this 

case there are infinitely many principal lines approaching the 

umbilical point and tangent to tQ. See Fig. 3.2. To complete the 

analysis of the principal configurations under condition D, it must 

be proved that the only lines of principal curvature which tend to 0 

are those which are tangent to one of lines which solve (3). This 

can be seen using the blowing up u=s, v=ts. It follows that the 

blown up vector field does not have singularities outside ^' тl' T2 ,  

This implies that no principal line can approach the umbilical point 
in a direction different from 0,T1,T . 

This finishes the discussion of the local principal configuration 
around an umbilical point which satisfies condition D and justifies 
Fig.2.1. 

3. Proof of (2.2.1.) 
The interpretation of condition T) of 2.2.1 as a transversa-

lity condition together with the openness of each one of the 
conditions D1., i=i,2,3, imply that the umbilical point of type D. 
depends continuosly on C3 -small perturbations of immersions 
a£c9r, r^ 4. Also, the umbilical séparatrices depend continuosly on 
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o, as follows from their interpretation in terms of blowing up in 2 ) . 
The topological equivalence is constructed in a more global context in 
section 5 . 

4. Remarks on the literature 
No proof is given in any of references given in the introduction 

of the unicity of umbilical séparatrices for C r immersions. The 
existence of such séparatrices is proved in [7]. The unicity is 
claimed in Ë3] for analytic immersions; the proof is however very 
hard to follow. 
4. PRINCIPAL CYCLES 

Let a 6 Jr, a compact integral curve c of /* (resp. 3^) is 
called a minimal (resp. maximal) principal cycle. When it is not 
relevant the minimal or maximal character of a cycle, it will be 
refered to simply as a principal cycle. 

When the cycle c is oriented by a periodic regular parametriza-
tion u-*c(u), it will be denoted by Cc] . When the orientation is not 
relevant for an assertion the cycle will be simple denoted by c. 
4.1. Proposition 

Let a € j r ^ 4, and c be a minimal (resp. maximal) principal 
cycle of ct. The following assertions are equivalent 

H1) 
'c 

HOL 

H2 
a 

K 
*# 0 

Hg) c is a hyperbolic minimal (resp. maximal) principal cycle 
of a . 

H 3 ) 

c 

dk 
a — k Q, a. * o (resp. 

c 

dk 
k -K 

GL Q 

é 0) 

The proof will follow from lemmas (4 .2 ) , (4.3) and (4.4) bellow. 
4 . 2 . Lemma : 

Let a 6 Jr, r * 3, for any principal cycle c of a, it holds that 

Cc] 

dka 

ka-ka 
Cc] 

dK 
oc a 

1 
2 

d U 

Cc] Hi a 
Proof. Follows from definition 2.1. that 

(1) 
da 
M2. 
e. Ha 

dka 
ka-ka 

dka 
KcT ka 
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But 

(2) 
dK 
a ka-ka 

dClog(Ka-ka)] 
dk 
a, ka-ka 

Therefore, for an oriented principal cycle [c], 

(3) 
Cc] 

dk 

ka-ka Cc] 

dk 
a 

Ka" ka 

This is the first equality of the lemma. The second equality fol­

lows integrating (1). 

4.3. Lemma 

Let (u,v) be a chart such that {v=0} is the minimal principal 

cycle c of cc and u is the arc lenght parametrization of c. 

The derivative of the first return map h of c is given by 

hf(0) = exp 

f 

o 

ôv : E a V M * ] 

Ea^a" Ga ea v=0 
du 

where E a,F a,G a and e a.f a,g a are respectively the coefficients of the 

first and second fundamental forms of cx in the chart (u,v) and I is 
lenght of c. 

Proof. The differential equation of the principal lines is given 

according to [12], by: 

(4) 

dv 2 

de 
ea 

-du dv 

F 

CL 

du 2 

Gu 
Sa 

= 0 

The solution v= v(u,v ) of (4) with v(0,vQ)=vo 
and v(u,0)=0, 

defines, making u = i» = length c, the first return map h(v )=v(£,vQ) 

of the cycle Cc]. 

The derivative ri(u) = bv 
dv 

:u,vo) v=0 satisfies the differential 

equation obtained substituting v(u,vQ) in (4) and derivating with 

respect to v . As follows 

2 s 
O v o 

av 
au 

u' vo 
ÒV 

ou 
(u,vo Faga-Ga fa 

/ÒV 
vÒu 

:u,vo 
i » ft 

O v o 

Faga-Ga fa 

sa 
ò v o 

-ÒV 
ÒU 

u,vo) C Ea?a- Ga ea ] 

^ V a - F a e 1 

òv 
òv 

ò v o 
(u,v ) = o 

substituting v Q=0 and using the invariance of the mixed derivatives 

on the order of derivation, it follows that 
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dn. 
du Eaga-Gaea]<u>°> + Tl 

b 
ov 

Ea VFaea](u'0) =0' 

The solution ri(u) of this equation, with initial condition r|(0)=l, 

gives the expression in the conclusion of the lemma, when evaluated 

at u=l. 

Obviously r)(l) = hf(0). 

4.3* Remark: Notice that arc lenght parametrization in 4.3 is not 

essential for the validity of the expression for hf(o). 

4.4. Lemma: 

Let u be the arc length parametrization of a minimal principal 

curve c of « 6 Jr, r ̂  4. 

Denote by Ta(u) =Da(c(u)) cf(u) the unitary tangent vector of 

the curve u -» a(c(u)). 

The expression. 

(5] a(u,v) =a(c(u)) + vN (c(u)) Ta(u) +v2 
K (c(u)) 

Ft 2 

+ A(u,v) Na(c(u)), 

with A(u,0) =0, defines a chart (u,v) of class Cr—2 around c. Then, 

(6) 
Ò 
ôv EaVFaea]<u'°> 

d(KftoC) 

du 
(u) 

(7) CEaga-Gaea](u'0) (K -k„)(c(u)), a a 

where Ea ,Q,Ga and e&,f ,ĝ  are the coefficients of the first and 

second fundamental forms of ex in the chart defined by (5). 

Proof. Clearly the map 

g:(u,v,w) -*a(c(u)) + vTa(u) a Na(c(u)) + wN&(c(u)) 

is a Cr—2 local diffeomorphism onto a tube around a(c). The 

v-coordinate of the required chart is obtained composing a with a 

local inverse of g. The w-coordinate of this composition is 

precisely the coefficient of N (c(u)) in (5). Therefore, v A(u,v) is 

of class Cr-2 . 
The equalities (6) and (7) follow from the calculation below. 

Ea(u,0) = <a, • > - ! 

Fa(u,v)=<au, ay* 
v2 
2 

d(ka°c) 

du 
(u)) ö(v2A) 

ou 
(vK (c(u)) ò(v2A) 

Av 

Ga(u,0) <& , a > = l 

ea(u,0) <a 
uu. 

Na(c(u))>= k^cCu)) 
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f (u,v) UV 1 Na(c(u)) = V 
d(K ao C) 

du 
:u) ò2(v2A(u,v)) 

ÒUÒV 

ga(u,0) = <a v v, Na(c(u)) > = Ka(c(u)). 

Therefore, 

41 
ÒV a о. ex a (u,0) d 

du K o c)(u) 

[ Ea&a- Ga ea 1 ( u' 0 ) Ka(c(u)) ka(c(u)) 
This ends the proof of the lemma. 
4.5. Proof of (2.2.2.) 

The hyperbolicity of the minimal principal cycle implies the 
local stability of in c, under small C3 -perturbations of &. The 
construction of the simultaneous topological equivalence between 

1 ?a anc* the ̂ °^ia*ions corresponding to the perturved immersion 
offers no difficulty. It is done in a more global context in section 5 
The same works for maximal principal cycles. 
5. PROOF OF THE MAIN THEOREM 

The openness of Sr in Jr 3 , r^ 4, follows from the local 
stability of umbilical points and the continuity, on compact parts, 
under small C3 -perturbations, of the umbilical séparatrices (section 
3) together with the local stability of hyperbolic principal cycles 

(section 4). Conditions c) and d) of 2.2.3. are also essential, in 

this part; in fact, they make possible to reduce the analysis of the 

openess to the local study of umbilical points, umbilical 

séparatrices and principal cycles. 

A maximal (resp. minimal) canonical region of a € S , r ̂  4, is a 

connected component of the complement of umbilical points and maximal 

(resp. minimal) principal cycles and umbilical séparatrices. The 

canonical regions can be parallel or cylindrical. In the first case 

the principal line field restricted to the region is topologically 

equivalent to ÒU 
in R . in the second one it is topologically 

equivalent to u òu + V òv in R -{0} . Figures 5.1. and 5.2. show 

some typical examples of canonical regions. 

Fig. 5.1.; Parallel regions 
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a 
b 

Fig. 5.2.; Cylindrical regions 

The dotted lines in the pictures of the canonical regions are 

cross sections of foliations in the region. For parallel regions they 

can be taken as umbilical séparatrices of the other foliation. For a 

cylindrical region it can be that either all the orbits of the other 

foliation cross the region, like in case a), or the region 

contains at least one principal cycle of the other foliation like in 

case b). The minimal (resp. maximal) cylindrical regions of case a) 

are called irreducible transversal minimal (resp. maximal) canonical 

regions; those of case b) are decomposed into the union of a finite 

number of irreducible transversal maximal (resp. minimal) canonical 

regions and two irreducible semi-1ransversa1 minimal regions, like 

those in which Fig. 5.2.b. is divided by the maximal principal cycle 

in dotted lines. The boundary of an irreducible semi-transversal 

minimal (resp. maximal) canonical regions is the union of one minimal 

cycle to which the minimal principal cycles tend and one maximal 

principal cycle, to which the minimal foliation is transversal. In 

Fig. 5.2.b) appears a cylindrical region decomposed into one 

irreducible transversal and two semi-transversal canonical regions. 

It can be found a neighborhood #(&) in c9r'3 such that #(et)<=Sr, 

r^ 4, and such that along a continuous arc Ot̂., t€ [0,l], in û (a) 

joining a =& 0 to Ê
 = ai> there is a unique way to continue the 

umbilical points, principal cycles and umbilical séparatrices as well 

as their intersections (of maximal with minimal elements) in such a 

way that there is a natural unique continuation of the canonical 

regions of cx into those of a, , which defines a one-to-one o t 
correspondence between the canonical regions of & and those of 

Э £ v(a). Such a correspondence preserves the type of the canonical 
regions. 

The continuation procedure defines uniquely a partial topological 
equivalence h^ between the umbilical points of a and Qt̂  and the set 
of points which are simultaneously on a maximal and minimal 
separatrix or principal cycle of ct with the similar set of 
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& t, t 6 [0,1] . 
At this point it is possible, using the "method of canonical 

regions" [9] to produce different topological equivalences 
(ua, 3a) < v . v > and : v f « > uat, fat which extend h. . Below it 
is indicated how to proceed in order to extend h^ to a topological 
equivalence n\ between PAo and Pqt, . This extension is obtained by 
means of a sequence of partial extensions. 

1) Definition of fi^. on the intersection of maximal and minimal 
parallel canonical regions. On each minimal parallel canonical 
region A of a take a cross section S, which can be chosen on a 
maximal umbilical separatrix. The extremes, a and b, of S have 
natural continuations h^.(a), h^(b); these points define the extremes 
of the natural continuation Ŝ. of S; Ŝ . is on the maximal umbilical 
separatrix of a t which is the continuation of the separatrix of a 
which contains S. Define K +: S-> S + to be any extension of h + : 
{a,b} -* {h.(a),h.(b)} . 

Analogous definition of K^.:T "* T ^ i s made on segments T on 
minimal séparatrices which are cross sections of maximal parallel 
regions B of a. 

On each connected component C of the intersection A OB, define 
K^:C -* C^, where is the natural continuation of C. Notice that 
h t is defined in the corners of C which are either umbilical points 
or intersections of maximal and minimal séparatrices of a . On a 
point p of C define G^(p) as the point in which is on the 
intersection of the minimal principal line of which passes through 
ht(a(p))€ S t with the maximal principal line which passes through 
K T(T(p))€T t. Here a(p) (resp. T(p)) is the point of intersection of 
the minimal (resp. maximal) principal line through p writh S (resp. 
T). This procedure defines a homeomorphism which is a topological 
equivalence between P restricted to the union of the closures of 
the intersections of parallel minimal regions with parallel maximal 
regions of a, and the correspondent objects of at which are their 
natural continuations. 

Notice that the extension n\ defined above is already a topologi-
cal equivalence between Pa and P„t in the case in which a € Sr does 
not have principal cycles. 

2) Definition of fit on maximal (resp. minimal) cylindrical cano­
nical regions of type a) which are contained in the union of minimal 
(resp. maximal) parallel regions. 
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Let R be such a region (Fig.5.2., a). Notice that Gt is already 
defined on bR by the procedure described in 1), using G^ on the 

segments S. This also defines a one-to-one correspondence between the 

lines I of fa|R and those lines ^t of fa |R., where R. is the 

natural continuation of R. Take an arc I of fQ R and its 

correspondent xt of fat Rt The foliation Tat 5t defines a 

Poincaré map nt:Zt - lt with only two fixed points, one attractor 

and one repellor, in the extremes of £,. Take a topological 

conjugation t o t between TTq and TT^, that is etolTt 6t = no 

Define G J t = e. . 
t1 o t 

Extend Ht to R-{ÎQ} so that an arc A0=a,no(a) 

of aa|<R-*0> is mapped onto the arc AT-Et(a),Eto iTo(a) of 

3 
< R f V The map on the arc itself is given by the construction 

of 1) on the minimal parallel canonical regions. 

3) Definition of Kj. on the maximal (resp. minimal) cylindrical 
canonical regions of type a) which are contained in minimal (resp. 

maximal) cylindrical canonical regions of type b). 

Take a minimal cylindrical canonical region RQ of type b) for 

and a homeomorphism 0.:C -* C. , where C is a minimal principal o t o t o 
cycle of cc contained in R and C. is its natural continuation. The o o t 
homeomorphism 0̂ . defines a one-to-one correspondence between the lines 
lQ of falR0 and the lines l^. of f̂  | R^, where R^ is the natural con­
tinuation of R . Now define G. on the maximal cylindrical canonical 

o t 
regions of type a) contained in RQ following the procedure defined in 

2), conjugating first the Poincaré maps. 

4) Definition of Ĝ . on the irreducible semi-transversal regions 

which are contained in minimal (resp. maximal) cylindrical canonical 

regions of type b). 

Let R_ be such a semi-transversal region contained in a minimal o 
cylindrical region of type b). Notice that the minimal principal 

cycle of ÔRQ is contained either in the union of maximal parallel 

regions or in a maximal cylindrical canonical region of type b). This 

implies that G^ by construction in 2) and 3) must be already defined 
in bR . Let p (resp. P ) be a point on the minimal (resp. maximal) o o o 
principal cycle of ^RQ« It may certainly be assumed that ^t^po^=pt 
(resp. G.(P )=P.) depends continuously on (t,p ) (resp. on (t,P )). X O L o o 
Let I. (resp. L.) denote the element of {\ (resp. 3 ) passing t t J.at at 
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through p, (resp. P +), then for any s PL there is a unique "C \> o o o 
point s t P -t-t n L. which is the natural continuation of s . Define 

K t ( s o ) = s f 

5) Definition of Ê . on the maximal (resp. minimal) cylindrical 

canonical regions which intersect minimal (resp. maximal) principal 

cycles. 

Let RQ be such a region,, for a Q, which intersects the minimal 

(resp. maximal) principal cycle C Q. Take a connected component £ Q 

of C Q 0R q. Define ^'^o as in 2), using the Poincaré map. That 

is, if R̂ . and Z^ are the corresponding natural continuations of 

RQ and ZQ. The foliation 3 a |Rt(resp. fa | R T ) defines a Poincaré 

map TI^=Z^ -* Z^. Take a topological conjugation G^: £ Q -* £^ between 

TT and TT and define o t t1 o t 

Now, take a maximal cylindrical canonical region R Q. Notice 

that R Q can intersect only minimal cylindrical canonical regions 

which are of the type being treated now. Define E^ on a connected 

component of the intersection of R Q with a minimal parallel canonical 

region by the same procedure defined in 2). Now, let R* be a 

minimal cylindrical canonical region which intersects R Q. Denote by 

the global cross section to the minimal foliation of R x on 
which E, has already been defined. Given p€ ( B 0 - V (R*-T*) 

there exists a unique arc A P (resp. a p) of ^QJRQ (resp. f a!
Ro) with 

endpoints in I (resp. £*) containing p. The conjugations 

t o t and o o t determine uniquely the images E, (a ) ant 

E. (AJ t p Define K t(p)=E t(a p) n E t( A p) n S i where Ŝ . denotes the 

natural continuation of the connected component S Q of 

(Ro - lo) (Rxo - lxo) which contains p. 

This ends the proof of Theorem 2.4. 
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