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Hodge Theory of Complex Cones 
by 

Jeff Cheeger 

0. Introduction 
In this note, we ammend and continue the final portion of the 

discussion of [ 2 ] . In the initial paragraph of Section 7 of [ 2 ] , 
we stated that for "admissible" riemannian pseudomanifolds (in the 
sense of that paper) for which the metric is Kahler, the standard 
consequences of Hodge theory (the "Kahler package") follow from the 
Strong Hodge Theorem. In particular, it was asserted that the 
properties of the Kahler metric on which these results depend are 
purely local on the nonsingular part. However, as we realized 
shortly after the publication of [ 2 ] , and pointed out in [ 5 ] (see 
pp. 307 and 317) this assertion is incorrect. Let J be the almost 
complex structure and Δ the Laplacian. Then the relation AJ = AJ 
holds locally; see [ 6 ] . Since J is an isometry, it follows that 

hel_ implies JheL and Ah = 0 implies Jh = 0. However, in the present 
context (of incomplete riemannian manifolds) the global relations 
JheL , AJh = 0 do not in general imply dJh=oJh=0, even i f dh=6h=0. 
This is the additional fact which is actually required for the 
applications to Kahler geometry; see [6 ] , pp. 109-111. Of course 
it fa i ls local ly, even in (D . More generally however, let X 
be a suitable space with singularities Σ. Then there does exist 
a criterion which is local near Σ, and which implies that i f 
h€L , dh = <5h = 0 on Χ^Σ, then dJh = 6Jh = 0. Consider the Laplacian AQ, 
such that a smooth form θ is in dorn AQ i f θ ,de, 6Θ, doe, 6d9€L . For 
spaces with conical singularit ies, d* = o~ (apart from the case of ideal 
boundary conditions) and we assume this from now on; see [ 2 ] . Then 
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HODGE THEORY OF COMPLEX CONES 

AQ is essentially self adjoint and its kernel contains precisely 

those heL with dh=6h=0. I f one assumes that away from the 
singular set, X is a complete manifold without boundary, and 9€L 
is smooth, then to check ife€dom AQ, it suffices to check the 
above conditions near Σ. 

The purpose of the present paper is to show that with suitable 
extra hypotheses, J does preserve dorn AQ, and hence ker AQ as well. 
Our argument is computational and requires rather strong assumptions. 
However, it does apply in some cases where AQ, the Laplacian on forms 
of compact support, is not essentially self adjoint. This possibi l i ty, 
which is not an invariant of quasi-isometry type, is the essential 
complication in the general problem (which is s t i l l open). 

In Section 1, we consider a metric cone C(Nm), and a bounded map 
J : Λ Ί(0(Ν)) + Λ Ί(0(Ν)), such that 

1) J is linear with respect to functions of r, 
2) J commutes with di lat ions, 
3) AJ=JA. 

We call such a map J conical . We show that subject to these 
assumptions, J preserves dorn AQ except for a small number of 
possibi l i t ies. By 1) and 3) it is easy to see that these can occur 
only in dimensions i = !Π+Ι + l , (m+1 even), or i = + 
—2— ji (m+1 odd). Using the strong hypothesis 2), we show that 
in fact, only i = or i = + ^ are possible. 

In Section 2, we consider an arbitrary Kahler manifold Y 
with the property that an L -harmonic form is in dorn AQ except 
possibly when i = ^jr^ +_ 1 . By an argument which fa i ls for 
i - ^ + 1 , we rule out the case i = 

As announced in [5 ] , the proof can then be generalized to case 
of piecewise f la t spaces, but we wi l l give the details of this 
elsewhere (see Theorem 2.3 for the general result proved here). 

119 



J. CHEEGER 

We mention that the exceptional cases of Section 1 actually 
occur as formal possibil i t ies for the double cover of the punctured 
complex plane (but, as allowed in Section 1, J is not an almost 
complex structure). This space also provides a simple example for 
which Δ0 fa i ls to be essentially self adjoint. 

We conclude this section by observing that for spaces with 
(not necessarily isolated) conical singularit ies, the "Kahler 
package" can fa i l to hold i f the singularities are not complex 

2 η 
analytic. According to [1 ] , an arbitrary orientable manifold X , 
can be realized as an r-fold branched cover of the standard p . l . 

On On 
sphere, S . By forming the connected sum S #ŒP(n) (removing a ball 

which is disjoint from the branch locus L) it follows that 

X'=X#rCP(n) is an r-fold branched cover of (DP(n). By pulling 

back the metric on (EP(n), one obtains a Kahler metric on X' which 

has conical singularit ies. The Mayer-Vietoris sequence shows 

b1 (X)=b] (Χ'). In particular, i f b](\) is odd, Η Ί (Χ ' ,0 does not 
have a Hodge structure. Of course, metrics constructed via branched 

2 
covers are of considerable interest for L -cohomology. But in the 
present context one should require that the branch locus be a 
complex subvariety. 
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HODGE THEORY OF COMPLEX CONES 

1. AJ=JA on cones 

In this section we consider the metric cone C(N m) on a compact 

smooth manifold N m with empty boundary (see [2]. [4] for background 

and notation). We begin by deriving the formula for the Laplacian 

of an i-form, 

(1.1) e = g(r)<j>(x) + f (r)drAu)(x), 

on C(N m). Intrinsic operations on N m are denoted by adding a tilda. 

Let QydrAQ, denote the volume forms on N m,C(N m) respectively. 

(1 .2) d(gcf)) = gd<j) + g'drAcj), 

(1.3) *d(g<f>) = rm ' 2 V*c!> + (-l ) i + 1r m" 2 i" 2gdrAÌd(() s 

(1.4) d*d(g<f>) = (r m" 2 ig I I + (m-2i)rm"2i"1g,)drAl(fr + r m ~ 2 i g ' d*<f> 

+ (-1) ir m" 2 i" 2g drAdid* 

(1.5) *d*d(g<f>) = (-l) i ( m" i )(g" + (m-2i)r-1g,)c() 

+ (-1 )i+1r~2gidid<|> + (-1 ) m" 1 + 1r" 2g'drAÌdìc() 9 

(1.6) 6d(g<f)) = (-g"-(m-2i ) r - 1g' )<[> + r"2gód<j> - r"2g 1 drAócf>, 

Similarly, 

(1.7) *(g*) = (-l)irm"2igdrAÌcf), 

(1.8) d*(g<|») = (-1 ) i + 1r m" 2 1gdr Adi((), 

(1.9) *d*(g<j>) = (-1 ) 1 + 1r"2g;d;<j), 

(1.10) d*d*(g<j)) = (-1 ) i + 1r' 2gd*d*c|) + (-1 ) 1 + 1 (-2r~3+r"2g ' )drAÌdì<|>, 

(1.11) dó(g<|>) = (-2r"3g+r"2g1 )drAS<f) + r"*2gdócf>. 

Al so, 
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(1.12) d(fdrAü)) = -fdrAdü>, 

(1.13) *d(fdrAu)) = -rm"2ifidw, 

(1.14) d*d(fdrAoO = (-rm"2V-(m-2i)rm'2i~MdrA*dw 

- rm-2ifdidw, 

(1.15) *d*d(fdrAu)) = (-1)m"ir"2fdrAïdïdw+ (-1)1(m"1)+1(f + (m-2i)r"1f)dω, 

(1.16) ôd(fdrAa>) = r~2fdrAodco + ((m-2i)r~]f+f')dto, 

and, 

(1.17) *(fdrAu)) = rm"2i+2fiw, 

(1.18) d*(fdrAu)) = (rm"21+2f' + (m-2i+2)rm"2i+1f)drAïw + rm"2i+2fdïu), 

(1.19) *d*(fdrAaO = (-1)m"1+1r'2fdrAïdïw 

+ (-i)(m-i+"|)(1-1)(f + (m-2i+2)r"1f)w, 

(1.20) d*d*(fdrAo)) = (-l)(m"i+1)(i '1)(f"+(m-2i+2)r"1f'-(m-2i+2)r"2f)d ΓΑω 
+ (-1 )m"*1r*2fdrAdïdïw 

+ (-1 ) (m- i+ l ) ( f •+ (m-2 i+2 ) r "1 f )da> , 

(1.21) άδ(ω) = (-f"-(m-2i+2)r"1f + (m-2i+2)r"2f)drAW 
+ r"2fdrAd^ + (-f 1 - (m-2i +2 )r '1 da>. 

Thus, on i-forms, 
(1.22) A(g<j>+fdrAo)) = (-g"- (m-2i )r"1 g1 )φ + r"2gΔφ 

- 2r~3gdrA6<j> + (-f "-(m-2i+2)r"1 f1 + (m-2i+2)r'2 f)drAU) 
+ r^fdr/^co-^r"1 fdo). 

Following [3]» for μ>0, we set 
l+2i-m (1.23) a( i) 
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(1.24) ν(1,μ) =/α2(1)+μ 
(1.25) a±(i,y) = α(1)±ν(1,μ) 

Note that a+(isy) > 0, a"(ifp) <_ 0. Let φ(χ) be a coclosed i-form 
and ψ a closed (i+l)-form, with 
(1.26) Δφ = μφ, 
(1.27) Δψ = μψ, 
(where the M1s in (1.26), (1.27) may be dist inct) . Then as in [4 ] , 
for 0<r,<r9<°°, an harmonic form on ^ (Nm) can be written as a ι c r-J , r 2 
convergent series on C (Nm) of forms of the following four 

r1 ,r2 
types (the forms in (1.30) were missed in [3 ] ; see [4] for correc-
t i ons ). 
(1.28) r a " ( i U , 

± ± 

(1.29) ra (ι '^φ + a±(i)ra (1,"1(ΙΓΛΦ, 

(1.30) r a ± ( i > + ^ + a*(i)ra±(1) + 1 d ^ , 

(1.31) ra_(i)+1drA*. 

In (1.29), (1.30) φ can be taken coexact. I f α±(ι,μ) = 0, we must 
also introduce -( ) solutions log r hm_-j , r log r drAhm+1, where Zhj=0. 

~2~ ~~~~ We say that the forms in (1.28)-(1.30) are of types ±(1), ±(2+3), 
±(2-3), ±(4) respectively. Those of type (1.28), (1.30) are coclosed 
and closed respectively. Those of type (1.29) are exact and coexact 
while those of type (1.30) are neither closed nor coclosed for 
v(i)?n. For v( i ) = l , the +(2+3) and -(2-3) solutions coincide. 

As noted in [3] ("since cT*=<S~) the sums of +( ) solutions are precisely 
those harmonic forms which are 1 oca!ly in dorn AQ near the vertex. 
Speci f i ca l l y , 
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J. CHEEGER 

A) Type -(1) € L 2(C Q ^ N 0 1 ) ) , means 2a(i )-2v(i )-2i+m>-l , or 

(1.32) v(i) < 1. 

If we apply d to type -(1), the resulting type -(2+3) form is never 
in L 2(C Q i(N m)), (unless we have nonempty ideal boundary). 

B) Type -(2 + 3) is never in L 2 ( Q ^ N " 1 ) ) . 

C) Type -(2-3) is in L 2(C Q -j (N m)) means 2a(i )-2v(i )+2-2i+m>-l , or 

(1.33) v(i)<2. 

If d,6 of type -(2-3) (types -(1), -(4) respectively) are in L 

(1.34) v(i)<l. 
D) Type -(4) is in L 2(C Q^ 1(N m)) means 

(1.35) v(i )<1 . 

Now assume that we are given J satisfying l)-3) of Section 0. 
In particular, J preserves homogeneity, <j>,co have homogeneity 0 
and dr has homogeneity 1. Thus there exist linear maps 

J + : A1" (N m) - A i + 1 ( N m ) , 
J Q : A1* (N m) A 1 ( N m ) , 
J Q : A1* (N m) - A^(N m), 
J_: A 1(N m) - A 1 - 1 ( N m ) > 

such that if we set 

(1.36) J(4>(r,x)) + drA0)(r, x)) = rJ + (ca(r,x)) 
+ J0((J)(r,x) + drAj-0(co(r ,x)) 
+ r"1 drAe7_ ((|>(r ,X) ) , 

then we have 

(1.37) AJ=JA. 
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Of course, we are motivated by the case in which J is a conical 
almost complex structure with respect to which the metric is Kahler. 
But we do not assume this yet. 

In view of (1.36), (1.37), J takes harmonic forms to harmonic 
forms, preserving homogeneity with respect to jr. We consider then 
the possibil i ty that the expansion in terms of harmonic forms of 
J(6) contains a term of the form θ2 where J(θ η ) and θ 2 are of two 
particular pure types ±(1), ±(2+3), ±(2-3), ±(4). This leads to 
the equations 

(Ί.38) a ±( i ,y^) = a ± ( i - l ) ,y^) = a ± ( 1 - l ) + 2 = a ±(i-2,y^) + 2. 

For each particular pair of choices, say (+, $) and (-,γ), we can solve 
uniquely for say y~ in terms of y*. This illuminates to some 

γ ρ 
extent the action of J on harmonic forms for the special case, 

ρ n "J n 

C(S-j ) = Œ . Of course, this action can be calculated expl ic i t ly 

by other methods. 

We now make expl ici t the possible solutions of (1.38) corres

ponding to pairs containing a + sign and a - sign. The other 

cases, which are straightforward wi l l be omitted. View each of 

the expressions in (1.38) as a function of y with α held fixed. 
In the f i r s t and fourth cases we have |a|+y>0 while in the middle 
two cases y>0. Observe that in al l cases y=0 is a minimum for 
functions corresponding to a + sign and a maximum for those corres
ponding to a - sign. Since +( )•>+», and -( )-*-« as y+«>, it follows 
by inspection that the only possibil i t ies for the degree of 
homogeneity of a +( ) solution to equal that of a -( ) solution 
are 
(1.39) v( i ,y; ) + v( i - l ,y+) = 1, 
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(1.40) v(i - 2,y^ + v(i-l,y+) = 1 , 

(1.41) v(i-l,y-) + v(i,y+) = 1 . 
(1.42) v(i-l,y") + v(i-2,y+) = 1 , 
(1.43) v(i-l + v(i-l ,y+) = 2. 

The possibilities (1 . 39)-(1 .42) occur if respectively 

(1.44) i = J , i-1 = f - 1 , 

(1.45) i-1 = f , 1-2 = 7 - 1 , 

(1.46) i = J , i-1 = J - 1 . 

(1 .47) i-1 = J , i-2 = J - 1 . 

If m+1 is odd, (1.43) corresponds to 

(1.48) 1-1 = !0ji . J , E j i - 3 . 

If m+1 is even, (1.43) corresponds to 
(1.49) i-1 = Si^l. 

It will be important to note that in either of these cases, if 

(1.50) J(r a + ( i- 1' y )dc t,+a + (i-l,y)r a + ( i- 1^ )- 1drA<t») 
= r a 0-l.XJ+Z d + a + ( i _ 1 > x ) r a n-l.X> + l d + h > 

then multiplying through by r2-2v(i-1,y) = r 2v(i -1 ,X)-2 . g i v e s a - | s o 

(1.51) J(r a" ( l"- 1)'^ + 2d<f + a + O - l . y J r * " * 1 - 1 » ^ * 1 ^ ) 
= r ^ - ^ W a + M - l . X Î r ^ - ^ M d r A i , + r2-2v (1-l.w) h 

If we now restrict attention to the case m+1 even we have 

Proposition 1.1. Let J on C(N m) be conical. Let 
the i-forms e| and 0^ be +( ) and -( ) solutions as in (1.28)-
(1.31). If the expansion of J(ej) contains ejj, then 
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(1.52) ΘΪ = r * * * 1 " 1 ' ^ * + Γ ^ ^ - ^ ^ ΐ ^ α Γ Α φ * 

(1.53) θ - m ra-(1-l.X)+2dr + RA-(1-l.X)+ldrA#-f 

(1.54) ν ( ι - Ι ,μ ) + ν ( ι - Ι , λ ) = 2, 

(L55) i = 5!+l 

Example 1.1 Consider the cone on a circle of length 4π, 
the double cover of the complex plane minus the origin. Then 

ι ο 
ν(Ο,μ) = 0, y,1,4, - where the nonzero values have mult ip l ic i ty 2. 

We now consider briefly Δρ, the self adjoint Friedrichs 

extension of AQ. Recall that θ ε dorn Δρ i f θ,ΔΘ ε L and there exist 
compactly supported forms {θ.} » such that de.+de, 6θ·->δθ. 
Whereas for AQ we had ά6Β, <5de ε L , this is not required for 
Δρ. However, for AQ there need only exist possibly distinct 
sequences of compactly supported forms θ·-*θ, θ~.->θ, with de.^de, 
5θ".-»-δθ. I t follows easily that θ ε ker Δρ implies d9 = 69 = 0 (but not 
conversely). I t is also easy to check (with the help of a cut-off 
function) that for v ( i - l , y )< l the +(2+3) solution is in 
dorn Aĝ dom Δρ and the -(2-3) solution is in dorn Ap̂ dom AQ. For 
v ( i - l , y ) > l , Ap and AQ coincide. But i f v ( i - l ,y )<2, AQ is s t i l l 
not essentially self adjoint (this is the " l imi t circle" case 
for forms of type -(2-3)). 

Then we have the possibil i t ies γ + j = 2, 1+1 = 2. 
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AJ=JA on Complex Cones 
In the previous section we saw that for even dimensional cones 

and J as in Proposition 1.1, the possibil i ty that J takes +( ) 
m 4- 1 

solutions to -( ) solutions could be ruled out unless i = -γ-. 
In this section we want to show that in case J is the almost complex 
structure associated to a Kahler metric with conical singularities 
then this possibil i ty can be ruled out as well. 

m I ι 
Let Y be a (possibly incomplete) Kahler manifold and suppose 

that with the possible exception of dimensions ^^-, ^^p- ± 1> every 
ρ 

L -harmonic form is in dorn AG (see A)-D) of Section 2). 

Let h e A(m+1)/*(Ym+1)nL2, Ah=0 and put 
(2.1) h = Lx+p 

2 
where ρ is primitive. I f Λ y=x, then also 
(2.2) h = LA2y+p = ALAy+p. 

2 
As is well known, it follows that x,y,p € L ; see [6] . Since Jx 
is an (̂ Tp- - 2)-form, Jx€dom AC and 
(2.3) dJLx = dLJx 

= LdJx € L2 
Similarly, 
(2.4) δJALAy = öAJLAy 

= AÔJLAy 6 L2 
2 2 Thuà dJ(h-p), ôJ(h-p) eL and in the same way d ( h-p ) , δ ( h-p ) e L . 2 2 Thus, i f we also assume dh,öh e L , then dp,öp € L . Since 

Lp=Ap=0, by [6 ] , p. 109, we have 

128 



HODGE THEORY OF COMPLEX CONES 

(2.5) L2 3 (dA-Ad)p 
= -6 Cp, 

(2.6) L2 3 (6L-L6)p 
= dCp. 

Thus dJp,6Jp€L . This, together with (2.3), (2.4) implies 
(2.7) dJh,&Jh€L2. 

Essentially the same argument shows that i f we make the (global) 

hypothesis that L -harmonic forms on Y are closed and coclosed, 
except perhaps in dimensions + 1, then in fact the same 
holds in dimension ^̂ in-. But for primitive {^^~ - 1 )-forms a similar 
argument shows only dJp e L and not 6Jp e L · 

Now in the previous section, we saw that i f the metric and J 
are conical, then J carries +( ) solutions to +( ) solutions with 
the only possible exception corresponding to (1.43), (1.49). 
Moreover, i f this exception occurs, we can assume that J of a 
+(2+3) solution has a component corresponding to a -(2-3) solution, 
d and 6 of which are not in L2 on CQ € (N m ) . Indeed, by (1.43), 
(1.50), (1.51) we can choose the -(2-3) solution to correspond to 
v<A , and our claim then follows from A), D) of Section 1, Thus, 
applying (2.7), we see that carries +J )_ harmonic forms to j j )_ 
harmoni c forms in al 1 cases. This is the crux of what we wanted 
to prove. 

We now show that subject to the same assumptions, J actually 
preserves dorn Δ^. We recall the easily proved statement from [3] 
that an arbitrary eigenform of Δ which is in L (CQ £(N ) ) , admits 
a convergent series representation, which can be grouped so that 
the f i r s t term is a harmonic form h. Also, the notions of +( ) 
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and -( ) solutions are defined for arbitrary eigenforms. Then our 
previous analysis immediately implies that for arbitrary λ, J as 
above takes +( ) eigenforms to +( ) eigenforms. However, the +( ) 
solutions are precisely the eigenforms in the domain of the Laplacian 
AQ. Since whether a form is in dorn Δ^ can be checked by examining 
its spectral representation, we now have the following result. 

Theorem 2.1. Let Y be a complete Kahler manifold with isolated 
metrically conical singularit ies, and suppose that near the 
singularities the almost complex structure J is also conical. 
Then J preserves dorn Δ^. In particular, J preserves ker Δ^, 

2 
the space of closed and coclosed harmonic L -forms. 

Finally, we observe that the conclusions of Theorem 2.1 
remain true, i f the hypotheses are only satisfied up to suff iciently 
high order. In the proposition that follows, we wi l l assume for 
simplicity that d*=o\ Clearly it would suffice to only assume this 
near the singularit ies, and the case of ideal boundary conditions 
could also be included. 

Proposition 2.2 Let X have isolated metrically conical 
singularit ies, with respect to the metric g. Let g' be a second 
metric on Xm+^ for which, in polar coordinates, we have 

i ) l lg-g'll = o ( r 2 ) f 

11) l|v(g-g')|| = 0(r), 
H i ) l |v 2(g-g')| | = 0 ( i ) , 
where V, denotes covariant differentiation with respect to g. 
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Assume that d =6 and let AQ,AQ denote the corresponding Laplacians. 
Then dorn AQ = dorn AQ. 

Proof: We can assume that near some ρ€Σ, g is of thé form 
C0>2(Nm). Set 

(2'10) * j = c2-(J+2)j2-(j-i)(Nm)' 
(2.11) νΛ - C2.(J + 1 ) ' R J ( N » ) . 

I t follows from the usual e l l i p t i c estimate and an obvious scaling 
argument, that for k=0,l,2, 

(2.12) ||vk6||F < c(2J)k(||e||£/ +|[ Αθ 11 ^ ) 

Also, it is easy to check that 

(2.13) ||(dô-dô-)θ!^ < c2(| |9| |^ + 2-j[|v0||7/H2-2j||v2e||^) 

with similar estimates, for || ( 6-6 ||( 6d-6 ' d ) θ || . 

Thus, 
(2.14) ||d6'ellCn l(Nm) 1 ΙΙαδθΙΙη (ΝM) + llfa«-^)e||c (Nm}, 

= LLDSELL C /Nm) + ς I] (d6-d<?5Θ || , 

U0,VN ' j = l V3 
<_ Hd6eilco i(Nm) +9CLc2(Hellc0>2(Nm) + Ι'ΔΘllC0>2(Nm)> 
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where the last inequality follows from (2.12), (2.13). This 
together with the corresponding arguments for (δ-δ' ), (ôd-ό ' d ) 
shows that dorn Δβ c dorn Δβ. However, it is straightforward to 
check that conditions i ) - i i i ) imply the same conditions with the 
roles of g,g' interchanged. Then in the same way one shows that 
dorn AQ c dorn Δβ 

In the same way (using [2]) we have 

Theorem 2.3 Let Y be a Kahler manifold with isolated singularit ies. 
Let g' denote the metric and J' the almost complex structure. 
Assume that near the singularities there exist a conical metric g 
and almost complex structure J such the g,g' are related as in 
Proposition 2.2 and 

i ) H J - J • H = 0 ( r 2 ) , 
i i ) ||V(J-J')|| = 0(r ) , 

111) | |V 2(J-J')| | = 0(1). 

Then J' preserves dorn Δβ. 
I t is not d i f f i cu l t to check that Theorem 2.3 applies to a 

complex submanifold Y of a Kahler manifold X such that the 
singularities of Y are isolated and metrically conical up to 
higher order terms in local normal coordinates (for example 
complex projective cones with nonsingular base). I t then follows 
from [2] that for such Y, the "Kahler package" holds for the middle 
intersection cohomology groups, IH (Y). Of course, by now there 
has been considerable progress on the conjecture that this holds 
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for arbitrary singular projective complex algebraic varieties; 
see [2] p. 137 and [5] . However, our purpose here was to show 
that at least in the simplest cases, this conjecture can be 
explained by considerations based on the induced metric, and 
that even for these cases the situation is quite delicate; 
compare [5 ] , section 4, Conjectures Β and C. In fact, the 
existence of a Hodge theory for the induced metric in the conical 
case was the original motivation for the conjecture that IH 
satisfies the Kahler package in general. 
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