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PSL(2) OVER IMAGINARY QUADRATIC INTEGERS 

by 

J. ELSTRODT, F. GRUNEWALD, J. MENNICKE 

1. - Introduction 

This paper describes some results obtained by us on various aspects of the groups 

PSL(2,0) where $) is the ring of integers in an imaginary quadratic number 

field. Our results complement or carry further the research described in the 

previous papers [2 ] , [ 3 ] . 

The second chapter gives some asymptotics for representation numbers of 

certain ternary quadratic forms. The proof uses an analysis of the spectral theory 
2 

of the Laplace operator on L (r \H) where H is the 3-dimensional hyperbolic 

space. The group r = PSL(2,0) has a natural action on IH . 
The third chapter describes the number of conjugacy classes of elements of 

order 3 in unit groups of certain integral quadratic forms. We use Siegel's theory 

of quadratic forms to compute the above number of conjugacy classes in terms of 

class numbers of binary quadratic forms. 

The fourth chapter describes some computational results on the structure of 

certain subgroups of finite index in PSL(2, Z [ i ] ) . 

In chapter five we study the He eke algebra in the commutator factor-group of 

these subgroups of finite index in PSL(2 , 2Z[i]) . We give here some computational 

results which suggest a connection between the eigenspaces of the Hecke algebra 

and Frobenius classes in certain extension fields of Q[i] . 
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2. - Asymptotic results on numbers of representations by certain special ternary- 

quadratic forms 

In this paragraph, we describe some results which are a combination of ideas 

of A. Schmidt and A. Thorup and our previous results [ 2 ] , [ 3 ] . We collect some 

notation. Consider 3-dimensional hyperbolic space H =~ PSU^ \ PSL(2, <E) . The 

Poincare* upper half-space model is 

H = [ ( z , r ) , z€ C, r<ER+} . 

The metric is given by 

d2s = 
2 2 2 dx + dy + dr 

2 
r 

z = x + iy . 

The global distance is given by 

Cos d(P,Q) = 
I z - z ' | 2 + r 2 + r ' 2 

2rr* 
= 6(P ,Q) , say 

P = (z, r) , Q = (z', r») . 

The action of the group of orientation preserving isometries PSL^CQ on 1H is 

given by 

X ( z , r ) = 
(vz+6)(g z+fl)+g yr' 

|Yz+6|2+ i-2/y I 2 |Yz+6 |2+r2|Y|2 

X = (* J ) 6 P S L 2 ( C ) . 

The Kleinean model is defined as follows. Take a quaternary quadratic form 

over ]R , of signature (3, 1) , i. e. 

2 2 2 , 2 
f~ - x. - x - x + x 
IR 1 2 3 4 

Consider 

K(f) := {x^IP3(IR)» f (x )>0} . 

The global distance in this model is given by 

Cos d(P,Q)= 6(P,Q) = 
JW) 7 1 5 ) 

where P , Q are represented by the real homogeneous vectors x> Y_ • respective­

ly-
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The group of isometries is PO^(f, IR) . By duality, the planes in K(f) are 
3 

described by the real homogeneous vectors u£ IP such that f(u) < 0 . A point x 

lies on a plane u if and only if f(x , u) = 0 . For a form f with coefficients in 

2£ , and for points x with rational homogeneous coordinates, we introduce the 

notation 

x= 

x i 

X2 

X3 

x4 N 

where x^, x̂ > x^, x^ q 2£ are relatively 

' prime, and f(x) = N. 

The coordinates x̂  are uniquely determined up to a common sign ± 1 , and 

N^2£ is uniquely determined. The square class of N is the spinorial norm of 

the reflection in x . 

Consider the complex quadratic field k = Q(y -m) , m £ IN , square-free. For 

simplicity, we assume m = l , 2 mod. 4. The adjustments for m = 3 mod. 4 are 

usually obvious. 

The ring of integers in k is 

0 = { a + by^m, a , b £ Z } . 

The group T - PSL(2,0) cz PSL(2, C) is a discrete subgroup of finite covolume. 

Consider the quadratic form 

f = -x - my + uv . 

The group PO^(f, is a discrete subgroup of PO^(f, ]R) of finite covolume. 

There is an exact sequence describing one of the so-called exceptional isomor­

phisms between certain orthogonal groups and linear groups : 

1 • PSL(2,£>) \ PQ4(f, • cok > 1 . 

The cokernel cok is an abelian group of exponent 2 , and of order 2W^m^+2 , 

where w(m) is the number of prime factors of m . The cokernel map of the 

above sequence can be defined via the spinorial norm. 

A geometric version of the exceptional isomorphism is as follows 
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PROPOSITION 1 . - Consider the form 

2 2 
f = -x - my + uv . 

There is an isometry 

o : H — • K(f) , such that 

a : 0 
c 

/7D 
C 

c, D£ IN 
i ,2 
|b| + D = 0 mod. c 

4 » 

b 
o 

bi 
c 

a 
D 

b = bQ+blVCm 
a, c £ IN 

ac - |b|2 = D 

The isometry is compatible with the actions of the groups PSL(2,0) and 

PC4(f, 7L) y respectively. 

There is another classical model of hyperbolic 3-space : the space of binary 

positive definite Hermitian forms of determinant unity. Write the Hermitian form : 

2 - — — 2 _ 
f = a|x| + bxy + bxy + c|y | = (xy) B x 

y 
, where 

+ i i2 a, c £ IR , b£<C, a c - |b J = 1 , B = a b 
c ' * 

For 

X = , a 

Y 6 
€ PSL^C) , consider 

X(0,1) = 
ay+B§ 

M 2 + | 6 | 2 ' 

1 

M2+I«l2 
We have 

XX = 
| a | 2 + | 3 | 2 

a y + g 6 

a y +p 6 

IYI2+|6|2 
= B , say. 

The mapping 
T : X mod. PSU2 * > B = XX* 

is a bijection which can be made into an isometry. We need the following integral 

version. 
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PROPOSITION 2. - There is a Injection 

p : P = » 

c c 

b £ © , c,D^]N 

|b|2+D = 0 mod. c 

• B = 
a 
b 

b 

c ; 

a, c £ IN , b^O 

ac - |b|2= 1 

of certain points in hyperbolic 3-space and integral binary definite Hermitian  

forms over © with determinant D . 

PSL(2,©) -orbits of such points correspond to PSL(2,©) -equivalence classes  

of Hermitian forms. 

We consider the following counting function. 

c(n) = # { X = a 

Y 
3 €PSL2(0) ; | a | 2 + | p | 2 + | Y | 2 + | 6 | 2 = n } • 

There is a beautiful method due to A. Schmidt and A. Thorup [ 8] to compute c(n) . 

PROPOSITION 3. (A. Schmidt and A. Thorup) . - Assume m / 1 . We have 

c(n) = 2 / { (x,b) ; x £ Z , be© , x2+ 4 |b|2 = n2-4 , 

a : = 0 
2 

(n+x) , c : = 1 
2 

(n-x) , 
a 

b 

b 

c 

1 
0 

0 

1 

The equivalence ^ is_ PSL(2,©) -equivalence of Hermitian forms. For m = 1 , 

replace the factor 2 by_ 4 . 

There are some cases where the equivalence condition is trivial, because 

there is only one class of Hermitian forms. This holds, e .g. , for m = 1 . In 

these cases, c(n) is, up to a trivial factor, the number of representations of 
2 2 2 

n - 4 by the definite ternary quadratic form g = x +4 |b| 

If there are more than one equivalence class, then the equivalence condition 

in proposition 3 is very difficult to handle. There is, however, a way to produce 
2 

information about the number of solutions of g = n - 4 . Introduce the counting 

function 
d(n) := # {(x,b) , x£ TL , b££> , x2+4|b|2 = n 2 - 4 } , 

choose a system of representatives for the equivalence classes of binary positive 

definite Hermitian forms over © with determinant unity : 
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B j , B 2 , . . . B h * . 

Let P , P^ , . . . P #£lH be the points corresponding to B. under the bijec-1 2 h i 
tion of proposition 2 . For j = (0,1)£ 1H use the identity 

§(j , xp)= 1 
2 

t r ( X B X * ) , 

where B = p (P) corresponds to P under the above bijection. Introduce the 

Poincare' series 

e*(P,Q, t ) : = 

X£ PSL(2,0) 
e 

-t6 (P, XQ) 

for P , Q e H , t£]R+ . 

In our previous work [2] , [ 3 ] , we have shown 

lim 
t -» 0 

2 * , 
t 0 (P,Q,t) = 

4TT 
voi (r \H) • 

Notice that the right hand side is independent of P , Q . 

Consider the functions 0 (j , P. , t) . By the Schmidt-Thorup theorem, we have 

h* 

i=l 
e* u , P. , t ) = 2 

00 

n=2 
d(n) e 

.-(tn/2) 

Invoking the existence of the above iimit, we conclude 

lim t-»0 t2 
OS 

n=2 
d(n) e 

e-(tn/2) = 2TT 
vol ( r \ H ) 

h * . 

Invoking the Tauberian theorem of Karamata, we obtain 

THEOREM 1. - Consider k = Q (V^m) , m £ IN , squarefree, m / 1 , 3 . Let 

O c k be the maximal order. Let h* denote the number of PSL(2,0 ) equiva­ 

lence classes of binary definite Hermitian forms over © with determinant unity. 

Consider the ternary definite quadratic form over Z 

2 A i, |2 g = x +4|b| , 

2 
where |b| is the norm form in © . Consider the number of solutions of 2 A g = n - 4 : 

d(n) = # [ ( x , b ) ; x g Z , b£© , g=n2-4} . 

Then the summatory function over d(n) has the asymptotic behaviour 
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N 

n = 2 
d(n)~ n 

4 vol(r\H) 
-T2 . h . N . 

Here vol(r\lH) means the covolume of PSL(2 ,0 ) , which is 

vol ( r \H) = 
d/3/2 

4n2 
Sk(2) , 

d is the discriminant of k , and is the Q -function of k . 

Although our result is special, it seems to be one of the few results which do 

not follow either from Siegel's theory or from the classical theory of modular 

functions. 

Notice that the class number h can be computed using Siegel's theory of 

indefinite quadratic forms over TL , because by proposition 1 and 2, it basical­

ly amounts to computing PO^(f, 7L) -orbits of 

2 2 f = - x - my + u v = 1 , 

and the form f has only one class in its genus. It is likely that explicit formulas 
•M-

for h are in the literature, but we did not find a reference. 

3. - Conjugacy classes in the extended Bianchi group 

Consider the group 0^(f, for the form 

2 2 f = - x - my + u v . 

Since f has only one class in its genus, Siegel's theory of indefinite quadratic 

norms can be used to study group-theoretical properties of 0^(f, 'K) . We have 

discussed in [ l ] that there are only very few conjugacy classes of involutions in 

0^(f, "&) . Here we describe another similar result. 

THEOREM 1. - Assume (m, 6) = 1 . 

Consider elements X ^ T = O (f, of order 3 . Any such X is a product of 

two involutions 
X = (JT , 

where a and T are reflections in planes which are both in the orbit of 

a - ( 0 , 0 , 1 , - 1 ) . The number of conjugacy classes of elements of order 3 coin-
2 2 

cides with the number of GL(2, TL) - classes in the genus of g =x -3my . 
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The proof of the theorem is not straightforward. Siegel's theory gives a sum 

of densities over the various orbits. In general, these densities are different for 

different orbits. It turns out that in the above special situation, this information 

suffices to count the number of orbits. 

Notice that in the classical theory of indefinite binary forms, SL(2, 7L) -classes 

of such forms correspond to proper equivalence classes of ideals in real quadra­

tic number fields. A GL(2, -class of forms splits into two SL(2, 2£) -classes 

if the forms are not ambiguous, and into one SL(2, "&) -class if the forms are 

ambiguous. 

Using more or less standard arguments from algebraic number theory, it can 

be shown that the number of conjugacy classes in theorem 1 can be arbitrarily 

large as m grows. 

4. - Some commutator factor groups 

The chapter gives the outcome of the explicit computation of the commutator 

factor group of certain subgroups of finite index in PSL(2, Z [ i ] ) . For an ideal 

0 s put 

ro(«) = a 
c 

b 
d 

€ P S L ( 2 , zCi]) | c£ Q } . 

As long as a 7^0 the group r^(o) is of finite index in PSL(2, 2£[i] ) . Using a 

presentation for the group P S L ( 2 , Z [ i ] ) it is then an easy but tedious computatio] 

to obtain a presentation for rQ(o) for each particular ideal a . In case a is a 

prime ideal of degree 1 the computational effort is least. From the presenta­

tion of r (0) one can then compute the structure of the commutator factor group 

^ / xab 
ro(o) . 

We give now the result for the prime ideals f ) £ Z [ i ] of degree 1 with norm 

N(p)<100. Note that N(p)=N(q) implies that r (p) is isomorphic to TQ(<\) . 
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N ( p ) 

5 

13 

17 

29 

37 

41 

53 

61 

73 

89 

97 

ro(P,ab 

Z / 4 Z 

Z / 4 Z x Z / 3 Z 

Z / l 6 Z 

Z / 4 Z y Z / 2 1 Z 

Z / 4 Z x Z / 9 Z 

Z / l 6 Z x Z / 5 Z 

Z / 4 Z x Z / 1 3 Z 

Z / 4 Z x Z / 1 5 Z 

Z / 8 Z x Z / 9 Z 

Z / 8 Z x Z / l l Z x Z / l l Z 

Z / 3 2 Z x Z / 1 5 Z 

The first case where T (p) is infinite occurs when N(p) = 137. Here we find 

ro(p)ab- Z x Z / 4 Z x Z / 3 Z x Z / 1 7 Z . 

The cases of T (p) with infinite factor commutator group are discussed in [ 2] , 

[ 5 ] . 

For a prime ideal p put 

A(p)= ( O / p ) / { ±1J 

where (0/p) is the multiplicative group of ©/p . A(p) is a cyclic group of 

order (N(b) - l ) /2 . There is a suriective homomorphism 

cp : rQ(p) > A(p) 

induced by the map 

cp : I* b 
vc d ) ^ * a . 

This shows that the group r (p will be quite complicated if N(p) is large. 

Let a be a rational prime. We put 

A(p ,q)= ro(P)ab/q.ro(p)ab . 

A(p , q) is a finite dimensional vector space over Z / q Z . We write r(p,q) for 

its dimension. 
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Conjugation by the element 

£ = ( 0 1> 

leaves the group r (p) invariant and induces an involutory automorphism e of 

A ( p , q ) . If q is odd we write A+(p , q) respectively A (p , q) for the +1 resp 

resp. -1 eigenspace of e . We also put 

r+(p,q) = d i m z / q Z A+(p , q) , 

r_(p,q) = d i m z / q Z A_(p , q) . 

Clearly r(p , q) = r+(p , q) + r_(p , q) . 

For q = 2 we write A+(p , 2) for the space of invariants of e and r+(p » 2) 

for its dimension. Surprisingly enough e is a unipotent automorphism of 

A(p , 2) for certain p . 

Further we put 

r ( P , » ) = r k z ( r o ( p , a b , 

for the torsion free rank of r (p) 

In the following table we give the dimensions of all A^(p , q) for N(p)^ 400 

After giving the norm N(p) of p we give the rank r(p ,00) . For q a rational 

prime we insert 

(q> r(p,q) , r+(p , q) ) 

if and only if r(p , q) - r(p , » )> 0 . This leaves only finitely many q in the game. 

N(p) 

5 

13 

17 

29 

37 

41 

53 

61 

73 

r(p ,0°) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(2 ,1 ,1) 

(2 ,1 ,1) ; (3 ,1 ,1 ) 

(2 ,1 ,1) 

(2 ,1 ,1) ; (3 ,1 ,0) ; (7 ,1 ,1 ) 

(2 ,1 ,1) ; (3 ,1 ,1) 

(2 ,1 ,1) ; (5 ,1 ,1 ) 

(2 ,1 ,1) ; (13,1 ,1) 

(2 ,1 ,1) ; (3 ,1 ,1) ; (5 ,1 ,1) 

(2 ,1 ,1) ; (3 ,1 ,1) 
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N(p) 

97 

101 

109 

113 

137 

149 

157 

173 

181 

193 

197 

229 

233 

241 

257 

269 

277 

281 

293 

313 

317 

337 

349 

353 

373 

389 

397 

r(p,00) 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(2 ,1 ,1) ; (3 ,1 ,1) ; (5 ,1 ,1) 

(2, 1, 1) ; (5, 1,1) ; (17, 1,0) 

(2 ,1 ,1) ; (3 ,1 ,1) 

(2, 2, 2) ; (7, 1,1). 

(2,2, 2) ; (3, 3,0) ; (17, 2,1) 

(2 ,1 ,1) ; (7 ,1 ,0) ; (37,1,1) 

(2, 3, 2) ; (3, 2, 2) ; (13, 1, 1) 

(2, 1,1) ; (3, 1,0) ; (43, 1, 1) 

(2, 1, 1) ; (3, 2, 2) ; (5, 1,1) ; (31, 1,0) 

(2,4, 3) ; (3, 1, 1) 

(2 ,1 ,1) ; (3 ,3 ,0) ; (7 ,1 ,1) 

(2 ,1 , 1) ; (3 ,2 ,1) ; (19,1 , 1) 

(2, 5, 3) ; (29, 2, 2) 

(2 .1 .1) ; (3 ,1 ,1) ; (5 ,1 ,1) ; (19,1,1) 

(2, 2, 2) ; (17, 2, 1) 

(2 .3 .2) ; (11,1,0) ; (67,1,1) 

(2,4, 3) ; (3, 5, 5) ; (23, 2, 2) 

(2 ,1 ,1) ; (5 ,2 ,1) ; (7 ,1 ,1) ; (11,1,0) ; (23,1 ,1) 

(2, 1, 1) ; (3, 2, 2) ; (13, 1,0) ; (73, 1,1) 

(2 ,1 ,1) ; (3 ,1 ,1) ; (7 ,1 ,0) ; (13,1,1) ; (37,1 ,1) 

(2 ,1 , 1) ; (3 ,1 ,0) ; (79,1, 1) 

(2, 3, 2) ; (3 ,1 ,1) ; (7, 1,1) ; (43, 1, 1) 

(2 ,1 ,1) ; (3 ,1 ,1) ; (5 ,2 ,1) ; (29,1,1) 

(2, 6, 5) ; (11, 1,1) 

(2 ,1 ,1) ; (3 ,1 ,1) ; (7 ,2 ,0) ; (31,1,1) ; (41,1 ,1) 

(2 ,1 ,1) ; ( 3 , 2 , 2 ) ; (59,1,0) ; (97,1 ,1) 

(2 ,1 ,1) ; (3 ,1 ,1) ; (5 ,1 ,0) ; (11,1,1) ; (19,1 ,1) 

This table shows that the groups rQ(Q)a^ can have big torsion subgroups. We do 

not have any general result on the nature of these torsion elements. In the next 
, ab 

chapter we relate certain elements of rQ(ct) to the arithmetic of algebraic ex­

tensions of Q(i) . 
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5. - Hecke operators 

Let p be a prime ideal of degree 1 in Z [ i] and let 4 be a rational prime. 

We shall construct now a certain algebra of endomorphisms H(p , {,) of A(p , t) . 

Let q = (q) be a nonzero prime ideal in 2£[ i] . Put 

6 = 6 ( q ) = ( J ° ) € P G L ( 2 , 0 ( i ) ) . 

Consider the diagram 

r (p) 

Tra 

(ro(p)n6ro(P)6"1)ab 
6 

_ , ab 
ro(p) 

in 

(6"1 ro(P)6nro(p))ab . 

Tra is the transfer map, 6 the map induced by conjugation with 6 , in is the 

homomorphism induced by inclusion. We define 

T(q) = in o 6 o Tra 

ab 

T(q) is an endomorphism of T (p) , hence T(q) induces an endomorphism of 

A(p ,t) for all I . 
We define now the Hecke algebra as 

H(p ,^) = < T ( q ) > £ End(A(p,£)) 

the algebra generated by all these endomorphisms. The following facts are quite 

easy to prove. 

PROPOSITION 1 

1) H(p ,1) is a commutative algebra 

2) H(p,£) commutes with e 

3) 1 1 q = (q) =(q') is a prime ideal then 

T(q). v = T(q') . v 

for all v^ A (p ,t) . 

4) The following formula holds 

<P(T(q)(v))= (cp(v)) ,N(q) +1 for v€ro(p)ab. 

The vector space A (p , I) and the homomorphisms £ , cp are defined in § 4. 
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We want now to consider one dimensional eigenspaces 

V = < v > £ A+(p , I) 

for the algebra H(p , t) . In this case we have for every prime ideal q = (q) 

T(q) v=a^ . v 

with â  £ Z, only depending on the ideal q . 

Before studying specific examples we want to add the remark that it is in some 

cases quite easy to understand the action of H(p ,£ ) on certain of its eigenspaces. 

PROPOSITION 2 . - Let I be a rational prime dividing (N(p)-l)/2. and let 

cp : A + ( p / t ) • A ( p ) / U ( p ) ) * ~ I / U 

be the homomorphism induced by the cp of the previous § . 

Let V = < v > £ A+(p , I) be an eigenspace for H(p,£) with cp (v) / Q then 

a = N(q) +1 mod l 

for all prime ideals q . 

Certainly A+(p ,1) is an eigenspace for H(p , t) if A+(p ,1) is one dimen­

sional. By the table given in § 4, this occurs quite often. The action of the Hecke 

algebra can then in many cases be computed by proposition 2. The interest is 

in the cases where proposition 2 does not apply. 

Here we wish to discuss specifically the spaces A+(p , 2) . Take for example 

the case pQ = ( 6 - l l i ) , here we have N(pQ)= 157. From our table we find that 

A+(p ,2) is in this case a 2-dimensional vector space over Z / 2 Z . 

From our definition of the Hecke operators T it is obvious how to compute 

T̂  if q is explicitly given. If one does this one finds that 

A + ( p Q , 2,= V o © V l 

where V , are 1-dimensional eigenspaces for H( pQ , 2) . Take bases 
v , v, for V , V" then from proposition 2 it can be seen that 
o 1 o 1 

For the other eigenvector v we can only give a few examples of a where 
1 <* 

T v = 0 Vq 4* , . 
For the other eigenvector v we can only give a few examples of a where 

1 q 
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T v = a v 
q 1 q 1 

q 

1 + 2i 

1 - 2i 

2 + 3i 

2 - 3i 

1 + 4i 

1 - 4i 

2 + 5i 

2 - 5i 

a 
q 
1 

0 

1 

1 

1 

1 

0 

0 

a ^ 2 K / 2 Z 
q 

q 

3 

7 

n 
19 

a 
q 

I 
o 

I 
I 

We want to explain now a connection of these numbers with the decomposition 

of prime ideals of Z [ i] in a certain extension of Q(i) . 

Consider the polynomial 

3 2 
P Q ( X ) = x - ix - (1+i) x - 1 - i . 

P is (D(i) -irreducible and its discriminant is 2(6- l l i ) . Let K be the field 
° ~ ° 

obtained by adjoining a root of P (x) to Q(i) . K is the Galois closure of K . 
° o o o 

K is Galois extension of Q(i) with Galois group 
o 

Q = g 3 =- GL(2, Z / 2 Z ) . 

Here is the symmetric group on 3 elements. The field K q is ramified only 

at the primes of p Q and (1+i) of z[ i] . 

Let q be a prime ideal of Z [ i ] with q f 2 . p , and let Fr(q) be the 

Frobenius conjugacy class in Q corresponding to q . Define 

b = trace Fr(q) . 
q 

This definition gives for every prime ideal q of Z[iJ with q | 2 . p^ a 

number b £ Z / 2 Z . Note that 

b = 
q 

0 * q = q x ••• q 6

 o r ^ I ^ ^ i n K o 

1 « q = q r q 2 in K Q . 

The q. are supposed to be distinct prime ideals in the integral closure of 

zCi] in K . 
o 
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Clearly b can be computed as 

b = 
Q 

0 » P (x) has one or three zeroes mod. o o n 
1 <=> ^0(x) nas no zero mod. q 

We have checked for many primes ideals q (in fact several hundred) of Z [ i ] 

that 
a = b 

q q 

So the eigenvalues of H(pQ , 2 ) on a certain eigenspace seem to control the decom­

position of prime ideals of z [ i j in Kq . Unfortunately, we cannot prove this. 

We shall give now the primes p of degree 1 in Z [ i ] with N(p)< 400 

where H(p , 2) has a nontrivial eigenspace in A+(p , 2) . 

An eigenspace V = <v> is called nontrivial if 

T(q) v = v 

for at least one prime ideal q = (q) with q jf 2 . If a prime p is not mentioned 

we assert that A (p , 2) contains only trivial eigenspaces for H(p , 2) . 

N(p) = 157 

A+(p , 2) contains one nontrivial £-dimensional eigenspace for H(p , 2) . 

N(p) = 193 

A+(p , 2) contains one nontrivial £-dimensional eigenspace for H(p ,2) . 

Let H be the algebra of endomorphisms of A+(p , 2) generated by the T(q) 

with (q) ]f 2p . There is a 2-dimensional subspace in A+(p ,2) on which H 

acts by scalars. 

N(p) = 233 

A+(p , 2) contains one nontrivial £-dimensional eigenspace for H(p , 2) . The 

algebra H (defined as under N(p) = 193) has a 3-dimensional subspace of 

A (p , 2) on which it acts by scalars. 

N(p) = 269 

A+(p , 2) contains one nontrivial t -dimensional eigenspace for H(p , 2) . 
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N(p ) = 277 

A+(p , 2) contains one nontrivial t -dimensional eigenspace for H(p , 2) . 

N(p) = 353 

A+(p , 2) contains one nontrivial ^-dimensional eigenspace for H(p , 2) . The al­

gebra H (defined as under N(p)= 193) has a 3-dimensional subspace of 

A+(p , 2) on which it acts by scalars. 

We have described here 6 nontrivial ^-dimensional eigenspaces for the various 

H(p , 2 ) . We give now 6 field extensions of {Q(i) associated with these eigen­

spaces in the above described way. 

P(x) 

3 2 
x - i x - (1+i) x - 1 - i 

x"̂ - i x^ - (l + 2i) x + i 
3 2 

x - (1+i) x + 2i x - 2i 
3 2 

x - x + (1 -i) x - 1 - i 
3 2 x - (1 + i) x - (2-i) x - 1 + i 
3 2 x - i x - (1 + i) x - 1 

A(P(x) 

4. (6- l l i ) 

4. (-7-12i) 

4. (13-8i) 

4. (10-131) 

4. (-14+9i) 

-17 - 8i 

N(A(P(x)) 

16. 157 

16. 193 

16. 233 

16. 269 

16. 277 

353 

For each of the polynomials P in this list let K be the associated Galois ex-
~ P 

tension of (D(i) . K has Galois group GL(2, Z / 2 Z ) over Q(i) . Take V = < v > 
P 1 

the nontrivial eigenspace for H(p ,2) in A^(p , 2) with p = — (A(P(x))) or 

p = (A(P(x) ) . Then in each case we have checked for many primes q = (q) jf 2p 

of Z [ i ] that 
a = Trace Fr(q) 

where T, v = a v . 
(q) q 

There remains the question of how we have singled out the above extensions of 

<Q(i) from the many extensions with Galois group GL(2 , Z / 2 1 ) . 

We make the following definition. 
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DEFINITION.- Let p be a prime ideal of degree 1 in with p jf 2 . 
3 2 

A cubic polynomial P (x) = x + a^x + a^ , a^, â » £ Z [ i] , is said to be of 

type p* iff 
1) P(x) is irreducible over (Q(i) , 

2) the discriminant A(P(x) ) is only divisible by p and (1+i) , 

3) P(x) has a double but no triple zero mod. p , 

4) 1 + i divides A (P(x)) exactly to an even power. 

These conditions can also be interpreted as a certain ramification behaviour of 

p and (1+i) in the Galois closure of P(x) . 

We have carried out an extensive search for polynomials of type p̂  . For 

each of the polynomials we found we have also found a corresponding eigenspace 

of H(p , 2) in A+(p , 2) . For every eigenspace we have also found a corresponding 

polynomial. 

At other torsion primes £ / 2 we have also analysed the eigenspaces of 

H( p ,t) in A+(p , t) . We have found similar phenomena. 

Finally we would like to mention the case p = (13 + 12i) , N(^) = 313 . Here 

A+(p , 37)= Z / 3 7 Z is an eigenspace for H(p , 3 7 ) . We give a few examples of 

eigenvalues. 

1 + 2i 

1 - 2i 

2 + 3i 

2 - 3i 

1 + 4i 

1 - 4i 

a 
q 

17 

3 

18 

25 

36 

22 

q 

3 

7 

11 

19 

23 

21 

a 
q 
4 

I 
i 

i 

3 

1 

Here â  is the eigenvalue of T(q) on A+(p , 37) . It would be interesting to 

find a field K^Q( i ) with Galois group G L ( 2 , Z / 3 7 Z ) such that 

â  = Trace (Fr(q) ) . 
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for q X 37.p . If such a field exists it could of course not be the 37-division field 

of an elliptic curve defined over Q(i). No such example seems to be known. 
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