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Singularities, character formulas, and a q-analog of weight multiplicities

*
George Lusztig

Department of Mathematics
M.I.T.
Cambridge, MA 02139

1. The purpose of this paper is to discuss examples in which the intersection coho-
mology theory of Deligne-Goresky-MacPherson [4] enters in an essential way in the
character formula for some irreducible representation of a semisimple group or Lie
algebra. Thus, sections 3-5 are an exposition of the connection between singularities
of Schubert varieties and multiplicities in Verma modules. In sections 6-11 we give
an interpretation in terms of intersection cohomology for the multiplicities of
weights in a finite dimensional representation of a simple Lie algebra. I wish to
thank J. Bernstein for allowing me to use his unpublished results on the center of

a Hecke algebra. (I learned about his results from D. Kazhdan.) These are used in

the proof of Theorem 6.1 ; the original proof of that Theorem was based on [10] and

on Macdonald's formulas for spherical functionms.

2. Notations. For an irreducible complex algebraic variety X , we denote by

Hl(X) the 1i-th cohomology sheaf of the intersection cohomology complex of X .

Let g be a simple complex Lie algebra, b c g a Borel subalgebra, hcb
a Cartan subalgebra, h* its dual space. Let Wc Aut(hf) be the Weyl group, and
let Sc W be the set of simple reflections (with respect to b). Qc Ef is the

subgroup generated by the roots.

. . . * . .
P c n* is the subgroup consisting of those elements of h  which take inte-

gral values on any coroot. Then Q has finite index in P .

* . . . .
Supported in part by the National Science Foundation.
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SINGULARITIES, CHARACTER FORMULAS WEIGHT MULTIPLICITIES

[~ . * . PR
wa < {affine transformations of h } is the semidirect of W and of P
~ *
(acting by translations). We shall regard Wa as acting on the right on h . The

transform of ) € 11_* under w € ?J‘a will be denoted (A)w .

Wa is the subgroup of ﬁa generated by W and Q . This is the affine Weyl
group. It is a Coxeter group whose set S, of simple reflections is S together
with the reflection in W_ whose fixed point set is {x € b_*l <x,go> = 1} ; here
&o € h is the highest coroot. Let  be the normalizer of Sa in Wa . Then ﬁa

is a semi-direct product Q'Wa .

For A € P , we denote by Py the same element, regarded in ﬁa . Since
the group law in ":J’a is written multiplicatively, we have Pysnt = Py Py for
A,A' € P . 2 1is the length function on the Coxeter group Wa . We extend it to
ﬁla by 2(yw) = 2(wy) = 2(w) , wEWa,YGQ . For s € S, let aS€Q be the

corresponding simple root and let Xs € h be the corresponding simple coroot.

++ .
Let P = {p€EP [< p;XS> >0, Vs € S} . Then P++ parametrizes the dou-

~ +
ble cosets w\wa/w : Ao Wp W. For X € P * , W denotes the stabilizer of A

A A
in W, m, is the element of minimal length of prw » Ty is the element of
. . . . L
maximal length of Wp W, v, is the number of reflections in W, , P, = I q )
A A A A WEWy,
(q is an indeterminate). For A = 0 , we set Vo=V, PO =P ; p €P denotes

half the sum of all positive roots ; 4\3/ € h denotes half the sum of all positive

coroots.

The fundamental alcove Ao is the open simplex in P®R (erbadded in h*) bounded
by the fixed hyperplanes of the various reflections in Sa . An alcove is an open
simplex in P ® R of the form (Ao)w , W € Wa (which is unique). Define a new
(left) action of wa on the set of alcoves (denotes A - yA) by the rule y((AO)w)
+

= (Ao)yw . For each ) € P , we denote A)‘

the standard partial order on the Coxeter group Wa . It is generated by the rela-

(AO)P)‘ s A)\ = (-Ao)px . Let < be

tions ceeS.e0e8_ < 8.8,...8 for any reduced expression §,...s S. S
n—"172 n y P 1 n ( € a) ’

$152°°8% i

1< i <n . We extend it to a partial order < on ﬁa by yw iy'w'&»y =v'

and

w<w (y,y'€ @, w,w' €W,) . Let < be the partial order on P defined by
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G. LUSZTIG

A <A'es ' -3 is a linear combination of positive roots, with > O integral

coefficients. If AAY € P++ , we have A < A' if and only if n, < mny, (in ﬁa).

. *
For X €h , MA denotes the Verma module for g with highest weight X (with

respect to b) and L, denotes the unique irreducible quotient g-module of MA .

3. We will restrict our attention to the Verma modules M—pw—p (w EW) . In the
Grothendieck group of g-modules, L—pw—p is a linear combination with integral
coefficients of the g-modules M—py—p (y <w) . The g-module M—pw—p appears with

coefficient 1, but the other coefficients were rather mysterious. A study of repre-
sentations of Hecke algebras has led Kazhdan and the author [7] to give a (conjec-
tural) algorithm for these coefficients and to interpret them in terms of singula-
rities of Schubert varieties. Let us define the Schubert varieties. Consider the
adjoint group G of g , and let B be the Borel subgroup corresponding to b ,

Gw the B-B double coset of G containing a representative of w € W , 0w==Gw/B c

G/B . The Zariski closure Uw of Ow in G/B 1is said to be a Schubert variety.

It is the union of the various Oy for y <w .

The following result was conjectured by D. Kazhdan and the author [7],[8] and
was proved by J.L. Brylinski and M. Kashiwara [3] and independently by A.A. Beilinson

and J.N. Bernstein [1], using the theory of holonomic systems.

Theorem 3.1. In the Grothendieck group of g-modules, we have, for any w € W :

- _1y2 W) =2(y) Cayiae i
(3.2) L I (-1) (i (-1)"dim Hoy(Uw))M_py_p

=Pw-p y<w

where dim Hlo (U;) is the dimension of the stalk of Hl(a;) at_a point in Oy .
y

4, We shall now describe the integers dim Hé (U;) following [7],[8]. Let us re-
y

call the definition of the Hecke algebra H associated to (W,S) . It consists of

all formal linear combinations f a T with a, € Zlql/z,q-llz] with multipli-
wEW

cation defined by the rules TwTw, = Tww' if 2(ww') = 2(w) +2(w') and

. 1 . . .
(Ts+1)(TS-q) =0 if s €S ; here q /2 is an indeterminate. There is a unique

ring involution h +h of H which takes qll2 to q—1/2 and Tw to T—El(wEID.

w
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/2 --1/2

It is semilinear with respect to the ring involution q > q of ZIqllz,q_llz

1.
According to [7,1.1] , for each w € W, there is a unique element C& € H of the

q_jz'(w)/2 Py wTy , where Py v 2re polynomials in q satisfying
y<w ’ b

= - - - T = 1
Pw’w 1 and deg Py,w < 1/2(2(w)-2(y)-1) for y <w , and such that Cw c. -

form C' =
W

The uniqueness of C; holds also if Py,w for y <w 1is only assumed to be a po-
lynomial in q and q_1 in which only powers qi with 1 < 1/2(g(w)-2(y)-1) are
allowed to occur. It follows automatically that the Py,w are polynomials in q .
The proof in [7] applies without change. (The discussion so far in this section,
applies to an arbitrary Coxeter group and in particular to (Wa,Sa) . It also applies
word by word to (Wa,Sa) which although is not a Coxeter group, possesses the length

function and the partial order < which give a sense to the previous definitions

and results.)
We can now state

Theorem 4.1. Let y <w be two elements in the Weyl group W . Then

(4.2) dim Hf, @) =0 if i is odd
y
.21 i
(4.3) f dim HO;(Ow)ql =Py

Besides the original proof in [8], there is another proof in [12] which has the
advantage that it also applies in the case where 5& is replaced by the closure of
a K-orbit on G/B , where K 1is the centralizer of an involution in G . (This
plays a role in a character formula for real semisimple Lie groups.) Both proofs

make use of reduction to characteristic > 1 and of a form of Weil's conjectures.

Combining Theorems 3.1, 4.1, we can rewrite (3.2) in the form

(4.4 ) L = 1 D) b
oV VoW ~py~p
where Py w(1) is the value of Py w a3t a-= 1 . Using the inversion formula [7
b bl

3.1] for the matrix (Py w) , this can be also written as

(4.5) M =3 P (DL __
pw=p wey Y oy-p
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G. LUSZTIG

5. Remarks. (a) In the case where y,w € Wa . the polynomials Py w have been inter-
L

preted in [7] in terms analogous to (4.3), as intersection cohomology of certain

generalized Schubert varieties. (In particular, they have > O coefficients).

(b) There is a (conjectural) formula analogous to (3.2) for the characters of irre-
ducible rational representations of a semisimple group over an algebraically closed
field of characteristic > 1 . It involves the polynomials Py w for y,w in an

’

affine Weyl group. (See [9] for a precise statement).

++
6. If X €P  , the g-module L, is finite dimensional. With respect to the

A
action of h , it decomposes into direct sum of weight spaces parametrized by ele-
++ .
ments u € P . For uweEPp , we denote du(LA) the dimension of the p-weight

space in LX . It is well known that du(LA) = 0 unless u <X . The remainder

of this paper is mainly concerned with the proof of the following result.

+
Theorem 6.1n If u,A € P'' , w <\ , then d (L,) =P a .
_— = - — Tu A n ,n
A
Here, P is defined in terms of the Hecke algebra of ﬁ; , See section 4

n ,n
u’sA
(This Hecke algebra will be denoted H ; from now on, we shall reserve the letter

H to denote the Hecke algebra of W, - It is a subalgebra of H .) Note that

PYy,Yw = (y €9, y,w€ Wa) so that the polynomials Py' ., for y',w'€ Wa,

P
YW W

have > O coefficients. For type A, Theorem 6.1 follows from the results of [11],

where Pn n. are interpreted as Green-Foulkes polynomials. In general, 6.1 would
TR

be a consequence of the conjecture 5(b) together with the Steinberg tensor product

theorem. The integers du(Ll) are given by Weyl's character formula. To state the

formula, we consider the elements

1 ++, . L(w) -1 ++
(6.2) ky = I w,A€P ),j = (I (-1) w )p, ( T w),(AEP +p)
A WrweWp)‘W A vew A e

of the group algebra Q[ﬁa] . Then kx(x € P++) form a Z -basis for the subgroup

kKl - (x € -I%I— ZZ[’V\J'a] : (2 wx=x(Z w)= |W*'x}c Q[ﬁa] and jA (€ P+++p)
wEW wEW

form a Z -basis for the subgroup

etyezi) : (x D Phy =y w =Wy .
wEW wEW
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~ 1
It follows that K! is a subring of ®[W ] with unit element I w
a IWI wEW
and that, with respect to the product in Q[ﬁa], we have Jlkl e Jl , i.e. J

1
. . 1 1 1 . .. .

is a right K -module. Moreover, the map K —— J° given by k -+_‘|p k 1is an
isomorphism of right Kl-modules. (This is a reformulation of [2, Ch. VI, 3.3,

Prop. 2(iii)] . We can now stat Weyl's character formula as follows

(6.3) For A€ Pt , let C'1 = I d (L,)k_ € k! . Then C'1 is the unique
— — " ueP-|-+ AT _ X
N | ..l Y
element in K~ such that JpC)\ = Jyup

(This is equivalent to the usual formulation in which the character of L)\ appears

as a quotient of two alternating expressions.)

We wish to consider a q-analog of the multiplicity du(L)‘) . The q-analogs

of the elements (6.2) are the following elements of the Hecke algebra "

-v+vy
1 q A ++
(6.4) K, =35 £ T =3 "z T)T (£ T), A€ P )
A Pw€Wp)\Ww PPy wew Y Py owew ¥
(6.5) 3, = (z (_q)z(w)T—l)q—Z(mA)/ZT (z T)
wEW v wew ¥

and therefore
5, =q? (s (—q)“")T;l)q'“P%)/zT (I T) for A€ P 4o

A wEW Py wew
Then K)‘()\ € P++) forma Z [q1/2,q_1/2]—basis for
K={xepH: (z T)x=x(I T) =Px cT®aE’?
wew ¥ wEW
and JAO‘ € P+++p) form a Z[ql/z,q_llz]—basis for
Jetye¥: (x '™y =y(z 1) =Py
weEW wEW

/2) with unit element %— T TW and that,

/2 weW
) , we have J-Kc J , i.e. J 1is a right

Note that K is a subring of X @m(ql
with respect to the product in H ® tl)(q1

K-module.

In the statement of the following theorem, we shall give a meaning to J)\ €J
for arbitrary A € P : if (MNw # A for all w€ W , w # e , we set

J)\ = (-I)MW)JODw where w 1is the unique element of W such that (A)w € P+++p.
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G. LUSZTIG

For the remaining )\ € P , we set JA =0 .

Theorem 6.6. For any )\ € P++ , we have

- 2 1 -1
(6.7) J,'(q 2py)/ K)== 1 (-9 | IJ)\+ _
P, T e
A
(sum over all subsets I of the set of positive roots) ; here ar denotes the sum

of the roots in I .

The proof will be given in Section 7 .

If I 1is as in the previous sum and if w € W 1is such that k+p—uI =
G lepdw 5 A" € BT, then  A-dT = a=00W =)W pr(apw | = A=W ta; where J
is the set of positive roots g such that (B)w € I or such that -(B)w 1is posi-
tive, ¢ I . Since X > 0wt er™) and ay > 0, it follows that X > A'
Thus, the right hand side of (6.7) is a linear combination of elements JA'*Q (')
with formal power series in q_1 without terms of form qi (i > 0) as coefficients ;

moreover for A' < A , the coefficient doesn't have a constant term. On the other

hand, since the left hand side of (6.7) is in J , these coefficients must be poly-

nomials in ql/2 , q_ll2 . It follows that they are polynomials in q—1 (without
constant term if \A' < A ) . The coefficient of JA*D is equal to 1 ; this follows
. . 1 -1
from the identity —— I (-q) =1.
Pa 1
wEWA
ar =p=(p)w

Since a triangular matrix with 1's on diagonal has an inverse of the same
++ . . . .
form, we see that for any X € P , the element Jk+p is a linear combination of
"1(13 ')/2 ' . o e . . -1 . _
elements Jp(q A KA') » AT <A , with coefficients polynomials in q (with

out constant term, if A' < A and =1, if A" =2 ) . Hence we have

Corollary 6.8. For any X € P , there is a unique element Ci € K such that

! =
(6.9) Jp CA JA+p .

It is of the form
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(6.10) cr =g t/2 d (L,;q9)K
A eptt W oATTH
e
where du(LA;q) are polynomials in q and q = with integer coefficients ; more-

over, the powers ql appearing in du(LA;q) satisfy 1 < %(l(px)-l(pu)) if y<a

and dA(LA;q) = 1 . In particular, the map h » Jph defines an isomorphism of

right K-modules of K onto J .

Note that, if yu < A , then %(z(pl)-l(pu)) is an integer. Indeed, it is

known [5] that, for A € P++ .
(6.11) 2(p,) = 2,285

1 1 v v v .. . :
Hence i{l(px)"l(Pu)) = §(<x,29>-<u,2p>) = <A-u,p> and this is an integer since
A —-u€Q

We shall now show that d (LA;q) are actually polynomials in q with O
u 2

coefficients.

We have
Theorem 6.12. Ci = qV/zP_10; € P++) . In particular, for , <) in ptt .
A
we have
(6.13) dp(LA;Q) = Pn o

hence du(LA;q) is a polynomial in q with > O coefficients.
For the proof of 6.12, we need the following result.

Lemma 6.14. If X € P'' , then J. J
O. . s =
L.emma o. 1% en Adp A+p

In the case where X € QN pt* , this is just Lemma 11.7 of [107 . The general case

is proved in the same way.

The definition of K shows that K is stable under h > h (which is ex-

tended to a ring involution of ﬁ() Q(qllz) . (Note that 1?-1 r T = p—l r T )

w w
_ _WEW wew
From (6.9) it then follows that J C' =J . Thus J (C'-C!) = 0 and, since
p A p*A P A A
Ci-Ei € K , we have C] = E; , by the last sentence in Corollary 6.8.

/

The element q_v 2PC;‘ is also fixed by h->h , since q_V/2P= q-u/zP . This ele-
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G. LUSZTIG

ment is equal to

-2(ny)/2

/2 g 4, gy G5 OT,
y<n,

++ .
where u(y) € P is defined by yEW p w.
u(y)

We now use the bounds on the powers of q appearing in du (L)\;q) given in

Corollary 6.8. If follows that q_\’/2

b

PC)'\ satisfies the defining property of Cr'l)\
hence is equal to it. Thus Theorem 6.12 follows from Theorem 6.6. On the other hand,

1/2

it implies Theorem 6.1. Indeed, under the specialization Z [q ,q_l/z] > Z , given

by q1/2'> 1, H becomes the group ring Z['ﬁa] » K becomes k, (A € ', 3

becomes jA A € P+++p) and (6.9) becomes (6.3). It follows that for u,A € P++,

M, du(L )\) is the value of du(LJ\;Q) at g=1 and theorem 6.1 follows.

7. For the proof of Theorem 6.6 we shall need several preliminary steps. We shall
begin with a definition (due to J. Bernstein) of a large commutative subalgebra of

# , which is a g-analogue of the subring Z [P] of ﬂ[ﬁa] . Toeach A €P,

~ ~ 'Q(P)\l)/z
Bernstein associates an element T € H defined by T = (q T ).
A x
(q 2 T ) where )‘1’>‘2 are elements of P such that ) = )\1—)\2 . This

Py
. . . . ++ N
is independent of the choice of )‘1,)\2 , since for A',A" € P we have the iden-~

tit T T =T T =T =T Indeed, hav + n) =
Y P}\v P)‘n P)‘n P)‘v P)‘.P)\n PA LRl (Indee ve € l(pkl) ,Q,(p.)‘ )

2(p,,°Pyu) » by (6.11).) It follows also that if A',A" € P , we have T T =
AT A Pyy Py

T T =T and "I‘Pl =T . We shall prove the following

P)‘l P)\u p)\v,‘_)‘n P)" p_)\'

Lemma 7.1. (J. Bernstein) Let A € P and let s € S . We have

T(’I"p+"f Yy = (F +%F )T

5P Poos Py Pos °
Proof : We may clearly assume that < A’Xs > > 0 . Assume first that < A’&s >=0.
We can write ) = >‘1-)‘2 with )\1,;\2 € ptt s <Apsag > =<)\2,&'s > =0 . To prove
the identity Ts‘Tp)‘ = "fp )\'Ts , we are thus reduced to the case where A € ptt ,
< Asd > =0 . But then 2(sp,) = 2(p,s) = 2(p )+1 hence TSTPA = TSP)\ = TPAS=TP>‘TS

as required.
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. v . .
Next, we consider the case where < Asag > = 1, i.e. (W)s = ATag . In this

case, the result follows from Lemma 4.4.(b) in (G. Lusztig, Some examples of square

integrable representations of semisimple p-adic groups, preprint IHES, 1982).

Next, we assume that < )\,gs > =d > 2 and that the result is already known
when d 1is replaced by d' , 0 < d' <d . We can write ) = )\1+>\2 where <)\1,&S>=

a-1 , <A2,¥s > =1 . Then <)‘1+()‘2)S’Xs > = d-2 . The induction hypothesis is appli-

~

cable to Al and to A,+(A,)s . Hence T commutes with A =T +T R
1°72 1 2 s p)\l P(r)s
B=T 4T c=T +T, = A*B-C hence T
sz P(AZ)S Paf(ryp)s chl)sﬂz leﬂ P(x 1*hp)s s
commutes with T +’T . The lemma is proved.
Ps
We now define, for any A€P an element '3)‘ €J by the formula
3 =q % ¥ e
Py
where 6 = Tw , 8' = ¢ (-q)g' (W)T;l . When ) € P+++p , we have clearly
~ wEW weEW
Jl = J)‘ . In general, we have
~ PR A (") . ~
Lemma 7.3. J(A)w (-1) J)‘ for any A € P, w€ W ; hence, J)‘ = J)\ for all
A € P .
Proof : We may assume that w = s € S . Note that Tse =g , e'T;1 = -g' , hence
T +7 = g V2% &
y FToe T e B e
/2 ,.-1 ~
o'T " (T VT oye) T
—q'q_ 2o ¥ +T(>\) by lemma (7.1)
= -q@ 43
1,6 )e)

~

Thus, JA+J(A)S = 0 , as required.

Lemma 7.4. There is a unique function f : Q+p ~ Z[q,q_l] with finite support

satisfying properties (i), (ii), (iii) below :

i) £6) =
(i) £0) $0=1 <p
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(iii) Let X <Q+p be an as-string : X = {x+nas,n € Z} , where x 1is any fixed

element of Q+p and ag is any fixed simple root. Let a > O be an integer such

that < ), Xs s>=a (mod 2) for all A €X . Then

I fQ) =-q @D T OE(N)
AEX A€X
<X, XS >>a <)\,§S>_<—a

This function is given by the formula

v 1| -<)-p,8>
(7.5) £(D = (D) z (=q) " 'q ,
I
aI=)\+p
where I runs through the subsets of the set of positive roots, and oy is defined

as in 6.6.

Proof : The function f defined by (7.5) clearly satisfies (i) and (ii). We now
. . . . v v .
verify that it satisfies (iii). We shall set OLS =oa, us = & ., We have, with the no-

tations of (iii)

— ) Vv,
z f(0) = (-1)\’ by (-q) ]I !q <X-p, p>

XEX AEX
<A, a>>0 I
=)\+p
<A, a>>a
v
R A T S A Pl LI
AEX
I3a
=Xp
<A, a>>a
where
v v
= ()Y 3 TR L)y g (g TR
AEX AEX
I3a I'%a
a.=X*+p Oy =A~atp
<A, &>Za <X, a>>a
' ' y —<=p. 5>
s p TR gy g g Elgeesd
A'ex 17
I'pa o
,=2 40 ap=rp
<;?+ a, a>>a <A, 0>>a-2
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Hence
v
(7.6) L £Q) = -¢-1°  z -yl Tl gm<re 0>
A&X AEX
<X,a>>a T30
=)\ +p
<) ,4>=a-2

A similar computation shows that

v
£ = (1Y 1 (- [ HqAe 56>
AEX AEX
<A,o><-a I3a
a.=A+p
<\,a>=-a

Now the simple reflection s maps the set of positive roots # o onto itself. Hence

the last sum is equal to

-1° s el Ly gyl
AEX AEX
I3a I'3a
a(I)s=(A+p)s uI,=A+$a—1)a+p
<Xx,a>=-a A,a>="a

. v I '—(a-1 _’V
D’ (gl T gV (aDampp>
A'eX
1'%
aI.=A'+p

<A'-(a—1)q,¥>=—a

_ v .V
= (VT g TR

A'EX
1'30

aIv=)\'+p

<A',X>=a—2

Comparing with the right hand side of (7.6), we conclude that £ satisfies (iii).
To prove the converse it is enough to show that if a function g: QP> ZB]J{H
with finite support satisfies g(p) =0, g(A) #0 = A < p and the identity (iii)
with f replaced by g , then g = O . Assume that g £0, and let x € Q+p be
an element of maximal possible length (with respect to some positive definite, W-
invariant scalar product on P@® R) such that g(x) # 0 . Let X be the string
through x corresponding to the simple root ag - Then x' = (x)s 1is also in X .

v v
Let a be the absolute value of <« Xsa4 >=-<X',as > . If y € X satisfies
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v
|<y,as>|> a  then clearly the length of y 1is strictly bigger than that of x

hence g(y) = O . Hence the identity (iii) for g , and X, a , as above, reduces

ta-1

to g(x) = -q g(x"). It follows that g(x') # O . Note also that x,x' have the

same length. Iterating this, we see that g((x)w) # 0 for all w € W ; moreover,
(x)w has the same length as x . For suitable w € W , we have <(x)w,gs> >0 for

all simple roots ag - Replacing x by (X)w , we may thus assume that <x,&s> >0

for all simple roots ag - If we had <x—p,&s> > 0 for all simple roots ag then
it would follow that <x—p,g>:i 0 ; since g(x) # 0 , we would have p-x > O , hence

. N . v
p-x = L n (a simple, n_ > O integers), hence < -I na ,p> > 0 . Thus

a
s's s s —

-z n, = O , hence n, = 0 for all simple roots as , hence x =p . But g(p) =0
and this is a contradiction with g(x) # O . Thus, there exists a simple root ag

v
[0

,>2 0, it follows that <x,XS >=0 . Con-

such that < x-p,gs> < 0 ; since < x,
sider the string X through x corresponding to the simple root ag - The equality
<x,&s> = 0 shows that among the elements of X , the element x has minimal length.
It follows that g(y) =0 for all y € X, y # x . Let us now write the identity
(iii) for g , this X , and a =0 . We get g(x) = —q_lg(x) hence g(x) =0 .
This contradiction shows that g = O and the Lemma is proved.

We shall now introduce as in [10] an H-module M as follows. M 1is the

1/2,q—1/2] module with basis (A) where A are the various alcoves in

. . . =-1/2
P® R . For each s € Sa , we define an endomorphism TS of this Z[ql/z,q 1/ 1-

free Z [q

module by

. . . v . v
TS(A) =(sA , if 3 positive coroot o wth <x,a> > n for

x € sA , <x,x> <n for x €A
q°sA+(q-1)A , otherwise.
These endomorphisms make M into an H-module.

Let W' be the subgroup of Wa generated by those s € Sa for which
+ . . .
s(Ap) cortains p in its closure. (This is a parabolic subgroup of Wa conjugate

to W under an element in  .)
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L’2,q71%

Lemma 7.7. Let y € wa . We define a function f : Q+p — Z as follows:

f(A) 1is the coefficient with which A; appears in

(z '@

-1 -
T )T (X T)A €M
wEW' “)Y( "’)°

wEW

Then

. +
(i) If y@) =4,

X' € Q+p , £E(A') # 0 implies A" <) .

A€ P+++ s, A € Q+p, then £f(}) = qv 3 moreover

(ii) In general, let X < Q+p be an as—string (as a simple root) and let a > 0

be an integer such that <A,Xs > =a(mod 2) for all X € X . Then

I £ = - &V L £(0)
AEX xgx
<>\,as>za <)\,as>i—a

Proof : (i) Follows from [10, 4.2 (a)] and (ii) is a consequence of [10, 9.2]

applied to the element T X T )A_
PP y(wew A

Corollary 7.8. If y in the previous lemma is such that y(AZ) = A; , then

. L(w) ~1 - -V 2 (w), -1 -
(7.9) (z (-q) T ) (T TIA =q (X (-q) T ) £(O)h A ,
wEW' VY wew V© wEW' Vo xeqw M °

where, for A € Q+p , f(A) 1is given by (7.5), and hA is an element of H such

that hAAo = AA .

Proof : In our case, the function f of Lemma 7.7 satisfies the conditions (i),
(ii), (iii) of Lemma 7.4, hence is given by (7.5). It follows that for any A€ Q+p,
A; appears with the same coefficient in the two sides of (7.9) and the corollary

follows.
Since the H-module M is faithful, we can erase A; from the two sides of
(7.9) and we obtain an identity in H . We can rewrite this identity as follows. Let

-1

Y € @ be such that YW'y = = W . We multiply both sides of our identity on the

left by TY . Note that T T =T =T . Moreover Tyh = qz(px)/zT

Yy Yy m A p, * Thus,
P A

we have
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] 2(w) ~1
8'T 8 = (I (-q) T )T I T =
mp wEW W mp wEwW
=t CMTh 5ot/
wEW AEQ+p Py

We can now compute for X € P
=2(py)/2 _ =(m)/2_, 1 ‘l(PA)/Z —vtuy
Totd K)o =a 0Ty O 7pep 01 a0
- -— V ~ ~
_ 1 q !L(mp)/Z.q 2vtvy WM P T T e

P>\ u€Q+p Px Py
3% Vv
1 - +v/2 -2 1 , 2
o L gmee>tv/2 2v v o (_q)l I,q<p o> v/ 5,
Pa 1 opP
1 I|-
=—1I (‘Q)| l b oy —
PoI Atag=e

A

Here I runs through the subsetsof the set of positive roots. We make a change of

variable I —— I' = complement of I . Then artar, = 20 , |I|+]1'] = v hence
1 5 (_q)lII“V J = =}. X (_q)"ll'l J
Py oI Atar=p Py o1 Atp=ay,

and Theorem 6.6 1is proved.
8. The following result describes the centre Z of H

. + . . .
Theorem 8.1. (J. Bernstein). Let A EP * and let (A)W be its W-orbit in P .

Then 2z, = X T is in Z . Moreover, Z 1is the free Z[ql/z,q—l/z]—
SR A . p, —=2 —oreorel 18 0= tree
A'E (W A .
module with basis zy (AEP )
Proof : Let s € S . Then T z =2 T by 7.1. It follows that T z, = z T for
—_ s A A's woA ATw
all w € W . It is obvious that, for any 1y € Pt s TD commutes with z, - But
U
the elements Tw (w € W) and Tp (v € P++) generate H as an algebra. Hence
N

z)\ €Z .

Let z; be the specializations of N under the homomorphism H — Z [ﬁa]
given by qll2 — 1 . Then clearly zi form a set of Z -generators for the centre

of Z [Wa] : the elements of P are the only elements of Wa whose conjugacy class

is finite. Using a version of Nakayama's lemma it follows that any element 2z of Z
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is a linear combination of the elements zy with coefficients being allowed to be

1/2":1-1/2:l 1/2

at the ideal generated by q ‘-1 . Since

z € H, these coefficients must automatically be in Z [ql/z,q-l/z]

in the localization of Z [q
. The fact that

the elements z are linearly independent is obvious. The Theorem is proved.

A

. ++
Let us now define, for A € P , an element

(8.2) S, = I d (L))z € Z
A u€P++ AT
<A
It is clear that for A2 € ptt , we have
= t,yn
(8.3) S)\S)\, = )\"EP++ m(A, A" )S)\..

where the > O integers m(A,A';A") are the multiplicities in the tensor product

of g-modules :

(8.4) L QDLA, = I, mO," "L

" .
A"EP A

By Weyl's character formula (6.3) we have

(wéw *F (p)w)s ) wéw (_I)Q(W)'V(HD)W
It follows that
3,8, = W™ - D30
- w7t z q"’/z(-1)“")e'T(p)wesA by lemma (7.3)
= |w| e wéw V2 1)2("’)~(p)ws}‘e
i ]wl_le' wéw ~ 0*F Tasow®
ST 0 G
= 3
The identity
(8.5) 3,78 = Ty aepr™h
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1/2a q_l/zl_

shows that the map Z —> J given by x —> Jpz is an isomorphism of Zq

modules. From this we shall deduce

Proposition 8.6 : The map Z ——> K given by z —> (% b Tw)z = P_lez is

1/2 -1/2
/,q/

an isomorphism of Z [q ]-algebras preserving the unit element. Under this

isomorphism EN € Z correspond to Ci €EK , i.e. Ci = P'lesx

Indeed, we have a commutative diagram

(since P_lJpe = Jp) and the maps Z J, K J given by multiplication

by JD are known to be isomorphisms (see 6.8). Our map Z ——> K preserves multi-

—2,2 ~1

plication : P—lez'P_lez' =P "97zz' = P "0zz' . Finally SA € Z corresponds to

Ci € K , since both correspond to Jk+p € J (see (6.9), (8.5)). The isomor-—
phsim Z — K 1is a version of the Satake isomorphism. It shows in particular that

K is a commutative algebra.

Corollary 8.7. If A,A' € P ' , we have
c! C'., = T A Tiame!
A 2! A"€P++ m( s 3 ) "

where m(A,A';A") are defined by (8.4).

(The remar.able fact in (8.7) is that the coefficients with which C!

,n appears in

the decomposition of Ci-Ci, are independent of q .)

++
Corollary 8.8. For any A € P , we have z, =z,

Indeed, the isormophism given in 8.6 is compatible with h — h (since P'le =P-%).

Since E: = Ci , it follows that EA = SA . But z, is a Z -linear combination

of element S (A" < A) hence z

L[}
N

2! X A

Corollary 8.9. If 1) € ptt , we have
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v
(8.10) T, a™ T @ q) = 220
+4 uoA -V
u€P u <p,a>
a I (q -1)
H<. o>0

(product over all positive roots & )

Proof : The left hand side of (8.10) is x(qz(p)\)/zc)") (see 6.10) where
- 2
I/Z,q 1/2] (w)

X ¢ i—z [q is the algebra homomorphism defined by x(Tw) =q R

v
Yw € ﬁa . Note that )((Tp ) = q<u’p> for any u € P"'+ , (see (6.11)). We have
u
2 2 2 25-1
x(@* P07 %cry = x (" @27 es
2 2
= AP/ x(8,)
v v
<A,p> <u',p>
=q¢" d @) = q Mo
n€EP u'€(uw
p<A

and this is known to be equal to the right hand side of (8.10). (See the proof of

Weyl's character formula in [6])

9. Let wu <X be two elements of P . According to [10] if 1 € P is such that

+

. . + +
<T,§S> >0 for all s € S (so that, in particular, u+t € P , A+T EP +) ,

the polynomial P n is independent of the choice of 1t . In particular, it
u+T’ AT

only depends on the difference A-u . Using now (6.13), we see that there exists a

well defined function

‘F; : {k€Q | KZO}-—>Z[q—1]

such that for any u<A in P, with A -u =k, we have

q—<)<’p>

(9.1) d (@, 50 =P

H+T

for any T € P such that <T,a > » 0, for all s € S .

Proposition 9.2.

-(nl+. . .+nv)

(9.3) Pe) = 3 q
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Here apseeesay is the list of all positive roots and nys...om  are required

to be integers. In particular for q =1, P(k) reduces to the Kostant partition

function .

Proof : The formulas (6.7), (6.9), (6.10) show that ﬁ(n) satisfies the recurrence
relation
1 if k=0

T (‘Q)-Illﬁ(K-aI) =
I 0 if k > 0

(sum over all subsets I of the set of positive roots), with the convention that

ﬁ(K) =0 1if K i O . From this, the required formula for ﬁ(K) follows immediately.

. . ++
It may be conjectured that, for any yu <A in P , we have

—_—y = Y ~
(9.4) TP @) = 5 CDEPB (G )w- o)) .
uooA wEW

For q =1 this reduces to a well knwon formula of Kostant.

(Note added May 1982 : Conjecture (9.4) has been recently proved by S. Kato, to

appear in Inventiones Math.)

For type A, formula (9.4) follows from a statement in [13, p. 131]; indeed,

in that case, the left hand side of (9.4) is a Green-Foulkes polynomial (cf. [11]).

The right hand side of (9.4), in the special case yu = 0 , appears also in
the work of D. Peterson, in connection with the g-module structure of the (graded)

coordinate ring of the nilpotent variety of g .

10. 1If A 1s the highest root, we have du(LA;q) =1 for any 1y € P++ s O<u <X
Indeed, the multiplicity du(LA) is 1 in this case (it is a dimension of a root
space in the adjoint representation of g). Since du(LA;q) has > O coefficients
and constant term 1, it must be identically 1. If we write the formula (8.10) for
A , the only unknown term is, therefore, do(LA;q) . We can compute it from (8.10)

e;-1

and we find do(LA;q) =¥ q where e, (i =1,...,rk(g)) are the exponents of

g -

226



SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITIES

.. = ++
11. We shall now describe the (generalized) Schubert varieties 0)‘ (A €EP ) with

the following properties :

. . . . . . . . v
a) UA is an irreducible, projective complex variety of dimension <A,20> .

b) If u,A € P'* | are such that u < A then 0,0, .

c) Let XGUA be such that xeb‘u (u < XA) but xﬁau , for any u' < u . Then

i~ ir s s o2 = 1 eq) =
the stalks HX(OA) are zero if i 1is odd and :‘.. dim Hx (Ox)q = du(L)\,Q) = Pnu,nx'

Let g' be a simple complex Lie algebra which is dual to g in the follow-
. . . . . *
ing sense. There is a Cartan subalgebra h' < g' with a given isomorphism onto h

which carries the set of coroots of g' with respect to h' onto the set of roots

-~

g' =g’ ® T((t)) . For each coroot 3 € h of g

of g' with respect to h . Let

we denote by Xa a non-zero vector in the corresponding root space of g' . For

+ -~
each A€ P , we denote by L)\ the €[[t]]-submodule of g' generated by the

v
<A,a>
vectors t

X, and by h ®@t[[t]] . This is a lattice in _é_' (i.e. a €[[t]]-
submodule of maximal rank.) It is moreover an order in é' (i.e. a lattice closed
under the Lie bracket). Let (, ) be the Killing form on g' ; we extend it to
a symmetric bilinear form on _g_' with values in €((t)) . Then LA = Ly where for

#

any lattice L we denote by L the dual lattice {x € g_’ | (x,y) € €llt]l] for all

vy € L} . It is easy to check that if L 1is any order in _é_' , then L c IZ‘* It

follows that any self dual order is a maximal order, hence, by a theorem of Bruhat-
Tits, it is a "maximal parahoric" order. It moreover, must correspond to a special
vertex of the extended diagram of g' . Indeed, if L is a maximal parahoric order
corresponding to a non-special vertex v , then dim(L*/L) is equal to the number

of roots of g' minus the number of roots in a proper semisimple subalgebra of g

(whose Coxeter diagram is obtained by removing v from the extended diagram of g')

hence L is not self-dual. It follows that the group G' of automorphisms of the
Lie algebra _g_' inducing identity on the Weyl group, acts transitively on the set
X of all self dual orders in _é_’ . Let G") be the stabilizer of Lo in G' . It
is known that the sets 0>\ (OA = Gé - orbit of l)\ in X) (A € P++) are dis-

joint and cover the whole of X . For any integer n > O , we consider the subset
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. _ n -n .
X <X defined by Xn-{L€X|tL°CLCt L} . Then X cX X, ...

and their union is X : indeed for any lattice L we can find n > 0 such that

tnLo c L and we then have by duality fﬁ: t-nLo .

We will show that Xn is in a natural way a projective algebraic variety. To
give a self-dual lattice L, tnLo clc t-nLo ,1s the same as to give a subspace
T of t_nLO/tnLo which is t-stable and is maximal isotropic for the symmetric &-
bilinear form on t—nLo/tnLo defined by Res(x,y) . Moreover, L gives rise to a
subspace Tetth /tan of codimension = dim L /t"L . Now t "L /tan carries

o o o o o o
a canonical alternating 3-form with values in & , defined by Res([x,y],z) . The
condition that L 1is an order (if we assume that L is already known to be a self-

dual lattice) is that this 3-form is identically zero on T.

Thus, we have a 1-1 correspondence L «> L between Xn and the set of
. . . - n . :
maximal isotropic subspaces of t nLo/t LO , stable under the nilpotent endomorphism
. . . - 2 . . .
t , and whose inverse image in t nLO/t nL0 is such that the canonical alternating

3-form vanishes identically on it.

This is a subset of a Grassmannian, defined by algebraic equations, hence is
a projective algebraic variety. Thus X can be regarded as an increasing union of
. . . . ++ . . v
projective varieties. If A € P satisfies < X,a > < n for all roots then

OA c Xn . It is then a locally closed subset of Xn , since it can be regarded as

an orbit of the algebraic group Gé/{g’ € G; | 1 on Lo/tnLo} acting on Xn .

We then define EA to be the Zariski closure of 5A in Xn . One could de-

fine similarly the varieties 5& over a finite field Fps (instead of over ).
The number of rational points (over F S) of 5& (in the sense of intersection co-
homology) i.e., with each rational poigt x counted with a multiplicity equal to
the trace of the Frobenius map on Z(-l)iHi(UA) is the left hand side of (8.10),

hence it is given by the right hand side of (8.10), with q replaced by ps .

In particular, the Euler characteristic of 5A (in the sense of intersection

cohomology) is equal to dim(LA) .
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