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Supplement to "Gauss-Manin system and mixed Hodge structure"”

by Morihiko Saito

This note is a supplement to "Gauss-Manin system and mixed
Hodge structure"(cited as [Sa]), which is submitted for publication
in Proceedings of the Japan Academy. In this supplement, we
discuss the following questions, which we could not discuss in
full detail in the paper:

1) the necessity of a unipotent base change in the formulation
of the result of Scherk and Steenbrink (e.g., counter-
examples to tﬁ%%%%gmulation of Scherk, Steenbrink and Pham,
cf.[Ph]),

2) the diffference between the 1limit Hodge filtration of
Schmid (which is obtained using a unipotent basd&hange)
and the 1limit of Hodge filtration which is obtained without

a base change.

¢1. The main point of the paper [Sa] is the following: in the
formulation of the result of Scherk and Steenbrink, it 1s necessary
to take a unipotent base change. We give two examples in which

first
the [formulation of Scherk, Steenbrink and Pham as stated in][Ph]

A
does not apply. {the first version of

(1.1) First we review the notations in [Sal,[SS] and [Ph].

n+l

Let f:€ 0= C,0 be a holomorphic function with an isolated

singularity, and let f:X - S be a Milnor fibration so that
n

Hy:i= R g0y g

extension « of HX to the origin as a locally free G%—Module

is a locaééystem on 8¥= s—{0}. There is a natural

with a regular singular connection V, such that the eigenvalues
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GAUSS-MANIN SYSTEM AND MIXED HODGE STRUCTURE

of res(tV are in (-1,0]. ( x/is denoted by R:X

a/at’

[Sa,(1.3)].) There 1s another extention ﬁ£§°), which we call the

Brieskorn lattice. }(éo) is a locally free C9S—Module with a

~ +
a regular singular connection such that fC(O) = Qn l / dedQ; i .

It is known that there is a natural inclusion 7((0) C; xf (by

Malgrange), which is @ -linear, preserves the connection and

S
* -

induces an isomorphism on S . df(o) is also a free ®{{8t1}}-

module of rank p, where C{{Bgl}} = { Zi>0 aiaglz ) airl/i! <

3

r>0 } and 23 (Malgrange, Pham).

t = Vasat
The Gauss-Manin system J;C& is defined as an integration

of system (cf. [Ph],[Sal). f}<9k contains sf and je(o)

naturally, and it is a holonomic system on S such that

DR(ILG&) = Rnf*wx.(ffé& is denoted by R&: in [Sal.)

X*XS*U be a base change of x* by the universal
covering vp:U - S*. We set Heo:= Hn(Xw,C)(zr(U,p*HX)), i.e.,

Let X :

Ho 1s the set of multivalued horizontal sections of HX
We have an isomorphism H_ ¥ .JL / tﬁfo s by u > exp

(-log t log M / 2mvV-1) u, where M is the monodromy of H and

X
the eigenvalues of log M are in [o0,1). Here we regard 4 as

a subsheaf of ju( 0%*8 HX), where j:S* + S 1is an inclusion.

first
(1.2) TheAformulation of Scherk, Steenbrink and Pham (c¢f.[Ph] )
asserts the following.
Let {Fét} be the Hodge filtration of Steenbrink on Hy ,

then we have

(1.2.1) 7B, = Al PR A n PR\ (c 4/t H)
for any p , where we set ;€(°) ;?(Og and take intersections
in ffc}x .
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M. SAITO

By a result of Steenbrink, {Fét} is compatible with the

monodromy decomposition H_ = E})\Hw’x s Where me {u € H_ :

(M-A)n+l u =0} . PFirst we give an example for n p =1
that 7((0) / }((oz\ t;io is not compatible with the decomposition

(hence (1.2.1) does not hold.)

(1.3) Example 1. £ =x/5 + y°/5 f2k3y3/3 .
This is the first example in which b-function changes under
a p-constant deformation (i.e., b(s) = (s+l) H§=2(s + i/5) for
a=0, and b(s) = (s+l) HI=2(S + i/5) for a#0 (by T. Miwa).)
We assume now a#0.
i-1_j-1

We have a C{{Bgl}}—basis {wij = x7 ~yY “dxa.dy}

or #) Ler #H) - Xi=o(3tt)i}((°) be the saturation of

}((0). Then we have

i,j=1,""",4

KO = Ty e, vy + el awy,

Set
o,._ v3 -1 -1
vO:= Xj=lc{{at Pwgg + el{og Yo gwy, »
K. _ -1 R
Ve Zi_jak(modS) e{{a; }}wij for k=1,""",4 .
We can verify that for k=o,'"",4 , Vk is an 8“0)—submodule of

iz(°2 ( €£0) = C{t}{{BEl}}) For there is a decomposition

¢i{x,yldx~dy = o) { )) 1-1,3-1

k=0" %3_3y=k(mod5) 21j% dx,.dy}

of Qi ° which induces the one on ﬂf(o) such that the action
3

of t and a;l are compatible with it.

Hence there 1s a decomposition 4 = 0g=0 *fi (resp. Hy =
® Hi » resp. H_ = ® Hi ) as locally free C}S-Modules with connection
(resp. as local systems, resp. as vector spaces with monodromy
action) such that Vi = }E(O)/\ in (resp. _Ji is an extension of

i i i
HX , resp. H_ = F(U,p*HX)).
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GAUSS-MANIN SYSTEM AND MIXED HODGE STRUCTURE

The action of 9.t on V° / tV° is given by the following

matrix,
Wiy dgWyy o Wop W33

wll 2/5 0 0 0
Woo * * 4/5 0
Wag * * * 6/5
This implies
Wa3 = 0 (mod t 4/ )
Woy = t_1/5 ® uy (mod t 47 )
B wy, = £~2/5 g ug (mod t & + Cwy,)

=
1]

11 = t73/5 g u, -(a/3) £72/5 @ uz (mod tf + Cwy,)

where {u,l}, . ... is a basis of H® such that M u, =
i71i=1, S U ©

i
exp(-2mY-1 i/5) uy .
Thus we have (Je(o)/ ]((o)n t,{o)nng = Cuy + C(u2—(a/3)u3),
hence %(O)/ #(o)n t’(o is not compatible with the monodromy
decomposition, because we have J(’(O) = G)i j((o)n “fi.

Remark. We have Hooo = Cu2 + Cu,_l, because we have

1
Fst n
t3n*u,. = 1 @ u, (mod t & )

11 © 2 >

where @w:S—=> S 1is a 5-fold covering such that ¥t = E5 and

,f (= "CX in [Sa]) is an extention of n*Hx as in (1.1) (cf.[Sa(3.2)]).
(1.4) Example 2.
Let f:CE,o + ¢,0 be a holomorphic function such that
{f=0} 1is an irreducible and reduced curve. We show that
F%t # }((O)/ ;((o)(\ t/{o if f 1is not quasi-homogeneous.

Proof) By a result of L& and A'Campo, the local monodromy is semi-
. _ 1 (o) (o)
simple and I-Io",’:L = {O} . Suppose Fg, = 7{ /AN t’Jo holds.
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M. SAITO

u/2
There is a basis {uJ}J=l,"',u of H_ such that FSt z
Guj and M uJ = exp(-2wv/-1 aJ) uj, for Fét is compatible with

the monodromy decomposition. We may assume that -1 < aj <0

(1<jzu/2), 0 < aj <1 (u/2<j<u) ana = 0 by the

%5 T 1oy
duality of exponents.

We set v:=tM @ uy ¢4 for j=1,""",u anda V:= Z§=1

w{t}VJCI;( V is a free C’S-Module containing JZ%O), because
of F JC(O)/ f((o)r\ t’!o’

Let {Yi(t)}i=l R be a multivalued horizontal basis of
S b

Lk es* Hl(Xt’C) and {WJ}J=1,"',U be a 6g—basis of j(éo).

Then (det(IYi(t) )) and (de’c(J’Y (t) ¥ )) are both nowhere

vanishing holomorphic functions on S, due to the duality of
exponents and a lemma of Kyoji Saito.

Then we have V = J((o), for there is a basis {e;} of V
m
such that {t ‘e )

It is clear that }((o) =V 1is saturated (i.e., t3.V V).

is a basis of Jéo) (m;20).

Hence f 1s quasihomogeneous by a result of Kyoji Saito. Q.E.D.

Remark. In general, we can show the following.

Let f:¢2,o-9 C,0 be a holomorphic function with an isolated
singularity. We assume that the local monodromy of f 1is semi-
simple. Then J((o)/ ﬂ%o)n t,?o is compatible with the monodromy

decomposition, if and only if f 1s quasihomogeneous.

Problem. For n=1l, does the subspace a{(o)/ a((o)n t;/o of H,
determine the local moduli of f in the family of u-constant
deformation? In general, does }e(O)C g? determine the local

moduli of f 1in the u-constant family?
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§2. The examples in 81 mean that the proof of the formulation

the first version of
of Scherk, Steenbrink and Pham such as stated 1nI|PhI is not

complete. This contradiction comes from the following.

(2.1) Let (HZ’ F’') be a polarizable variation of Hodge
structure of weight n on s¥*: i.e., Hz is a local system on
S*, ?%° are holomorphic subbundles of 65* @ HZ such that
3 FP C ?p-l, and there is a bilinear form H, 8 H, ~ Z such

that they induce a polarized Hadge structure on HC £ for Vté-S*.
3

Here Hg = Rnf*CY| g* and f:Y> S is a compactification of a

Milnor fibration f : X= S , cf. [Sa,(l.lJ .

~

Then f}' can be extended to the origin as subbundles F
of T , where J 1is an extension of Hg = € ® H, as in (1.1).
But the 1limit filtration l%'|t=0 of Hc,m = J/ tT 1s different
from the filtration F_, of Schmid, which is obtained using a

unipotent base change by Steenbrink.(HC o= F(U,p*Hc), cef.(1.1))
3

~

(2.2) First we show the existence of the extension F.

We fix the coordinates t and z of S and U such
that S = {|t|<1}, U = {Im 2z>0} and p*t = exp(27/=T z).
- * 5 * :

A natural isomorphism HC,w = I'(U,p HC) > (p Hc)z induces

a Hodge filtration Fé on HC »» Which depends holomorphically
’
1

on z. As we have FZ+1 = M

filtrations on Hg ., which depend only on t = exp(2nv/-1 z).
3

Let M = MS Mu be the Jordan decomposition of M and set

Fé for Yz ¢ U, exp(z log M) Fé are

N:= log Mu (N is nilpotent). As MS has a finite order e (cf.

[Sc,(6.1)]), exp(z N) Fé depends on E£:= exp(2nv/-1 z/e).

The Theorem of Schmid [Sc,6.16] assures that there exists
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a limit Fe = lim exp(zN) F° in the flag manifold of H s
Im Z weiht C,»
8]

such that the Hodge filtration {F;} and the monodromyAfiltration

Z")m

{W.} determine a mixed Hodge structure on H, _.

3
~

Using this theorem we show the existence of F°.

If we choose an G@-basis of T , the subbundles 7P  determine

a holomorphic map o:5% » Flag(Cm), and the existence of F is
equivalent to the extension of ¢ on S.

1 be a basis of H such

Let {uij 1=1,°°°,2, =0, ,ri-1 ¢,

that -N/(21/=1) u;, = u (uy _1:=0), Mouy o= exp(2nv=1T ai/e)

J J

i,5-1 i,-
Uy 4 (aj_e [0,e-11]).

Then {viJ = exp(-log t log M/2m/-1) uij}ij (resp. {Gij
exp(—lo% T eN/2mv/=T1) uij}ij) is a 6%-(resp. C7§-) basis of ir
(resp.fy'), where the eigenvalues of 1log M are in [0,1). We
remark that in general we have j' # n*jr, i.e., there is a natural

inclusion 7'<ln*:7 such that ﬂ*vij = g7ai Vige

Using these basis, £ (resp. éi':= ¥ F°) can be identified
with a holomorphic map ¢:5* -» Flag(Hm’w) (resp. :5% » Flag(HC’w))
such that ¢(t) = exp(z log M) Fé (resp. () = exp(zN) Fé),
for t = exp(2nv/=1 z) (resp. £ = exp(2n/=1 z/e)).

Using Plicker coordinates, we can regard ¢&(resp. $) as
® = (¢ (t):i---:0,(£)):5* » PX (resp. & = (§_(E):--+:§, (£)):8% » By,
where ¢i (resp. $i) are holomorphic functions on S* (resp. s*y.
Moreover, there are holomorphic functions g4 on S such that
¢i(ﬂ(f)) = gi(E) 51(5), because we have "*Vij =g 613 and
vectoﬂbudles on s* are trivial.

By the result of Schmid, ¢ can be extended to the origin

holomorphically. Hence there is a nowhere vanishing holomorphic

function h on S* such that h-&i and h.ﬂ*¢1 are holomorphic
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at the origin. Let h(f) = Zj;% hJ(ﬂ(f))'fj be a decomposition

of h such that h are holomorphic functions on s*. Then

J

h -¢i are extended to the origin, and also is ¢. Q.E.D.

J

(2.3) The reason why $.lt=0 # F, 1s obvious from the proof.

Ir & = %07, they coincide, but this does not hold in general.

Example 3. Let HZ be a local system on S*, having a multi-

valued basis {el,e2} such that M €] = €5 M €y, = - €; ~ €5

where M 1is the monodromy of HZ,(M3=1) We define a skew symmetric

bilinear form <,> on HZ by <€1,€5> = 1 , and a Hodge subbundle

Fl.- B’S* v C 08 Hy by v:i=g(t) 8e

1
t_1/3 +C t'2/3 , h(t):=actt

+ h(t) © es where

-1/3 - t-2/3 s C3 = 1’

g(t):= - a
Imz >0, a€C , a#0 and lal<<1 .

It is easy to see that they form a polarized variation of

Hodge structure of weight 1 . (We set F°:= ©O8 Hy » $2z= {ol.)

For example, -1 <v,v> = -2 Imgh >0 comes from Im ¢ > 0
and |a| << 1

- *
We define another basis {ul,ua} of Hc’m = I'(U,p Hc) by

upi= - oeq + C €5 5 U,:= z e - €, such that M U = % uq o,
- -1 _ -1/3 -2/3
M U, [ U, and v =a t ® u, + t ® u,
Then we have
o(t) =¢ (au, +u, ) (CH ) for Yt e s* ,
1 2 C,»
ory > v~ a*
o(t) C (at u; +ou, ) (¢ HC,W ) for t s* .

Hence ¢(0) =€ ( a u; +ou, ) # 9(0) = € uy (v a#0).
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§3. Some remarks.

(3.1) The use of the Gauss-Manin system J.CE( in the formulation

of the result of Scherk-Steenbrink was first claimed by F. Pham

(cf. [Ph]). One might think that J‘GX and r&x @o‘ Q[t‘l] = "‘fg ‘?c[t-l]
would produce the same filtration, because we are considering th;

limit of the filtration on S* = S—{0}. But this is not true,

because the fundamental short exact sequence

° e
0—> 86, ~——>J(9Y—~—+JGX-—>0
does not split as &%-Modules in general, and we have an inclusion
v ¢
I@Y C’JQY 8 @[t—l] (cf. [Sa (2.5),(3.5)]). (The above exact
s
sequence was found independetly by F. Pham (cf.[Ph 4.1]).)

(3.2) The rest of the proof of Theorem (3.2) in [Sa] is almost
the same as Lemma 2 in [Val]. It is possible to prove the
theorem without using it. For we can show the following. Let
Y - Y be a modification which is isomorphic on s*. (Y is smooth)

Then J’GY is a direct factor of JC%Y as a filtered complex (cf.[Sal')

(3.3) Let R be the residue of tat: 7%‘0) > J%KO) . Then
exp(-2m/=1 R) and the monodromy M are conjugate to each other
as matrices for n =1 (i.e., {f=0} is a plane curve).
Combined with the result of Malgrange (Springer Lect. Note,

459, p. 115, Theorem (5.4)), we have the following. Let
m
)

b(s) (s+1) I, (s+ay be the b-function of f , and let

r
a(s) = HJ(S-A )’J be the minimal polynomial of the monodromy.

J

Then we have rj = max{ m, : exp(-2mv/-1 ai) = Aj} for n=1.
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In fact, let {uij}ij be a basis of H_ such that

w -
{uij}3=1,...,21 is a basis of Gry H, for 1 =0,1,2,

where W 1is the weight filtration [St]. Since F and W are

compatible with the monodromy decomposition, we may assume that

1

u,, € FH, for 1i=1, j>&;/2 or 1i=2 , and Msuij = exp(-2mv/-1

i

aij) Uy with aijé(—l,O], where M = Ms Mu is the Jordan
decomposition. Since N = log Mu acts on H_ as the morphism

of type (-1,-1), we have N uij =0 for i<l , and we may
assume that - N/(27/-1) Upy = Ugy for j<%g and N Upy = 0

(hence QZJ = 0) for J>4

We set v exp(-log t log M /27/-1) uy

aij

ij J

for 1<l or 1=2, j>%&,

[}

{t uij
o o
g 2d Upjy + t 2'j(log ’c)uoJ for 1=2, j<f&q »

so that {v,.,} is a C{{Bgl}}-basis of £ .

ij
By [Sa,(3.2)], there is an element wijeJC'(O), such that
~%% g w _ ~ 1
t s (Vi,j wij)ét;( for uiJéF H,
-eo -~
> i = ~ 1
and t ™ (v1J - atwi,j) e £t for Uy g ¢FH_,

where 7m: Sat » t=te¢ S 1is a unipotent base change and Jf

is the canonical extension for W*HX . Hence

{a’cwij}i=0 or 1=1,j<8,/2 \V {‘”13}1=1,3>11/2 or 1=2 15 a c{{agl}}_

basis of !{ s and we have 8;11C J((O). Then by the induction

on the ei o
genvalue 15 ° we~can show that VOJ s Vlj (j>21/2)
and VZJ are contained in ]C (o).
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For example, let v = Z vy be an element of ?ﬁ(o), such
2 =
that (tat - ai) vy =0 and o # aj for 1 #j . We may
assume that (t3t - ai) vy =0 for 1 > 2 by the induction
hypothesis, wWhere v = [ v, 1s the expansion of wy, (J< %)

-1
modulo 3t k( + 2a23,>a23 [ V2j' . Then vy and (tat - ai) vy

are contained in dk:(o), because we have the following identity:

rl , O s 1 5 o o . s 1y
oqs 1 > Ops o s O
2 2 2
det oy, 2al > G55 - > O
k k-1 k
Loy, kal > %o . > Oy

=r My (oy —ay) Tyoy (g - aq).

Xith m<g)/2

Thus 3&2(0) has a basis {v,.}U{v..} {v }\/{a'lv } |
0j 157 3>mU W2y t V13 y<m

(by changing {ulj} if necessary), which gives the desired result.
In general, we have that a;n,! <l }C(O), which implies that
+
gtl ") C9'Bf/axi . But I do not know whether exp(-2nv/-1 R)

is conjugate to M for n > 2 .
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