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SIEVE IDENTITIES AND GAPS BETWEEN PRIMES 

by 

D.R. HEATH-BROWN 

The purpose of this lecture is to describe two identities for estimating sums 

over primes. They are related to the well known Vaughan identity, but are dis­

tinctly stronger, and should be more illuminating. 

In the first identity we write 

M(s) = 2 u(n) n" 
n<X 

We then have 

LEMMA 1. - Let k g IN . Then 

C'(s) k 
C(3) - j t l 

(-1)j-1(kj) 
£(s)J_1C'(s) M(s)J 

C(s) 
C(s) 

(l-C(s) M(s))k . (1) 

If one is interested in the sum 

S = Z A(n) f(n) 
x/2<n<x 

one may apply Lemma 1 with a fixed positive integer k , and X >x . Then, 
- s 

on picking out the coefficients of n on either side, one sees that the final term 

on the right of (1) makes no contribution, since 
Q(s) M(s) = 1 + 1 : c n"S . 

n>X 
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Thus S may be written as a linear combination of 0^(1) sums 

2 =n f . . . n ( l0gn l , M(nj+1)'" M(n2j,f(nln2-n2j) * 
1 2j 

subject to the conditions x/2 < n„ n̂  ... n . <x and n.<X ( j < i < 2 j ) . We may sub-
1 2 2 j i 

divide the ranges of summation into intervals N .<n . <2N. , where 
-k-l 1 1 1 2k 2 X S I T N . S X and N . < X for j< i<2 j ; there are then O ((log x) ) sums 2. 

1 1 j£ 
Thus the "unknown" coefficients \d (. ) are summed over ranges which can be 

made as short as desired, by taking k to be large, and X to be a small power 

of x . 
In contrast Vaughan's identity yields at most a triple sum, and there is always 

l 
an "unknown" coefficient corresponding to a range ^> x2 . This may be rectified 

by iterating Vaughan's identity, and Lemma 1 may be thought of as a simplified 

k-fold iteration. 
We illustrate the use of Lemma 1 by applying it to the sum 

T. A(n) = ^(x) -ij/(x-y) . 
x-y < n< x 

0 1 
Here we take y = x and "T+6< 9^1-6 » & being a fixed positive constant. 
We choose k=6 and X = x ^ / . If some N. (necessarily with i ^ j ) satisfies 

i 1 
N .>xs , then £ may be evaluated elementarily. Otherwise we apply Perron's 

formula, and obtain 

S="2m f+lT° xS'(sX'Y>S F1(s). . .F2.(s)ds+0(y(logx)-A), (2) 
i iT0 

1 -fi +£ 
in which T = x * (with a fixed e >0 ) , A is any positive constant and o 

F ( s ) = S (log n)n'S , F ( « ) = S n~S , (2<t<j ) , (3) 
N < n S 2 N N < n < 2 N 

F (s) = £ H(n)n's, (j<^<2j) . (4) 
^ N < n < 2 N I I 

For ease of reference we shall call sums of type (3) "£-factors" and sums of 

the type (4) " (j-factors". Moreover, by the "length" of F (s) we shall mean N-

In estimating the integral on the right of (2) one uses the following lemma. 
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1 
LEMMA 2. - Suppose each £-factor F, has length < x2 , and each u-factor F, 

20 1 6 
has length <x . Then there exists € = e(6) such that, if j <4 . 

2T i A 
^ |F1...F2j(-+it)| d t « A 6 x2 (logxf , (anIA>0) 

uniformly for 

e x p t f l o g x f l ^ T ^ x 1 " 9 ^ . 
11 7 If Q>~ + o one may take j = 5 , and if 0> — + 6 one may take j = 6 . 

The proof of Lemma 2 is long. It uses the Halasz lemma, and also requires 
Vinogradov's zero-free region, since one needs a good bound for F^(~+it) when 

j<l<2j. 

There is no room here to show how Lemma 2 is used to obtain an asymptotic 
7 

formula for £ . However we may at least observe that if 6 "TT + k » then we can 
1 c* 

take k = 6 and 
x = x 2 9 - l - 6 = x ( l / 6 , + 6 

Then Lemma 2 may be applied to each term £ , and one obtains an asymptotic 
formula for (x) - ijj(x-y) . We thus recover the well known result of Huxley. 

We now turn to our second identity. Here we write 

TT(s) = n (1 - P ~ S ) . 
p<z 

LEMMA 3. - Let k £ IN . Then 
1 log(£(s) TT(S))= T T. 

= £ (1)j-1 j-f1 (C(s) -1)' • 
j=l 

A result of this shape has been used by Linnik, but the factor TT(S) plays only 
a subsidiary r61e in his work. 

We may apply Lemma 3 to the estimation of 

S = 2 f(p) . 
x/2<p< x 

We take k to be a fixed positive integer with z > x . Then, on picking out the 
- s 

relevent coefficients of n on each side, one sees that the terms with j >k 
make no contribution to S , since 
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C(B) h(B) = 1+ £ a n"S . (5) 
n> z n 

If we are interested again in ty(x) -\|r(x-y) we may proceed as before. There is 

however a technical difficulty in that n(s) is not a (a-factor. This may be cir­

cumvented in fact, and a result similar in principle to Lemma 2 will apply. Thus 

the contribution from (£(s) TT(S) - 1)"̂  will have j ^-factors, and every ^-factor 

will have length < z . We shall choose z = x^® * ^ . 
7 k For 0 = ^ t̂ 16 conc*ition z > x will be satisfied if k = 6 . Since the range 

for j is now j <k , Lemma 2 is more than sufficient. Again we may recover 

Huxley's theorem. 

4 7 
Incase y + 6<Q<— +6 we need k = 7 . Here Lemma 2 covers j < 5 , but 

not j = 6 . We have therefore to allow seperately for the term (say) given by 
o 

TJ , - T, a a a a a a 
6 x-y< rstuvw<x r s t u v w 

(Here an is defined by (5) . ) For our range of 0 this becomes 

£6= 2 1 . 
x-y<p ...p <x 

1 6 
p̂  >z 

We may thus obtain an asymptotic formula of the shape 

n(x)-TT(x-y)+iE6~ C(6) , 

q 20-1-6 4 7 for y = x , z = x , + 6< 0< ~ + 6 . In contrast to our application of Lem-7 12 ? 
ma 1 we can now see precisely what has gone wrong at 0 =^2 ' we can n° 
longer evaluate accurately. 6 

7 
We may think of as being small. For example, if 0 ="7T- 6 then each of 

// , 1/6-36 XL 1/6+156 the primes p̂  in (6) is restricted to the range x < p. < x . By 

using a crude Selberg upper bound sieve one finds that 

I 2 < I _ L _ 
6 6 5 Log x 

for 9 - f r e o o o - Conse<iuently 

i T ( x ) - T T ( x - y ) » - j ^ 

in this range. Moreover by working uniformly in 0 one may show that 
-1 7 2 = o(y(logx) ) as 0 tends to ~ from below. By making this precise one can 6 12 

prove : 
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THEOREM 1.- Let e(x) -»0 as x ->» . Then 

TT(x)-rr(x-y)„ y 
Log x 

as x oo , uniformly for 
(7/l2)-e(x) ^ xw 7 x 7<y<x 

THEOREM 2. - We have 

n(x) -n(x-y) = y/Log x+0(y(logx)"(45/44)) 

7/12 
uniformly for x < y < x . 

Finally we describe an interesting sieve property of Lemma 3. Let 
a (n) = e * if n=pe and p > z , and put a (n) = 0 otherwise. Write a (n, j) for z z z 
the coefficient of n S in (£(s) n(s)-l)J . Then Lemma 3 yields 

k-1 1 
a (n) = £ (-1)J j a (n,j) 

Z j=l z 
for z > n . However we also have : 

LEMMA 4. -
' < ( J odd) 

a (n) 
z > (J even) 

E (-1)J-1 j"1 a (n,j) 
j = l z 

For example the case J = 2 says that if n ( / l ) has no prime factor below z , 

then a (n) >2--^ d(n) . Unfortuately the only proof of Lemma 4 so far obtained is 

not at all illuminating. 

By taking J = 4 we may derive a lower bound for TT(X) -n(x-y) . The corres­
ponding Dirichlet polynomials will have at most 4 £-factors, and so Lemma 2 
applies throughout the range T < A <1 . Thus one obtains 

TT(x) -TT(x-y)> c(0) J£ 
Logx ( |<G<1) • 

The value of 0q for which C(0q) = 0 has not been calculated, although it has been 

shown that ~ < 9Q<^" • 
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