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THE ABSOLUTE GALOIS GROUP OF A p-ADIC NUMBER FIELD 

by 

Jürgen NEUKIRCH 

This is a report on the work of U. Jannsen and K. Wingberg on the explicit 

determination of the absolute galois group G^ of a p-adic number field k 

([5] , [6], [10] ). This description depends upon four invariants q, n, p , a 

of k which are defined as follows. 

Let k and k be the algebraic closure and the maximal tamely ramified ex­

tension of k respectively. As is well known the galois group 

9 = G(ktrlk) 
-1 q 

is generated by two elements a , T satisfying the relation a T a = T . We put 
n = [k : Q ] P 
q = cardinality of the residue class field of k , 

pS = j/ji (j. , (j. being the group of p-power roots of unity in k . _s s tr 

a : <J -» (Z/ps) the character given by p £ = £ v p \ p € Q , e € u . 
PS 

a can also be replaced by two numbers g , h£ such that 

g = a(a) , h= a(t) mod ps . 

With these invariants and under the assumption p / 2 the main result of Jannsen 
and Wingberg can be formulated as follows. 
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THEOREM. - The absolute galois group = G(k|k) is isomorphic to the pro-
finite group of n+ 3 generators a » T , x , ... ,x and the following defining re­
lations 

A. - The normal subgroup generated by x^, ... , is a pro-p-group. 

B. - CJTCT * = rq (the "tame relation") 

C. - There is only one additional relation, namely 

CTXoa~1=(VT)8xl C V ^ V * ^ - Cxn-l'Xn] 
if n is even, and 

1 s — 1 g p axQa =(XQ,T) xt [x1,y] .[x2,x3] ... [xn_1 , xn] 

if n is odd. Here we have put 

, , , h1"1 hp"2 h 
(x ,T)=(x TX T . . . X T) , o o o o ' 

where TT is the element in Z with n l = Z .  p 

Remarks. - The condition A can easily be replaced by a collection of relations 
and expresses together with B the selfunder-standing relations in Ĝ  . 

For the exact definition of the element y occurring in the case of odd n we 
refer to the original paper [6] . It is of type x^a ' T̂  . If for example k|k is re­
placed by the maximal extension of k(|a ) of odd ramification, then we can take 

y = V 

The proof of the theorem is based on the following method. For each finite 
normal subextension K|k of k^l k the galois group of the maximal p-extension 
K(p) JK has the structure of a Demus'kin group, given by class field theory. 
Moreover, a detailed study of the action of the group G = G(K|k) on the group of 
units of K gives further information on the Demuskin structure under the 
G-action. These known properties of G^ are now taken as axioms for a new 
abstract concept, the concept of a "Demuskin formation", which goes already back 
to Koch [9], and which I therefore would like to call a Koch group over Q . 
Each such Koch group is endowed with invariants q, n, p , a . 

In a first step it is proved that two Koch groups with the same invariants are 
isomorphic. Hereafter Jannsen and Wingberg show, that the abstract pro-finite 
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group, defined by the generators and relations given in the theorem, is a Koch 
group with the same invariants as the Koch group and is thus isomorphic 
to C^. 

We now explain this procedure in more detail by looking at the following diagram 
of fields and galois groups. 

x 

k G K K 
ktr 

pro-p k 

x 

K(p) 

Here K is an open normal subgroup of (J = G(ktr(k) contained in the kernel 
of a , so that \d is contained in the fixed field K of K . G =Q/K = G(KJk), 
X^ = G(k|K) an<? X̂ , is the galois group of the maximal p-extension K(p)| K . 
It is the maximal pro-p-factorgroup of X^ and is a Demuskin group. For these 
groups we have the following known properties. 

I. - dim H1(XK;, IF ) = n . # G+2 , dim , IF ) = 1 and 
H1(XK • V * R1(XK ' ^ H2(XK • V 

is a non degenerate anti-symmetric bilinear form. 

II. - Viewing H*(3C,IFp) as a 1-dimensional subspace of the symplectic space 
H f̂X-- , IF ) we have an isomorphism of G-modules Jv p 

H V . I F ^ / H ^ X . l F )ss IFP[G]N. 

With respect to the induced non-degenerate bilinear form this G-module is hyper­
bolic, i. e. , direct sum of two totally isotropic G-submodules. 

III. - (X*b) 2! M as a G-module. 
V K 'tor ^ s P 

Explanation. - Condition I expresses the well known fact that X = Gal(K(p)|K) 
is a Demuskin group. By class field theory 

H^X^.IF ) is dual to K*/K*P= (n) /(TT*)* U1/(U1)* 

where rr is a prime element of k and the group of principal units of K . 
In this interpretation the cup product goes over into the Hilbert symbol on 
K*/K*P and U1/(U1)P contains H^K, IFp)"L/H1(3C, IFp) as a subspace of co-
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dimension 1 which is isomorphic to IF [G] . 

The last isomorphism is a result of Iwasawa. The assertion on the hyperbolic 
property is due to Koch. 

Taking the conditions I, II, III as axioms we come to the following abstract de­
finition. Let Q be any profinite group generated by two elements a , T such that 
ax a and let a : Q -» (Z/ps)* be a character. 

DEFINITION. - A Koch group over (J (D emu skin formation in Jannsen's and 
Wingberg's terminology) of degree n , of torsion ps and character a » is a 
pro-finite group X together with a surjective homomorphism 

$ : X -> Q 
such that for each open normal subgroup K of Q in the kernel of a , the condi­
tions I, II, III hold for X. = $ *(K) , where in III (j. is replaced by the twisted 
Q -module Z/p (a). 

For these Koch groups we have now the following uniqueness theorem, which was 
announced by Koch [9] and was proved in full detail and even larger generality 
by Wingberg [10] . 

THEOREM I (Koch, Wingberg) . - Two Koch groups X and Y over (J with the  
same invariants n , ps and a are isomorphic. 

We indicate the concrete ideas of the proof, by sticking to the field theoretic situa­
tion and taking for X the Koch group . The problem is roughly speaking, to 
reconstruct Ĝ  purely by means of the axioms I, II, III. We look again at the 
diagram x 

k G z X 
ktr -k 

K. 
1 3qa K(p) . 

The inserted field Ki is explained in a moment. Since Gal(k|ktr) is a pro-p-
group it is clear that k = (J K(p) and hence 

KSk 
tr = lim Gal (K(p)| k). 
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This reduces us to the question, in which way the group Gal(K(p) | k) is deter­
mined by the axioms. To attack this problem we look at the group extension 

1 —• Gal(K(p) |K) —• Gal(K(p) |k) —• G—> 1 

and we filter the Demuskin group = Gal(K(p) JK) by its central series 

X^ = X_ , X_ = [ XL~ , X ] . (X ,̂ )P . 

The field K. in the above diagram is the fixed field of X* , i.e. K.| K. is i JC i l -1 s the maximal abelian extension of exponent p . We now obtain the group extensions 

1—• Gal(K.|K) > Gal(K.|k)—> G —• 1 . 

Since Gal(K(p)|k) = lim Gal(Kjk) we are reduced to the question, how to obtain 
the group Gal(K.|k) by using only the axioms. This is achieved in successive 
steps i= 1, 2, ... . To mention one surprinsing fact in advance : It suffices to look 
only at the cases i=l ,2 . Once for these cases the group Gal(K.|k) is deter­
mined by the axioms it is automatically determined for all i . 

In the case i=l we have to characterize the group G(Kj|K) as a G-module 
by the axiorrts and to determine the cocycle of the group extension in 
H2(G, G ( K J K ) ) . Now G(KjK) is dual to H1(X_.,^/pS) and we have seen in 
the explanation following the axioms I, II, III that this group is very close to the 
G-module H1 (K , Z./p8)±/H1(3C , ^/pS) ^ Z/pS[G] . With few additional inves­
tigations this gives the G-structure of G(K1 |K) . For the further developments 
however this is not enough. For example, one has to determine H ( X__ , JZ/p ) 
not only as a G-module but moreover as a symplectic G-module by means of 
axiom II. Furthermore one has to keep track of that part of G(K^|K) which 
comes from the torsion part of the abelian made group ~ Gal(K(p)| K)ab . 
This is achieved by means of the so-called Bockstein operator 

H1 ( X^ , Z/pS) H 2 ( X ^ , z/Ps) , 

the image of which is dual to this torsion part in G(K^|K). 

Having determined the G-module G(K^|K) in sufficient detail by the axioms 
we have then to determine the cocycle in H^(G, G(KjjK)) associated to the group 
extension 

1—• GfKjlK) > GCKjJk) > G—• 1 

in order to describe the group G(K1 |k) . This is done by going over to a p-Sylow 
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group G of G , which is cyclic, so that 
P ? 7 8 8 

rT(Gp, G(K1|K))= rT(Gp,K*/K*P )= H°(Gp> K*/K*P ). 
The cocycle is then represented by a prime element TT of k . The selection of 
this prime element can be group theoretically interpreted by the selection of a 

ab ab z I section \ : (J Ĝ  . In this way G(K |̂ k) is completely characterized by 
the axioms. 

Much more complicated is the case i= 2 , i. e. , the study of the group exten­
sion 

1—• G(K2|K)—• G(K2|k) » G-» 1 
and we do not go any further into this, since already the case i = 1 has given 
some indication of the type of necessary investigations. 

The cases i = 1, 2 have brought us to the following situation. We have the two 
Koch groups 

X= \ ' Y ' Q 

and the normal sub groups 

^ = $ V ) = Gal(k|K) , YJC = Y"1(K) 

Let xL and Y* be the pre-image of and Y* under the canonical sur-
jection 

JV JV JV JV 

where > Y ,̂ is the i-th group in the central series of the Demus'kin group 
*K 9 %c • T h e n 

X/X^ = Gal(K.|k) . 

Since for i= 1, 2 we have determined this group completely in terms of the 
axioms I, II, III, which are satisfied by X as well as by Y , we obtain an iso­
morphism 

X/x j .* y/Y^ for i = l,2 . 

We want such an isomorphism for all i and we have to show inductively that the 
surjective homomorphism Y X/X* with kernel Y* can be lifted to a sur-
jective homomorphism Y -» X/X^ . This leads us to the so-called "imbedding 
problem" for the group Y , i. e. to the diagram 
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(1) 

1- xx 
E 

xx 
x 

• x /x i+1 
1C 

Y 

x /xx i 1 . 

A "solution" of this imbedding problem is a surjection Y X x 
x which inserts 

into the diagram commutatively. We consider also the imbedding problem 

(2) 

1 4 
xi+2 

x X/X i+2 
x 

Y 

X/xJo 1 . 

In turns out that the group 4 
.i+2 - Gal(K.+2 K.) is abelian for i >1 and we 

have the following 

LEMMA. - If i > l then the imbedding problem (2) has a solution iff the imbed­
ding problem (1) has a solution. 

If this lemma is shown, we have an isomorphism 

X/X X x x+ x 

for all i , and the theorem is proved. Namely (1) has a solution for i = l , by 
what has been shown before. Therefore (2) has a solution for i = 1 , and hence 
(1) has a solution for i = 2 etc. 

For the proof of the lemma we have to consider the diagram 

H 2 ( X / 4 X /x. 4+2 
x 

Inf H2(Y , XjJ. xv x 

H2(x/xj , 4 
i+1 

x 
Inf H2(Y , x l sd 

x 

It is very well known and easy to show that the imbedding problem (1) or (2) has 
a solution, if the cohomology class associated to the group extension is mapped 
to zero under Inf . Therefore the lemma would follow immediately if 

H2(Y 4 
__i+2 H2(Y, 4 * 

.i+i 
"5C 

were an isomorphism. A closer examination shows, that we can replace here Y 
by the group Y which is the maximal pro-p-factor group of the pre-image Y 
under Y Y/Y^, of the p-Sylow group of Y/Yj£ • This group Y^ is a 
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Demuskin group and because of the Poincaré duality the requested bijectivity runs 
up to the bijectivity of 

H°(Y , P 
Hom(^ i+2 

xv xv 
P 

H°(Y P Horn 4 
"X 

4+1 
5C xxx 

which can be directly checked because of the known structure of X^ /X^~2 and 
the -action on it. This finally proves the theorem. 

Wingberg's actual proof of the uniqueness theorem is more abstract, but it is 
perfectly modelled after the field theoretical considerations which I have indicated 
above. The next step is now to construct an abstract Koch group X with the same 
invariants n , pS , a as . This is done in the following way. 

Let be the free pro-finite group of n+1 generators , ... , and let 
F .. # G be the free pro-finite product of F , with G = G(k Ik) . We then n+1 ^ n+1 tr1 
have an exact sequence 

1 -+ Z Fn+1 # Q -> Q -» 1 , 

where Z is the normal subgroup generated by Zq , . .. , . Let P be the maxi­
mal pro-p-factor group of Z . The kernel of Z P is normal in * Q and 
we obtain a commutative diagram 

1 Z F *Q (J 1 

1 -> P -> F(n+1,Q) -» Q -» 1 

where P is the normal subgroup of F(n+1,Q) generated by the images 
x0»"->xn of Zq, . . . ,«n. The group F(n+1 , (J) is in a sense universal among 
the split group extensions of Q by a pro-p-group. We now consider the element 

-CT r = X o (x,T)g s [xrx2] [x3,x4]...[xn_1,xn] 

in F(n+1, Q) (for simplicity only in the case of even n) . If can be shown that 
r ^ P . Denoting by < r> the normal subgroup of F(n+1 , Q) generated by r 
and setting V = P/<r> , X = F(n+1, Q)/<r> we obtain a commutative diagram 

1 P F(n+1, (J) -> Q -> 1 

1 V X Q - 1 . 

THEOREM II. - X is a Koch group over (J of degree n , torsion p and  
character a . 
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Clearly, theorem I and theorem II together yield an isomorphism 

gk = 1 

and hence the structure theorem for , since X is constructed in exactly such 
a way as to satisfy the relations A , B , C in this theorem. 

The starting point which finally led to the relation r , was the following basic 
result of Jannsen. In order to get the structure of one has to study an arbi­
trary finite normal tamely ramified extension K|k and the action of its galois 
group G on the galois group of the maximal abelian p-extension of K . Via class 
field theory this amounts to the determination of the group of principal units 
of K as a module over the group ring Z^[G] . Now is known to be a coho-
mologically trivial G]-module. Making a complete classification of cohomo-
logically trivial Z^[G]-modules, Jannsen proved that there always exists an 
exact sequence 

0 • 2Z [G] Z [G]n+1 > U1 > 1 , 
P P 

so that U has only one defining relation as a Z^[G] module, the image of 1 
under p . Translating this back into the language of galois groups this made 
clear, that there should be only one essential defining relation for the group Ĝ  . 
It was then the task to find this relation in such a way, that the axioms I, II, III 
of a Koch group were satisfied. This try enforced the specific shape of the rela­
tion r , and we give now some indications about how the special nature of r 
implies the properties I, II, III. 

s 
The relation /r has a leading term XQC (XQ , T)^ X^ and a commutator term 

[x^,x^] ... [x^ ^ , x^] . The leading term is responsible for all assertions not in­
volving the cupproduct and the commutator term for axiom I, which conerns the 
Demuskin structure. We consider again the diagram 

1 P F(n+1, Q) -» Q 1 

1 V • X • Q -> 1 . 

The abelian made group Va^ = Pa^/<im r> is a module over the completed 
ab 

group ring ^^[[Q]] , and P is a free -module generated by the 
images x. of x , . . . ,x . Going over from r c P to the image of r in Pab the i o n & 
commutators vanish and we obtain 
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-a r = X o (x 
p-1 

o T x' 
hp-2 h T ... x o 

KE s 
1 

= -0 X 
o 

oxn 
x1s mod [P, P] , 

where X is a certain element in 7L [[Q ]] , and thus 

ab V ^ n 
i=0 

(X^)to / bn/ [[[c]]] + n 7L [[Q ]] , ql 

Taking everything mod pS one finds that X has the type of an idempotent 
00 -i i . s -
D h T , showing that (mod p ) Q acts on x as multiplication by g and T 
i=0 ° 
as multiplication by h . This gives the (J-isomorphism 

, ab V ® Z / P S 
pà i1 

7L [[Q ]] , n z/Ps[[Q]] x . 

Taking now an open subgroup K £ker(a) of Q one proves the exactness of 

the sequence 

H1 X,Qp/Z) i 
p 

H (xx,Qp/Zp + ms H 2 ^ ,^/p1 7L) 0 

and taking Pontrjagin duals this yields the commutative exact diagram 

0 -> H2(X . Z / p 1 ^ ) * xx ab x ab 

0 
p 

v/[v, Xx] v/cv.x^.] 

2 ~ 
for every i < s . This proves dim H (X^ , IF ) = 1 and (X^)tor ~ M s • 

l b ^ ^S 
The space H (X^ , IF̂ ) is dual to X^ ® Z / p which as a G-module is gene­

rated bv (7 , x , x„ , ... , x by the above consideration. If v , Y , ... , Y is 
7 o 1 n 0" o 

the dual IF [ G] -basis of H^X-^IF ), then this space has the IF -basis PL J 3C p' * p 

X^,X0> P » P € G > i = 1» •••»n • This shows dim H (X^ , IF ) = n. / G+2 . 

The assertions concerning the cupproduct rely on the following general 

LEMMA. - Let D be a pro-p-group generated by Y ^ > ' Y ^ > such that 

H2(D, IF ) - IF . Let D° = D , D1+1 = [D1, D] .(D1)1* be the central series and 
P P 

assume that there holds a relation 

i 
i 

a.p 
yi 

i<y 

[yi, yi] a.. 
= 1 mod D 

such that not all a. and not all a., are = 0 mod p .  i ij 
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If X1..., Xm is the dual basis of H1(D, FP) associated to y1,...,ym then 

XiUxj=aij$, i<j, 
2, 

where § is a generator of H2 (D, FP). 

Writing now the image of the relation r in the DemuSkin group X^ mod Xĵ  
in the form ot the lemma, one gets an explicit description of the cup product 

h1 (x* ' V* "1(SSc • V " * " 2 ( 5 S c ' V 

from which one draws all the required properties concerning the cupproduct. 
This concludes the proof of theorem II. 
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