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PARTIAL RESOLUTIONS OF NILPOTENT VARIETIES 

Walter Borho and Robert MacPherson* 

INTRODUCTION 

Springer [S3] uses the variety of flags in (Cn to define a resolu­

tion of singularities TT : *JY •+ tA" for the variety of nilpotent matrices in 
GL(n,(C) . We define "partial resolutions" £ iJP -> JV of *yf by replacing & 
by a variety # of partial flags. We use them to extend our analysis [BM] of 
the topology of the singularities of by means of intersection homology and 
by Springer's theory of Weyl-group representations. Both Springer?s analysis 
and ours hold for a general reductive group. In chapter 0, for the convenience 
of the reader not familiar with the theory of Lie groups, we interpret the 
spaces and constructions involved for the special case GL(n,(C) , the group of 
complex invertible n * n matrices. 

In chapter 1 we develop the general theory of a composition of maps of al­
gebraic varieties 

TT 

*'JIT 

possessing the key property for our work: all three maps are semismall, i.e. 
the dimension of the inverse image of a point in a stratum is at most half the 
codimension of that stratum. We relate the topology of the maps to the inter­
section homology of the closures of the strata, using a decomposition theorem of 
Beilinson-Bernstein and Deligne-Gabber (1.7). 

In chapter #2 we set up in more detail the concrete group theoretical 
situation studied in this paper. We recall Springer's theory of Weyl group 

*Partially supported by the National Science Foundation, 
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representations on the homology of the fibers of TT , and extend it in an ap­
propriate way to the fibers of ri and £ . We give some new applications. 
For instance, we prove that the variety JV of nilpotent elements is a rational 
homology manifold (2.3). 

In chapter 3 we apply the analysis of the first two chapters to a new, uni­
fied study of certain fixed point subvarieties in generalized flag varieties, 
studied first by Steinberg (case 3* ,[St2]), resp. by Spaltenstein (case 
^,[Sp] ), resp. by Springer (case ̂ ,[S2] ), and since then in many other pap­
ers, e.g. [HS], [HSh]. We show how to deduce geometrical data about these 
varieties from Springer's Weyl group representations in terms of induction and 
restriction. In particular, we compute the homology of Steinberg's varieties 
(2.8, 3.7), which extends the results of Hotta-Shimomura [HSh] on GLn , and al­
so of Spaltenstein!s varieties (3.7), and we count components in Springer's va­
rieties (3.1). Our setting gives also some geometrical understanding of 
the "induction" of nilpotent orbits in the sense of Lusztig-Spaltenstein (3.9). 

Acknowledgements: We wish to express our gratitude to A. Lascoux, G. Lusztig, T. A. 
Springer, and P. Slodowy for helpful discussions. Our special thanks are also 
due to the Institut des Hautes Etudes Scientifiques at Bures-sur-Yvette, as 
well as to the Sonderforschungsbereich Theoretische Mathematik and the Max-
Planck- Institut fur Mathematik at Bonn for kind support and hospitality. 
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§0 THE CASE OF GL(n,(E) 

In this paper, we shall deal with a reductive complex Lie-group G , and 

with the variety & of conjugates of a parabolic subgroup P with a Levi-

subgroup L . However, let us consider for the purpose of this chapter only 

G = GL(n,(C) , the group of invertible complex n x n matrices. Then L and 

P are determined by the choice of a decomposition of (Cn into a direct sum of 

subspaces E^, ... ,E^ , of dimension p^, ... ,p̂ _ , say: L resp. P is the 

subgroup stabilizing each subspace E^ resp. each subspace 

F. = E,+E0 + ... + E. for i=l, ... ,r . Then F = (F , ... , F ) is called a 1 1 2 l 1 ' r 
partial flag of type p = (p^, ... ,p^) , and & is (isomorphic to) the variety 

of all partial flags of type p . One of our goals is to study the subvarie-

ties ^ of all such partial flags fixed by a given nilpotent matrix x (mean­

ing that xF icF i for all i ), which were introduced by Steinberg [St2]. 

The partial Weyl-group W P is the finite group of permutations of the 

spaces E ^ ... , E^ preserving dimensions. We shall define a linear WP-action 

on the cohomology groups H 1 (£*,<!}) , called partial Springer representations. 

In our analysis, the Steinberg varieties &^ shall be just the fibres of a cer­

tain map •+ JV, called partial (Springer) resolution, which is the main 

subject of this paper. It is defined as follows: JV is the variety of all nil-

potent complex n x n matrices, Jlft is the variety of pairs (x,F) consisting 

of a nilpotent matrix x and a flag F of type p fixed by x , and £ is 

the map which forgets F . 

Consider the special case p = (1, ... ,1) , that is to say F is a com­ 

plete flag, or equivalently, P is a Borel subgroup. Notationally, we write BB 

instead of & in this case, and we omit the superscripts p or the word "par-
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tial" everywhere: The situation described above reduces to the (ordinary) 

Springer representations of the (ordinary) Weyl group W on the cohomology 
i ~ 

H (^>Q) of the fibres of Springer's resolution, which is denoted ir : <sV -*JY. 

The map TT is actually a resolution of the singularities of J\f . 

We shall study the partial resolutions as defined above by means of a 

factorization TT = £JI \JV ^yV of Springer's resolution: the map r| for­

gets the complete flag partially, while the map £ forgets the partial flag 

completely. We can stratify these maps £ resp. n by strata 0 c^resp. 0 
x y 

as follows: The strata 0^ are just the conjugacy classes (G-orbits) of 

nilpotent matrices. A stratum 0^ consists of all pairs (x,F) of a nilpotent 

matrix x and a partial flag F e P such that x fixes F , and induces on 

all subquotients F
i / F

i _ 1 = % ± an endomorphism t± of a given Jordan-type (de­

pending on i ). For these stratifications of £ resp. n , it turns out that 

the fibre always has dimension less than or equal to half the codimension of the 

corresponding stratum. A proper algebraic map with this property is called 

semiSmall. For the singularities of such maps, a particularly elegant descrip­

tion in terms of intersection homology sheaves, is available, see 1.5. We apply 

it to 7T,r),£ to derive our results. 

Let us consider the singularity structure of the varieties 0^ , the clo­

sures of the strata 0 of Jv^ . There is a unique closed stratum, say 0 , 
y y 0 

consisting of those pairs (x,F) such that the nilpotent matrix x acts 
trivially on all subquotients of the flag F . It is easy to see that 0 

y 0 

identifies with the cotangent bundle T*& of & (by the map forgetting x ). 

There is a topological (not algebraic) fibration of «/fp onto T*P which makes 

0 into a fibre-bundle with base T*.^, and fibre 0^ , the predescribed (L-) 
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conjucacy class of nilpotent endomorphisms (t^, ... >t^) = t , say, of 

E., , ... ,E . Since T*#* is smooth, the varieties 0 have the same singu-1 r y 
larity type as the varieties '0^ . This explains how the intersection homology 

sheaves of 0^ relate to those of 0^ . 

In each Steinberg variety ^ of flags F fixed by x , we may consider 

the subvariety °f flags such that the endomorphisms induced by x on 

the subquotients belong to 0 . The closures of these varieties general­

ize the Steinberg varieties (case t "in general position"), as well as the 

varieties studied by Spaltenstein in [Sp] (case t = 0 ), and in 

[BM], -§7. In our setting, we can study them in a unified manner, 

since they all occur as fibres of our partial resolution restricted to 0^ , 

the closure of the appropriate stratum. Extending results of Springer [S2], and 

Hotta-Shimomura [HSh], we will show how to deduce geometrical information on 

the varieties from representation theory of Weyl groups. For the case GL^ 

considered here numerical data such as the Betti numbers have elegant explicit com­

binatorial descriptions in terms of Kostka numbers, semi-standard tableaux etc. 

However, we will forego the combinatorial aspects here, and refer instead to 

[HSh], and to [Md] for this topic. 
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[W], m. 39 

§1 SEMI SMALL MAPS, INTERSECTION HOMOLOGY, AND THE DECOMPOSITION THEOREM 

1̂ 1 Semismall maps and relevant strata 

Let 7T : Z X be a proper algebraic map of one (nonempty) irreducible 

complex algebraic variety onto another. Let X = \J 0^ be a disjoint decompo­

sition of X into a finite number of irreducible smooth subvarieties, called 

strata. Here x denotes a distinguished base point in the stratum 0^ . We 

assume that this stratification makes ïï a weakly stratified mapping, i.e. that 

it satisfies the following condition: For each stratum 0^ , the restriction of 

Tr to its preimage TT ̂ 0 is a topological fibration with base 0 and fibre 

X x 

TT ̂"x . (Stratifications satisfying this condition always exist, see [Hd] and 

[T], p. 276.) 

We denote by d the dimension of the fibre TT "SC and by c the codi-
x x 

mension of the stratum 0 i.e. c = dimX - dim^ . If not otherwise stated, 
x x x 

"dimension" always means complex dimension. 

Definition: The map TT is semismall, if 2d ^ c for all x . A stratum 0 
' x x x 

i s relevant for TT , if equality holds, 2d x ~
 c

x • A n^p is small, if it is 

semismall, and the only relevant stratum is the dense one. 

Remark : The properties of IT being semismall or small do not depend on the 

choice of a stratification. That TT is semismall can be rephrased in a strati­

fication free way as follows: 

for all i , dim{p e x|dim IT""1? > i} < dimX - 2i 
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If TT is semismall and is stratified in two different maps, there will be a 

one to one correspondence between the sets of relevant strata for the two strati­

fications. Corresponding strata are characterized by the property that their 

intersection is open (and dense) in each of them. 

¿=2 Monodromy-representations of local systems 

The fundamental group of a stratum 0 acts on the highest cohomology 

-1 X 2 d x -1 
group of the corresponding fibre 7T x , denoted v

x

 = H x,Q),by monodromy. 

Since 2d < c , V has a basis corresponding to the d dimensional irreduc-
x x x x 

ible components of TT "'"x , and ^\^^} acts by permuting these. This linear 

representation of TT (0 ) on V is denoted p . It is the monodromy repre-
x 2d 

sentation of the local system on 0^ obtained from the sheaf R X,JT*fi(z) by re­

striction to 0^ . Here §(Z) denotes the constant sheaf with stalk Q on 

Z . Let us write 

(1) y = Jm, ..(J) or also V = £Dv. ® V, .N 

x £ (x>4>) x >P (J) (x,(j)) 

for the decomposition of (within the Grothendieck group) into inequivalent 

irreducible representations d> : TT, (0 ) EndV. . Here V, ,x = 
1 x <f> (x,(()) 

Horn /^r\(V, ,V ) is a C-vector-space of dimension m, ,N = mtp(d),u ) , the 
TT- \0 ) <p X (X,(})) rxY»h-x/ 

I X 

multiplicity of (j) in v . Now any linear representation p of 7T- (0 ) on 
X J. X 

a ^-vector-space V determines a unique local system L^ with monodromy rep­

resentation p (i.e. a locally constant sheaf with stalk over x ) on 

0^ . With this notation, we may write 

(2) 
P x * (x,<J>) 
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2d 

for the decomposition of R ^^(Z)] 

from (1). 

-, into indecomposable local systems derived 
^x 

Definition: Assume TT semismall. A pair (x,<f)) as above is relevant for IT , 

if the stratum 0^ is relevant (1.1), and if the irreducible representation <p 

of its fundamental groups occurs in y , i.e. if (f) satisfies V, f 0 . 
x v.x, cpj 

Lemma: 

a) The multiplicity of the trivial representation (j) = 1 in y , m. -. = 
X V.X , J-) 

dimV, , coincides with the number of TT., (0 )-orbits in the set of d -dimen-(x,l) 1 x x 
sional components of TT x . 

b) The following are equivalent: 

(i) For at least one <J> , (x,<J)) is relevant for IT . 

(ii) (x,l) is relevant for TT , 

(iii) 0^ is relevant for TT . 

Proof: It is implied by the definitions, that V. . identifies with the space 
2d U ' ; 

of TT^(^)-invariants in = H X(TT x,Q) . The lemma is now clear from the 

interpretation of as a permutation representation. Q.E.D. 

1 1 . 3 1 ^ n t e r s e c ti ° n homology 

Given a local system L, on a stratum 0 as above, let IC (L,) denote 
<p x — q> 

the intersection homology sheaf with coefficients in L^ . This is a certain 

complex of sheaves of Q-modules on 0^ defined as in ([GM2], §2.1 or §3.1, mid­

dle perversity) up to a dimension-shift of -2dim^ , such that H° (IC (L^)) re-
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stricted to 0^ is . Here and below H*(...) denotes the i-th cohomology-

sheaf of a complex, and (...)^ will denote the stalk at u of a sheaf. The 

local intersection homology groups of 0 at a point u e 0^ are defined by 

H±(X, X - {u}; Q) « <H±(X, X 

1̂ 4 Rational homology manifolds 

Recall that a complex variety X is called a rational homology manifold 

(of dimension n ), or is said to be rationally smooth, if for all points u e X 

we have 

H±(X, X - {u}; Q) « < 
«) for i = 2n 

0 otherwise 

Here denotes ordinary homology. A rational homology manifold of dimension 

n has pure dimension n as a complex variety. 

Rational homology manifolds are classical objects of topological study. 

They may be thought of as "nonsingular for purposes of rational homology". For 

example, Poincaré and Lefschetz duality hold for them in rational homology. Ex­

amples of rational homology manifolds include surfaces with Kleinian singulari­

ties, the moduli space for curves of a given genus. More generally, v-manifolds 

are rational homology manifolds. 
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PROPOSITION. The following are equivalent: 

(i) X is a rational homology manifold . 

(ii) Z2X âll u e X , 

I H J ( X . U ) = 

q for i = О 

0 for i ф О 

(iii) B^Ifi ' w » = <( 

|(X) for i = 0 

0 for i + 0 

Proof: To prove that (i) implies (iii), consider the dualizing complex D [-2n] 
X 

of X with rational coefficients (see [GM2], §1.6) where [-2n] denotes a dimen­

sion shift by -2n . The dualizing complex satisfies 

H1(D^[-2n])u = H 2 n_ ±(X, X - u; <Q) 

so by (i) the map fi'(X) -*• gx[-2n] iduced by capping with the fundamental class 

of X must be an isomorphism. Further the Verdier dual of D^[-2n] is g(X) • 

Therefore $(X) satisfies the axioms AX3 of [GM2] characterizing Ig#(Q) . 

Statement (iii) clearly implies statement (ii), so the interesting part is to 

show that (ii) implies (i). 

To do this, we proceed by induction on the codimension c of the stratum 

of a Whitney stratification of X containing u . For c = 0 , X is smooth at 

u so (i) is clear. Suppose we have established (i) for all strata of codimen-
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sion less than c . By standard Kunneth and coneing arguments, 

0 
H±(X, X - u; <Q) S ^ 

for i < 2n-2c 

. Hi-2n+2c-l ( i K Q ) f ° r 1 > 2 n ~ 2 c 

where & is the link of the stratum containing u . By the induction hypotheses 

& is a rational homology manifold of dimension 2c - 1 so it satisfies Poincare 

duality over Q . Therefore it is enough to calculate its homology in half the 

dimensions; that is it is enough to show 

"Q for i = 2c-l 

0 for c < i < 2c-l 
H1 (L1Q) 

However, for c < i < 2c , we have 

H±(iRQ) = I H 2 C " 1 ' " : L ( ^ ; Q ) 

= I H2c-l-i ( x^ ) 

so we are done. 

Remark: It is not true that condition (ii) of the proposition for a single point 

u € X implies the rational homology manifold condition at that point. For ex­

ample consider the cone over a surface obtained by identifying two points of the 

complex projective plane and suitably embedding it in projective n-space. 
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1.5 Decomposition of the cohomology of a fibre in terms of intersection homology  
of the strata 

We now come to the central topic of this chapter. From now on, our map 

TT : Z -> X will always be projective and semismall, Z will be rationally smooth, 

and X will have the same dimension as Z . 

Theorem: Assume that our map TT : Z •+ X is projective and semismall, that Z 

is rationally smooth and that dimX = dimZ . Then for any u € X , we have 

(*) H 1 (TT 1Z,0) 
(ХТФ; 

i-2d 
IH 
u 

*(0 L J 0 V (x,« f 

where the summation is over all pairs (x,<J>) relevant for TT (but the contribu­

tion is zero unless u e 0^ ). 

In other words, the cohomology groups of a fibre TT ̂ "U can be computed 

from the intersection homology of the closures of strata 0^ containing u , us­

ing only the highest cohomology groups of the corresponding fibres TT "St . This 

theorem will be an immediate consequence of the decomposition theorem §1.7, 

established by Deligne, Gabber, Beilinson, and Bernstein on the more abstract 

level of derived categories. Formula (*) will follow from the decomposition 

formula §1.7 (**) by applying the functor g 1(...)^ . 

In the next section, we develop preliminaries necessary for the decomposi­

tion theorem. 
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1.6 Perverse sheaves 

The idea of a perverse object in D^(X) was introduced by Deligne and 

Beilinson-Bernstein. This is a purely topological concept. A complex S on a 

purely n-dimensional variety is perverse if it satisfies the support condition 

i • 
dim(support H S ) < n-i 

and the dual support condition 

dim(support H1VS*[-2n]) < n-i 

where V is the Verdier duality map (normalized so that on a smooth variety M 

of dimension n , V(£M) = §M[2n]) . 

We shall need the following properties of perverse objects: 

1. ([GM2]), §6.1) for a stratum 0 , j*IC*(L,) [£] is a perverse object if and 
X 3*= (p 

only if £ = -2d . 
x 

2. (Beilinson, Bernstein, Deligne, Gabber [D3]) The full subcategory of D^( x) 

whose objects are perverse forms an Abelian category whose simple objects are 

exactly those of the form j^IC (L,)[-2d ] for some stratification {0 } of 
*== (p x x 

X and some simple representation cj> of ir (0 ) . 
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L 7 The decomposition theorem of Beilinson, Bernstein, Deligne, and Gabber 

Suppose now that TT : Z X is a proper semismall map of a rational ho­

mology manifold Z of dimension n to a purely n-dimensional variety X . Then 

A = RTT^g(Z) is perverse. The support condition follows directly from the fact 

that TT is semismall and proper. Since Z is a rational homology manifold of 

dimension n , we have V §(Z) = §(Z)[2n] . Therefore 

V A* = V RTT^ £(Z) = RTT^ V §(Z) 

- R7T^(g(Z)[2n]) = (RTT^ |(Z))[2n] = A*[2n] 

so the dual support condition holds also. 

Decomposition theorem: Assume that our map TT : Z X i_ŝ  projective and semi-

small, that Z ±s_ rationally smooth and that dimX = dimZ . Then in the cate­

gory of perverse sheaves on X „ 

a) RjXIC (L^) [-2dx] Is a_ simple object for each (x,(J>) , 

b) A - R7T*g(Z) ̂  ® RJXIC'(L )[-2d ] 8 V , (**) 
(x,cf>) 9 K * 9 ) 

where the sum extends over all pairs (x,c)>) relevant for IT . 

Proof: Part a) follows from property 2) of §1.6. To obtain part b), we first 

write the more general decomposition theorem of Beilinson, Bernstein, Deligne, 

and Gabber [D3], [BeBe], [GM3] which asserts that for any projective map 

TT : Z X , 
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0^,L^>l0^,L^>l0^,L^>l0^,L^>l0^, 

for some subvarieties 0^ , some local systems on 0^ , some integers I , 

and some vector spaces V, , o x . In our case, the left hand side of this 
» 

formula is just RTT^ § ( Z ) = A since Z is a rational homology manifold. It 

remains to check that the data 0^,L^>ly ^ on the right hand side are as 

claimed in the theorem. 
Since TT : Z X is weakly stratified by the 0 . it follows that the 

x 
sheave H 1 A are locally constant on the 0^ , therefore the 0 may be taken 
to be a subset of the 0 . Since A is perverse, the integers I must be 

2dx, . 
-2dx . To determine the remaining data, we consider H A restricted to 

0^i . Only the terms of the right hand side with x = x* contribute to this by 

the support condition for IC (see axioms AX1 of [GM21). For these we see 

L. must be L, and V. . n x must be V, for equality to hold. (f> cj) (x,<t),l) (x.0) 

-=- Example: small maps 

Assume that the only stratum^ relevant for TT is the dense one, and that 

TT is an isomorphism above this stratum. Or in other words, assume TT is a 

small resolution. In this case, the sum in (**) reduces to a single simple sum-

mand. More generally, if TT is small, then (**) reduces essentially to a result 

of Goresky and MacPherson [GM2], §6.2. 
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1.9 Reformulation as an Artin-Wedderburn decomposition 

The decomposition theorem 1.8 says that A = R7T^Q(Z) is semisimple as 

an object in the category of perverse sheaves (§1.6), so it has a semisimple 

endomorphism-ring, which admits an Artin-Wedderburn decomposition into a direct 

product of matrix rings over skew fields. We may express it in terms of the 

decomposition formula 1.7 (**) as follows: 

Corollary: End A* ̂  II K, 8 End-V, , where K, is the skew- " = ( x ^ (x,4>) <Q (x,c|)) (x,cl>) 
field of endomorphisms of <J> . 

1.10 Product of two semismall maps 

Assume that Tr = £n is a product of two proper algebraic maps 

Z- >Y *X , that TT,£.n are semismall, that Z is an n-dimensional rational 

homology manifold, and that Y and X are purely n dimensional. We choose 

stratifications {0 } of Y and {0 } of X so that Tr and n are weakly y x 
stratified. Maintaining all notations previously introduced for IT , we have a 

decomposition formula 

(1) A* = RH^(Z) = ((3) »d. I £ * < V [ " 2 d x ] 0 V ( x A ) 

for the map TT , and using the strata 0^c Y for r\ we have with completely 

analogous notation another decomposition formula 

(2) 1* - Rn*fi(Z) = ft) Kjl J C \ L )[-2d ] 8 V 
(y»*) T 
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for the map r\ . They are related by the fact that 

(3) A = R^B* . 

Our purpose is to analyze this relation, and to draw some conclusions con­

cerning the fibres of £ . 

Let us consider for each 0 relevant for n the restriction £ = Ei^ 
y y J 

of Ç to 0 . 

Lemma: For each pair (y,^) relevant for r\ and for each x , the sheaf 
2d 

R X(£ ). IC (L,)f-2d ] will be a locally free sheaf when restricted to 0 ŷ * = \\j y x 
2d -2d 

with stalk H x Y ( ? y x, IC (L^)) . 

Here K(...) denotes hypercohomology of the complex of sheaves on ^y^x 

obtained by restricting IC (L^) . 

Proof: This is locally free because, by the decomposition formula for n , 
2d ^ 2d 

R X(C ). IC*(L.)[-2d ] will be a direct summand of R X TT.Q(Z) which, since y * =» \p x yc— 

TT is weakly stratified., is locally free on 0 . 

To identify the stalk, form the diagram 
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-1 b _ 
K x » 0 
y y 

{x}-

2d 
Then R X ( ? y ) * I£ < V [ " 2 d y ] x 

2d -2dAr 

- B X Yc*R(S y)* IS V 
2d -2d * 

- f f l X ***** 3& ( V 
2d -2dr -, 

-m x y ( ^ x , £S ( y ) 

Remark: In the event that 0^ is rationally smooth at all points in £ y x , 

and L. extends to a local system L, over £ ̂ x , then ip \p y 

so the stalk of the local system is an ordinary homology group which twisted co­

efficients. If 0 is rationally smooth at all points of £ *"x and = 1 , 
y y 

then 

H±<Clx. ig'cv* = Hi(Cylx' ,) <Clx. ig'cv* = Hi(Cylx' ,) • 

H ±<C l x. i g ' c v * = H i ( C y l x ' , ) • 
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We write the decomposition of the monodromy representation for this local 

system in to isotypical components as follows: 

(4) м х у < х - =чНв v(x:S = ч Н в v(x:S(x:S(x:S 

where is a simple ^^^x) representation occurring with multiplicity 

m^'fj = dimV^*^? . Here we chose the notation analogous to that used for the (x,<(>) (x,<(>) 
decompositions of the monodromy representations for TT resp, r| (cf. 1.2), 

(5) 

2d 
* (x,« H x(ir 1x, «) = © V 8 V ^ resp. 

2 D - 1 
H y(n" y, «|) 8 V ( y ^ , 

by which we introduced the vector-spaces V ^ ^resp, V ( y ̂ ) * 

Proposition: For all pairs (y,^) relevant for rj , we have 

<6> R 5 * R J * J £ ' ( V [ - 2 d y ] - © R j * S ' ( V [ _ 2 d x ] e v g ' j ; . 

Proof: The perverse sheaf Rj£ IC (L^)[-2d^] is a direct summand of B , so 
R£* RJ* I£*(L^)f-2dy] is a direct summand of RC*B* = A* . Since A* is 

semisimple in the category of perverse sheaves on X , any direct summand of A 

must be a direct sum of simple constituents of A „ Thus one has some decompo-
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sition of R£^Rj^ IC (L^)[-2dy] into intersection homology sheaves of subvarie-

ties of X as in the proof of theorem 1.7. The identification of the data for 

these as the data given above proceeds exactly as in the proof of theorem 1.7. 

---- A double decomposition formula 

From (6), (2), and (3) above, we obtain the following double decomposition  

formula for A = RTT̂ g(Z) : 

(7) A" S $ © Rj* IC-(L )[-2d ] 0 v g ' J j 8 V 

Comparing this with the decomposition (1), we obtain the 

(8) Corollary: V, A N = (?) V*?'tl 8V, 
(x,*) £s (x,4>) (y,*) 

1̂ 12 Strata with rationally smooth closure 

Theorem: Let u c X . Assume that 0^ is rationally smooth (1.3) at all points 

which £ maps to u . Then the cohomology of the fibre ^y^u i£ given by the  

following formula: 

(9) H ^ C ^ u . « 3 ® n'"*^.V 8 V(x!*)V 8 V(x!*) 

If extends to a local system over 5 y
1u , then 
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^'2Óy(C1u9 L. ) - (Ù IH 1" 2^^ , L.) 8 v ( /**> 
y * u x (J> (x,<|>) 

Proof: In view of the remark in §1.10, this results from applying the functor 

H1(...) to formula 6 in §1,10. 
= u 
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CB 

CW], #85, m. 9 

§2 GENERALIZATIONS OF SPRINGER'S RESOLUTION 
AND SPRINGER'S THEORY OF WEYL-GROUP REPRESENTATIONS 

2=1 Steinberg varieties as fibres of partial resolutions 

Let G be a connected reductive complex algebraic group, =*AXG) the 

variety of all nilpotent elements in its Lie-algebra £ , 38 -38(G) the varie­

ty of all Borel subgroups of G , and & the variety of all parabolic sub­

groups conjugate to a fixed one, denoted P , which is chosen once and for all. 

We are going to apply the general ideas of the preceding section to analyze 

Springer's resolution of singularities for the variety <JV , For this applica­

tion, let us specify now the data considered in §1 as follows: First, X = 

and Z = J V ^ j V * S t is the variety of pairs (x,B) with x e Lie B . More­

over, 77 : Z X is the map which forgets B . This is the Springer resolu­

tion. Alternatively, may be identified with the cotangent bundle T*3B, and 

then TT is the moment map of 38 , see [BB], §2. Second, Y is the variety 

./?Ptr«yf x & of pairs (x,PT) with x € LieP' , and £ : Y X forgets P r . 

This we call a "partial resolution". Finally, n : Z Y sends (x,B) to 

(x,P*) , where P f is the unique parabolic subgroup of G belonging to & and 

containing B . Note that our factorization 7T = £n means just this: Forget 

B not at once, but "in two steps". 

It remains to specify the stratifications X = for TT and £ , resp. 

Y = \)0 for n (as in 1.10). The strata 0 are just the orbits of nilpotent y y x 
elements under the adjoint action of G in £ . The fibres TT X identify 

with the varieties 38 of all B e38 with x € LieB , Their dimension d is x x 
known ([St2], Thm. 4.6) to satisfy 2d^ = c , C y being the codimension of 
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^ in X (cf. 1.1). In other words, the Springer resolution TT is semi small  

with all 0^ relevant. It follows that the partial resolution £ is also semi-

small. Its fibres £ ̂ "x identify with the varieties 0 of all P 1 e 9 with 

x e LieP1 , which have been extensively studied, first by Steinberg [St2]. One 

of our goals is to reformulate and to extend the theory of Steinberg varieties Px. 

Since the specification of our strata 0^ is slightly more subtle, we 

postpone it until section 2.7, where we shall see that ri is also semismall. 

Remark: In [BM] §7, we considered the "generalized Springer resolution" 

(the moment map of & ). In the present terminology, is the unique closed 

stratum in<yV (see §2.10). Moreover, the varieties denoted in [BM], §7, 

are denoted in the present paper (see 3.2). 

2.2 Recollections on Springer's correspondence 

Now the general theory of §1 applies, and we have e.g. a decomposition 
b 

formula for the object A = RTI^Q(Z) in the derived category D ( X ) , as stated 

in 1.7. But in the specific situation considered here, A carries also an 

interesting additional structure: An action of the Weyl-group W of G which, 

by the main result of [BM], gives rise to an isomorphism 

a : Q[W]-^End A* 

from the group ring of W to the endomorphism ring of A . We shall recall the 

definition of this action (due to Lusztig [L]) below in §2.6. Since any auto-

morphism of A can only act by "permuting" isotypical simple direct summands, 
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the W-action on A is given by a collection of linear representations p ̂  ^ 

on the Q vector spaces ^ occurring in the decomposition formula 1.7 (**). 

THEOREM (Springer correspondence): The pairs (x,c|>) relevant for the Springer 

resolution 7T are in bijective correspondence to the irreducible characters of 

the Weyl group W , h£ (x, $)««—> p. • 
v. x, cp ) 

In fact, this is an immediate corollary of the isomorphism a above, which 

follows by comparing the Artin-Wedderburn decomposition for <Q[W] on one hand, 

with the decomposition for A (in the form §1.10) on the other hand. (It 

turns out that all the K, of §1.9 are © )„ 
(x,(J>) 

Finally, we recall that the W action on A gives rise to a W action on 

i i 

H (̂ , Q) = H (A ) by functoriality for each i and u e X . This turns out 

to coincide, after a multiplication with the sign-character, with Springer's rep­

resentation defined in [SI]„ [S2], see Hotta [H], and [AL] . Moreover, it is 

clear now that formula 1.5 (*) describes exactly the decomposition of Springer's 

W representations o n H 1 ^ <Q) into irreducible constituents, as conjectured and 

proved for G = SL^ by Lusztig [L], and first proved in general in [BM]. 

The formula may be stated alternatively this way: 

i-2d _ 

<*> H o mW ( V ( x , * ) > H X ' «» " I H u X ' V 

It has recently been used to compute explicitly all p ^ ^ with <j> = 1 [AL].*) 

*)N. Spaltenstein tóld us in December 1981 that he has completed the explicit com­
putation of Springer*s correspondence for all cf> using this formula. 
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2.3 The nilpotent cone is rationally smooth 

We now give an application of the above theory. The result could have been 

stated in 1930, but seems to be new: 

THEOREM: is_ a rational homology manifold. 

For the definition in classical terms, as well as in terms of intersection 

homology, recall 1.4. We have to prove for each u e <SV 

IH^t^CQ) = Ç resp. 0 if i = 0 resp. > 0 . 

Let 0 be the dense stratum of ^ÀT, 0 = . Then d = 0 , and p , = 1 
x x x (x,l) 

is the trivial representation of W . Hence 2,2(*) says that 

IĤ C/lHQ) = H 1 ^ , Q ) W (= W-invariants) . 

So the theorem reduces to the following lemma, which will be proved in §2.9. 

LEMMA (Lusztig): The trivial représentât ion 1 occurs in the Springer represen­ 

tation H 1 ^ , Q) with multiplicity 1 resp. 0 ±f_ i=0 resp. > 0 . 

2.4 Generalization of Grothendieck1 s simultaneous resolution 

The Springer resolution ïï : *A'- Z X = extends to a map TT* : g -> £ 

which is well-known as the Grothendieck simultaneous resolution (cf. [Stl], p.131), 

and which is defined just by omitting the restriction x e <yf in the definition 

of ÏÏ (cf. 2.1). Similarly, and more generally, we may extend the partial 

resolution E : Np = Y -> X = JV to a "partial simultaneous resolution" 
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V • & ~+ B. • Here £ is the variety of pairs (x.PT) with x e £ , P* e 

such that x e LieP1 , and £f forgets Pf . Alternatively, the variety ~P 

may be described as an associated fibre-bundle G xr LieP . Here we use the 
P 

following notation: If P acts on a set M , then G x M = G x M/~ is the set 
of orbits under the free P-action (g»m) -> (g p \ p m) in the product G x M . 

p 
(If M is a variety with algebraic P-action9 then G x M is a variety with al­

gebraic G-action.) 
LEMMA: The map JV & forgetting x is a vector bundle with fibre LieP , 

P 
which identifies with G x LieP -> G/P . 

Remark: Let us mention that the decomposition of into finitely many "decom­

position classes" (Zerlegungs-klassen), as studied in [Bl], provides a very 

natural explicit stratification for TT1 and V * However, for the purposes of 

the present paper, it suffices to make explicit the unique dense stratum, which 

is the set of regular semisimple elements. 

2.5 Coverings of the regular semisimple elements 

Let 1LTS De tne set °f regular semisimple elements of & , and let 

£" : £rs î g De tne part of the partial simultaneous resolution lying over it: 

-p с ~p 

i 
с 
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Let L be a Levi subgroup of P , and let W denote the finite group N (L)/L 

(the "partial Weyl group"). 

LEMMA: The map is a covering projection g -> g , on which W acts by 
_ _____ __________ . j-g |-g 

deck transformations. 

In the special case when P is a Borel subgroup B , then L is a maximal 

p 

torus T and W - W is the ordinary Weyl group (relative T ), and is 

well known to be a principal W-fibration, so W acts on it by deck transforma­

tions. In the general case, a fibre (£") ̂ "(h) consists of those conjugates of 

P containing the unique maximal torus, T c L say, such that h e LieT , and 

these are parametrized by the right cosets of W with respect to W(L) = NL(T)/T 

Moreover, the canonical map sending a Borel subgroup to the unique conjugate of 
~B ~P 

P containing it induces a covering map j>_s , which is a principal W(L) 
~P ~B 

fibration, so that identifies with the orbit space W(L)\£_ s . Since W 
~B 

acts by deck transformations on _g_g , it is now clear that the group 

N^(W(L))/W(L) = W P acts by deck transformation on . 

Remark: It can be shown that is even the complete group of deck transforma-

tions of ^ s over jg_g . 

2.6 Generalization of Lusztig's Weyl group action on A 

Denote by i the inclusion of «yf in £ . Consider the functor i*(IC (.)) 

from the category of local systems on to D^(tyf). This associates to a 

local system SB on the restriction to *Àf of the intersection homology 

sheaf on & with coefficients in SB . 

•P ~P. 
Proposition: a) The object A = R^^gC^ ) i s obtained by applying the functor 
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i*(IC"(.)) to the local system ?*§(%s) •
 b ) T h e action of W ? on J 

P *P 
by deck transformations (2.5) induces a W action on object A 

P 
rs 

~P P 
Proof: In fact, since j* is smooth (lemma 2.4), and since the map £ f : j| -* & 

is small, or more precisely is semismall with _g ĝ as the only relevant stratum, 

§6.2 of [GM2] applies to give 

IC*(qfi(i^s)) = Rc; S(2
P) 

This implies a) of the proposition, that is 

i*<iS'(Ç»<j£8)>> =RÇ*S /(ïP) - a* 

because the left square in the diagram in 2.5 is a fibre square (or in other 

words JV is the full preimage of JV under V ). Now b) is an immediate con­

sequence of a). 

Remark: For the case when P is a Borel subgroup, this is Lusztig's construc­

tion of a W action on A* = RTT^jgG/fO, see [L], [BM] (Note IT = £ then.). 

In this case, one can prove that the endomorphism ring in D^(g) of R?*fi(j[) 

(which is just that of R?^L)(g ) ) is taken isomorphically onto the endormor-

b • 

phism ring in D (jV) of A by the function i* . This behavior of an endo­

morphism ring in the derived category to be preserved under the image of an in­

clusion is extremely unusual. 

2.7 Invariants of A 

Let P = LU be the semidirect decomposition of our parabolic subgroup P 
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into its unipotent radical U , and a Levi subgroup L . The Weyl-group of L 

identifies with a subgroup W(L) of W . 

Proposition (notation 2.5): 

a) R£i§(iP) ̂  (R£;§(i)) w ( L ) 

b) R£*8C#^) = (R£*§(^) W ( L ) . 

Here the superscripts W(L) denote W(L) invariants. Note that for 

automorphisms of objects in an abelian category, it makes sense to speak about 

invariants. The objects considered here are in the abelian categories of per­

verse sheaves (see §1.6). 

Proof: We have seen (cf. 2.5) that the covering £" : jg ŝ -> £ is obtained 

from the principal W fibration TT" : g^g by dividing by the W(L) ac-
~P ~ ~p 

tion: g^g = W(L>\_grg . Therefore, the local system £*fi(grg) on is ob­
tained from the local system ^ S C g ^ ) by taking W(L) invariants: 

(i) es«^ a> = ( 7 r*^(i r s)) w ( L ) • 

Applying the functor IC , this equation yields part a) of the proposition, us­

ing the argument which was used already at the beginning of the proof of 2.6. 

Next b) follows similarly by applying the functor i*(IC (.)) to (1), using 

2.6a) for both cases, P a Borel subgroup, and P any parabolic subgroup. 

Q.E.D. 
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2.8 Computation of cohomology of Steinberg varieties 

COROLLARY: For all u 6 ^ and i e l , we have 

H 1 ^ , Q) = H 1 ^ , q ) w ( L ) . 

Proof: This follows from 2.7b), by applying the functor HX(..-.)u , since 

? _ 1u = &> , while 7r"1u = 3B . u u 

Remarks : This result was proved by Hotta and Shimomura for the special case 

G = GL^ , using a spectral sequence argument [HSh]. We shall reobtain this 

result (even on the sheaf level of 2.7b)) alternatively in §3. 

2.9 Completing the proof of theorem 2.3 

We note that corollary 2.8 gives immediately Lusztig's lemma (2.3), and 

hence completes the proof of theorem 2.3. In fact, if applied to the trivial 

case where P = G , then all = & reduce to a point, and 2.8 says that the 

W invariants of the cohomology ring H*(^9, Q) reduce to Q (in degree 0 ). 

Remark: The reader only interested in 2.3, but not in the P-generalizations 

above, might as well directly prove that the W invariants of A - RTr̂ $(.y0 

reduce to ), using the arguments of 2,6, 2.7. 

2.10 Stratification of<yFP 

Let us turn to the study of our map TI , as specified in 2.1. Recall that 

rj maps Z = rjV onto We now specify a stratification of Y by strata 

0 for X] . Let us denote £ = %_ + n the decomposition of p_ = LieP into its 
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nilradical n = LieU , and the Levi-subalgebra &_ - LieL (cf. 2.7). Let 

*^(L) = denote the decomposition of «^(L) , the variety of nilpotent ele­

ments in , into its orbits 0^ . This is a stratification for the Springer-

resolution TT(L) of ̂ (L) , with fibres irCD^t = <-#(L)t , the variety of 

Borel-subgroups of L containing t in their Lie-algebra. To each stratum 

0, of JViX) with base point t , we associate a unique stratum 0 of J? 

with base point 

(1) y = (t + u, P) , where u e n = LieU is fixed arbitrarily, 

as follows: We use the identification Jì^c £ P = G x P£ (2.4), and put 

(2) 0 = G x P ( ^ + n) , 

where we use the notation A + B « {a + b|a e A, b e B> to define ^ + n 

In particular, for t = 0 , we write y = y^ ; in this case 

0 = G x P n = T*<&) 
y 0 

~P 

is the unique closed stratum of tA" , and is isomorphic to the cotangent bundle 

of & . In general, 0^ is a double fibration with base & , and fibres 

0^ resp. n. . To make this more precise, let us introduce the associated fibre 

bundles 

P P 

K = G x e t > 
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V* « G x P^(L) = y G x P ^ , 

using the P action on Z_ S p/n induced by the adjoint action on £ . A point 

in is given by a pair (Pf, n) , P' , a parabolic in & and n , a nil-

potent element of LieP1/LieP11 , where LieP'1 is the nilradical of LieP1 . 

The Springer resolution *^(L) of *^(L) and the Springer resolution «yf 

of Jlf fit into a diagram 

ir(L) 

NL 

NL 
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where i is the inclusion of a fibre of & and V is the variety 

of pairs (B*, n) such that B 1 e&B and n e LieB* /LieP*1 where P f is the 

parabolic in & containing B f . 

Lemma: 

a) is the total space of a double fibration 

Np ->q NP ->>> rP... 

p 
where the fibre of r is ̂ Y(h) , and the fibre of q over a point v e V 
is T* = n . r(v) -

_i p ~ ~p 
b) The subvarieties 0^ = q (G x weakly stratify the map n : , 

with fibres n 1y = ̂ 9(L)t of dimension d y = dimn *y , say. 

c) Each stratum 0 is a double fibration 
y 

t t Q P r 

where the fibre of q" is n , while the fibre of r*" is 0^ . 

«vp 
d) The codimension of 0^ in JY equals that of 0^ in JY(X) • 

e) The map x\ is semismall, with all strata 0 relevant for n . 

2d -v —1 f) The decomposition of H (ri y, Q) into 7T- (0 ) isotypical components 
2d y 

identifies with the decomposition of H y08(L) t, «J) into 11^(0 ) isotypi­

cal components. 

Proof: a) The set of nilpotent elements in £ is JY{$S) + ji , which is isomor­

phic to the product of «>f(L) and n as an algebraic variety. Using the identi-
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fication of j> with G x £ as in lemma 2.4, we identify*^ as 
P 

G x (/KL) + n) . Then it becomes obvious, how to define the two step fibration 

as described in a). 

b) By the map B1»—*UB1 , the Borel subgroups of L are in bijection 

with the Borel subgroups of G contained in P . Using (1) above, we conclude 

that 

rf'V = (B e.f#|B c p, t+u e LieB} = {UBf |Bf ê ff(L), t e LieB1} 

= {BT e&(L) |t e LieB1} =#(L) t . 

Next we note that our choice of a base point as in (1) is no restriction. There­

fore, the fact that the 0^ weakly stratify n follows from the fact that the 

0^ weakly stratify Springer's resolution of *^(L) . 

c) is similar to a), statement d) is obvious from c), and statement e) fol­

lows from b) and d), using the corresponding properties of the Springer resolu­

tion of e^(L) . 

f) The diagram of maps 

ifc P q* 
t t y 

where i*" is the inclusion of a fibre of r1" , induces a surjection s 
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Rjy IC#(y [-2dy] 0 V(y^j . 

by the long exact sequence in homotopy for the fibration r t (since TT (&) - 0 ) . 
2d p 2d „ 1 

But the local system R C^fi(^ ) on ^ pulls back to R n*fi(«>fO on 0 , 
2d -i 2 d Y 

whose fibre is H y(r| y,Q) , and restricts to R Y7T(L)^_(.y^(L)) , whose fibre 
2d 2d 

is H y0B(L) t, Q) . Therefore the kernel of s acts trivially on H y0B(L) t, Q) . 

Q.E.D. 

2^11 The topology of J V 

PROPOSITION: a) J&V is homeomorphic to the fibre product "V^ x T*(^) . 

~P 
b) ̂  is a. rational homology manifold. 

Proof: Part a) results from trivializing the fibration q over the fibres of 

r . This can be done since the fibre of r (i.e. *^(L)) is contractible. Part b) 
~P 

results from the fact that ̂  is a fibre bundle where both the base and the 

fibre are rationally smooth. ( ~^(L) is smooth by theorem 2.3.) Q.E.D. 

2_12 Identification of the decomposition of B 

Now look at the decomposition formula for the map n as considered in 

1.10 (2): 

(1) B - R n * g ( J 0 - ( J ) R j y I C # ( y [-2dy] 0 V ( y ^ j . 

~P 
It is clear from our geometrical description of Y = *Â in the preceding lemma, 
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that this decomposition is essentially identical with the corresponding formula 

for the Springer resolution 7T(L) : Jfr(L) «>^(L) : 

A (L) = RTT(L)^S(^(L)) = V["2dt]*1* ££ <*t. V [" 2 dt ] 8 V(t,*) 

The relevant pairs (y,^) for r\ are in bisection with the relevant pairs 

(t,T|0 for TT(L) , the vector-spaces ^ resp. ^ in the decomposition 

formulae are identical, etc. 

~P P 

More precisely, consider the perverse sheaf R£.Q (^ ) = C* on 1^ (see 

the diagram of §2.10), which is semisimple by theorem 1.7. 
Proposition: 

a) There are rational identifications 

g" = q* C* 

A * ( L ) = i* C* 

b) The functor q* (resp. i* ) takes the endomorphism ring of C isomor-

phically onto that of B (resp. A ( L ) ) . 

c) The resulting bijection of isotypical components of B with those of A ( L ) 

takes the (y,^) component to the (t,^) component corresponding by lemma 

2.10 c) and f). 

Proof: Statement a) holds because the two squares of the diagram in 2.10 are 

fibre squares and $ ( ^ ) pulls back to §(*yf) and restricts to | ( ^ ( L ) ) . 
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— P 
The map q (resp. i) sends 0^ (resp. 0^) normally nonsingularly to 

(see [FM], [GM2] §5.4). Therefore q *(resp. i*) takes sheaves j. IC*(jr?, L.) 
* t 

v • — t * — 

to sheaves IC (0^9 L^) (resp. IC (0^9 L^)) . So part b) reduces to the 

statement that q*(resp. i*) preserves the irreducibility of . This fol­

lows from lemma 2.10 f). Part c) is then clear. 

2=lâ Identification of the Weyl group action on B 

~ ~p 
The map n T : & g_ is a principal W(L) fibration over the regular 

semisimple part of £ . Paralleling Lusztig's construction (§2.6), we obtain a 

• ~ ~p 

W(L) action on B by restriction of RTlf*§(g.) to .yf . 

Proposition: 

a) The Weyl group W(L) acts on B - Rri^£(Z) by automorphisms in the derived 

category D^(Y) . 

b) The action.is given by linear representations ^ of W(L) on the 

V, of the formula 2.12 (1). 
(y,*) 

c) Here (y,^)i—*P(V ^ identifies with the Springer-correspondence for the 

group L (cf. 2.2.). 

d) The action a) of W(L) gives an isomorphism Œ[W(L)] = End B 

• • • 
e) The W(L) action on A = R£*§ inherited from B by functoriality of 

RÇ^ coincides with the restriction of the W-action on A 

Proof : We extend the diagram of §2.10 as follows: 
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NL 

ir(L) 

ir(L) 

^ ( L ) 

where v and v are defined by dropping the restriction that n be nilpotent 

in the definitions of V and "if respectively in §2.10, Then v and are 

W(L) principal fibrations over the generic part of v_ and , so W(L) acts 
• • • 

on A (L) , C and B compatibly. Parts a)-d) follow from this. For part e), 

note that the action of W(L) on the part of £ over the regular semisimple 

elements of £ of this section agrees with that of §2.6, case P = B . 
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[W], #124, m. 3 
§3 GROUP THEORETIC APPLICATIONS OF THE 

DOUBLE DECOMPOSITION FORMULA 

3.1 Decomposition of the restriction of Springer's representation 

Let us now evaluate what the general results of §1 give for the specific 
situation introduced in §2. Note that the objects A resp. B , and the vector-
spaces V, .x resp. V, ) N in terms of which the results of §1 were formulated, 

(x,cf>) Y (y,*) 

are now—according to §2— equipped with a W-resp. W(L)-action as an additional 

structure. Using this additional structure, the results of §1 may now be re­

formulated in sharper versions. For example, corollary 1.11 gives, in this re­

formulation, precisely the information of how Springer's irreducible W-module 
V. decomposes as a W(L)-module, if restricted to W(L) : 

\ X , ty) 

Theo rem: (Springer) V, = ff) V*?9t\ e v/ in  6 (x,<(>) (x,<J)) (ytTjO 

Proof: This follows from 1.11 using 2.13 e). 

as W(L)-modules. 

Q.E.D. 

Alternatively, the theorem may be expressed by: 

(x,<f>) ^T(L) V (y,*)* (x,<t>r 

or also by the formula: 

(V(x,cf>); V(x,cf)) * V(y,<J0 > 

where we denote for any module V of a finite group F , and for any irreducible 

representation p of F , by the p-isotypical component of V . 
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Remark: This theorem agrees essentially with that of Springer in [S2], 

Thm. 4.4, which was proved there by completely different methods. 

3.2 Spaltenstein's varieties.^ , and Springer's partition of Steinberg's 
varieties & X   

x 

Let us make more explicit, how certain fixed point varieties in generalized 

flag varieties studied first by Spaltenstein [Sp] resp. Steinberg [St2] resp. 

Springer [S2] occur in our present situation. We have already noted (2.1) that 

the Steinberg-variety of all conjugates P' = gPg"*" of P by some g e G 

with x e LieP1 identifies with the fibre K "̂"x of our partial resolution map 

£ . Now for any L-orbit in ^ = £/n (notation of §2.6, §2.7), we may con­

sider the subvariety °f those P' = gPg"̂" such that (ad g) \ modulo n 

belongs to 0^ . The variety is its closure. The variety w a s intro­

duced by Springer in [S2], 4.1; let us call it the Springer t-part of . Let 

us list a few obvious facts: 

a) Each Steinberg variety & is a finite disjoint union of its Springer parts 

*x * 
b) 3/^ = £P for t a regular nilpotent element of fi_ . 

c) <?° = ^ ( 0 ) = {P1 £^|x € (LieP')1} . 
X X 

Since these latter varieties 9^ have been studied by Spaltenstein in 1975 
x 

[Sp], we call them the Spaltenstein varieties. Note that these are the varieties 

which were denoted^ & in [BM], §7, in contrast to our present notation 9^ . 
X x 

Now recall that each nilpotent L orbit 0 in %_ corresponds to a strat-
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urn 0^ for the map r) : <JV •> e/f (2.10(2)), and that we introduced the nota­
tion £ = £1 y : ̂  -> cyt̂  for the restriction of our partial resolution £ to 

y y 
0^ (see 1.10). With these notations, it is clear that we have: 

d) ^"1x « 0 n ^ . ' y y x 

Convention: Since the 0 's are in bisection with the 0 rs , we shall also — t
 J y 

y t 
write & for ̂  to simplify notations. x 

3.3 Computing the cohomology of certain 

Theorem: Assume that 0^ is rationally smooth (1.4) at all points of 
-1 y £ x = ̂  (or in other words: which map onto x ). Then y x 

i-2d 2d . f n 

H • y ( ^ y , Q) ® H y(dff(L) , Q) = H 1 ^ , Q ) P i y ' i ; 

x y X 

(for all i ) gives the ^-isotypical component of the Springer representa­

tion on U^t&B , <2) restricted to W(L) . 

Proof: This follows from 1.10 and 3.1. Q.E.D. 

3.4 The cohomology of Spaltenstein's varieties in terms of anti-invariants 

This theorem applies in particular in the cases where 0^ is the smallest 

or the biggest stratum, that is where the element t in */f (L) corresponding to 

y is = 0 resp. is regular: In the first case, 0 _= T*& is even smooth 

(2.10), and in the second case, 0 - ^yV is rationally smooth by 2.11. More-
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over, in both cases, H y(^9(L)y, Q) reduces to Q , and ^ is 

£W(L) RESP* V d • S° We ° b t a l n : 

Corollary: For ail nilpotent elements x é JV , and all 1 : 

a) H 1 ^ , D) = H 1 ^ , Q)W(L) 

b) H 1 _ 2 D ° ( ^ . « a ir<*x. Q)eW(L» 

In other words: The cohomology of the Steinberg-varieties is given by W(L)-

invariants of the Springer representations (using the sign convention as in [BM]) 

while the cohomology of the Spaltenstein-varieties is given by the W(L)-anti-

invariants (and a dimension-shift). 

Comments: a) was proved also in 2.8. In the special case G = GL , a) was 
n 

proved by Hotta-Shimomura [HSh] in a completely different way. 

3.5 Counting components of ^ and of 

If t is a regular nilpotent element of l_ , then ^ = ^ is the full 

Steinberg variety, and p^t ^ - !W(Lj is tne trivial representation of W(L) . 

If we take t - 0 , then is the Spaltenstein variety (3.2), and ^ = 

GW(L) is ttie sign rePresentation of W^L) • (In botn cases, only = 1 oc­

curs.) Applying 3.4 to these particular cases, we obtain: 

Corollary: 

a) A Steinberg-variety 3£ has dimension ^ dx , with equality if and only if 

p, 1N occurs in l î ^ v with positive multiplicity. Moreover, the number 
(x,l) W(L) 

of C(x)-orbits of dx-dimensional components equals this multiplicity. This 

is also the number of irreducible components of £ of dime*13*011 

d + dim^ . 
x x 
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b) A Spaltenstein-variety &^ ha» dimension ~ ~ d o ( w h e r e dQ = 

dim^ff—dim^) , with equality if and only if p ̂  ^ occurs in with 

positive multiplicity. Moreover, this multiplicity gives the number of 

C(x)-orbits of (dx~dQ>-dimensional components of . This is also the 

number of irreducible components of Kr^(0 ) of dimension d -dn + dim^ . 

Comments: a) is due to Springer [S2], Cor. 4,5, while b) seems to be new. In 

the special case where G = GL^ , a) goes back to Steinberg [St2], theorem 5.4, 

and b) is due to Spaltenstein ([Sp], final corollary), up to the combinatorial 

observation that the numbers given there coincide with the Kostka numbers [Md], 

p. 59 which in turn equal the multiplicities in our result b). (We have to thank 

A. Lascoux for help in verifying this coincidence.) These numbers can also be 

determined recursively by the formulae given in [BM], §7. 

3.6 Are "special" orbits relevant for the moment map of & ? 

Note that Corollary 3.5 gives a characterization of the strata 0^ rele­ 

vant for £ resp. • More generally, 3.4 gives: 

PROPOSITION: 0 is relevant for £ : 0 if and only if p, v occurs in 
X y y \X,-L/ 

p ( y , D • 

Recall that £Q is the "moment map of ̂ " in the terminology of [BB], and 

is the map TTP in the notation of [BM], §7. For G = GL^ , it turns out that 

all strata (of the image of TTP ) are relevant for TTP . (This goes back to 

Spaltenstein [Sp]). But in general, this does not hold. (Let us point out here 

that the statement on fibre dimensions in [BM], line -2 of p. 709 should read 

correctly " <d^-d^ ".) Conjeeturally, the special nilpotent orbits in the sense 
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of Lusztig [L2] are always relevant for TTp . In order to prove this conjecture 

using the above result, one has only to verify that ^ occurs in ^(L) 

whenever P( x ̂ ) is a special representation. This has been done by Gisela 

Kempken [Ke], proposition 6.7 for G classical, and it could presumably be 

checked for G exceptional using the tables of Alvis and Lusztig [A], [AL].* 

COROLLARY: Let G be classical. If an orbit ^ in the image of the moment 

map TT— of & is special, then 0 is relevant for T\N . 
£_ p £ x P 

3̂ 7 Associated parabolics 

Two parabolic subgroups are called associated, if they have conjugate Levi 

subgroups. 

Corollary: Let P and P* be associated parabolic subgroups of G , and let 

& resp. be the variety of conjugates of P resp. P' . Then we have 

a) H ^ ^ , <*) = h 1 ( ^ , 4 ) y a n d b> h Í ( ^ x » & = H 1 ^ ^ 0 , Q) for all nilpot-

ent elements x e jV , and all i . 

In fact, this follows from 3.3, since the right hand sides in 3.3 a), b) 

depend only on the Levi subgroups, and not on the parabolics. 

Remark: We note that for i ^ 2d^ , statement a) had been conjectured by Steinberg 

[St2], and proved by Springer [S2], Cor. 4.6 using different methods. 

*Added in proof: This has been done meanwhile by N. Spaltenstein (A property of 
special representations of Weyl groups; preprint, Warwick, March 1982), so the 
corollary holds for G exceptional as well. 
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3.8 Induced orbits 

Given a nilpotent orbit 0^ in %_ , the orbit induced from 0 in £ (in 

the sense of Lusztig-Spaltenstein [LS]) is denoted Ind^(^.) . This is the orbit 

0 in g defined by x sa-

0^ - (Ad G)(^. + n) (notation 2.10). 

Although this definition refers to a parabolic subalgebra with as a Levi sub-

algebra, the result is actually independent of this choice, see [LS], [B2], or 

also [Bl]. 

~ p 
Proposition: An orbit 0^ in ^(L) determines a stratum 0^ in (2.10) 
and induces an orbit 0 in «>f . Choose the base point x of 0 in 0 + n . 

x x t — 
With these notations: 

a) K maps ^ onto @ . 
y x 

b) dim^ = dim^. + 2dim gf p = dim^ (or equivalently: = d y ) . 

c) 5 ^"(^ ) is a single G-orbit, contained and dense in 0 . 
y x & * y 

d) 5 ' 0 ^ 0 is generically a covering of degree [G : P ] = # ^ y . 
y y X X X X 

e) The multiplicity of p, . in H X ( ^ , is [G : P ] - for 

i = 2d , and is zero otherwise, x 

f) The multiplicity of p,_ 1 N in P, 1 N is one. 
(t,l) (x,l) 

Proof: a) Since 0^ = G x P + n) by 2.10, and since 5 is the canonical 
P 

(evaluation) map of G x £ into £ , we have £(^_) - (Ad G) (0^ + n) , whose 

69 



W. BORHO, R, MACPHERSON 

closure is 0^ by definition. Since £ is proper, ^>№y) * s closed, hence + Ox . 

b) The dimension of 0^ was given in 2.10, while the dimension of an induced or­

bit was computed in [LS] (or more easily in [B2]). 

c) Since £ is G-equivariant, each G-orbit 0^0^ mapping to 0^ has dimen­

sion > dim<^ . Now b) implies dim^- dim^" . Since 0 is irreducible, we 

conclude that 0 - 0 , and that £ (0 ) = 0 is a single G-orbit. Finally, 

0^0 , since otherwise, C (0 \0) meets 0 , so contains 0 by G-equivar-

iance, and this is impossible for dimension reasons. 

d) is clear from c) (cf. [BK ], 7.8 (a)). 

e) The fibre £ = & ^ is contained in 0 . In particular, 0 is smooth 
y x y y 

at all points which map to x . Hence Theorem 3.6 applies to give 
i-2d 

dimH X(^» y, Q) - mtp(p, . J 1 (3B , Q)). But &> y is a set of [G : P ] points 
X \ T , -L / , X X X X 

by d), and hence e) follows. 
f) This follows from the fact that the component group c(x) - G

x / G
x permutes 

the [Gx : P x] points in ^ y simply transitively, so that H°(£»y, Q ) C ^ is 
y 

one dimensional. Since the C(x) action on the cohomology of comes from 
that on 0 , we conclude from e) that p . ... occurs with multiplicity 1 in x v.t, J. ) 

V(x,l) = ^ ^ x ' (Bx, Q° C (x).• Q- E' D-

Remark: By Frobenius reciprocity, f) says that p^ x ^ has multiplicity one in 
W 

the induced representation P (t ^) • More precisely, it can be derived from f) 

that p . is obtained from p , n by "truncated induction", that is to say 
\ X , ±) V.T, L) 
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W 
P(x,l) = 3W(L) ( P(t,l) } 

in the notation of Lusztig's [L2]. This is a result of Lusztig and Spaltenstein, 

see [LS], theorem 3.5. 

3.9 The degree of the moment map of & 

Considering the special case t = 0 in 3-8, recall that then £ : 0 -> 0 
y y x 

identifies with the "moment map" TT^ : T*(^) •+ 0^ c £ = £* of the homogeneous 
space & (in the terminology of [BB]), which was called a "generalized Springer 
resolution" in [BM]. This map is in general not birational, but has a finite de­
gree degrr̂ . = [G : P ] . This number seems to play an important role in sever­

er X X 

al different contexts, see e.g. [BK], theorem 7.2, and [BB], theorems 5.5, 5.6, 

5.8. Let us therefore point out here the following expression for this number in 

terms of Springer representations. 
Corollary: deg-n^ - | mtp(p ( x^ ), e (̂L))deg<j> . 

Proof: More generally, proposition 3.10e) gives for 0^ arbitrary: 

deg£y = I mtp(P ( t j l ),P ( x > ( ( ) ))deg(J> 

2 d x /rx 
since we have H x(^9 , Q) is up ® <j> by definition of P. . Re-x' ^' ^ (x,(|>) Y 17 (x,<p) 
write this using Frobenius reciprocity: 

(*) ^ ^ ^ ( P ^ ^ . P ^ ^ ^ d e g * . 

The special case t = 0 , where ^ - > gives the corollary. Q.E.D. 
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