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EULER PRODUCTS (VARIATION ON A THEME OF KUROKAWA'S) 

by 

B. Z. MOROZ 

1. - Let k be a finite extension of the field Q of rational numbers, and K 2k 
is a normal extension of k of degree d = (K : k) with Galois group G(K/k) , 
idele-class group and Weil group W(K/k) . Thus we have an exact sequence 

1 . C > W(K/k) • G(K/k) • 1 , 
is. 

and it follows that every irreducible representation of W(K/k) is finite dimen­
sional. Let Z be the ring of integers, and 

X = 
I 

i=l 
m.y. m. , t € Z , 1, X- *s an irreducible character of 

W(K/k) for any I 

is the ring of virtual characters of W(K/k) . For any polynomial 

H(t) = 1 + n 
J = l 

a.t^XLt] 

and g^W(K/k) we set H (t) = 1 + £ a .(g) tJ £ C[ t] , wher C is the complex 
number field. Let now <j and I be the Frobenius class and the inertia sub-
group of W(K/k) at the prime divisor p of k [ i j , and p a finite dimensional 
representation of W(K/k) with representation space V and character y = tr p . 
Consider the subspace 

I 
VP={v|p(g)v = v for g£l , v£ V] 
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B. Z. MOROZ 

of I invariant elements of V and choose a representative a € c of the 
P P P 

Frobenius class. Then the trace of the operator 
I I 

p(a ) : VP • VP 
P 

does not depend on the choice of a in a ; we set 
P P 

x(a ) = tr p(a ) | j 
P P Vp 

and extend this definition to X by linearity. Thus we can define 

H (t) = 1 + £ a (cr ) tJ , 
P j = l 

and for Re s > 1 consider en Euler product 

L(s,H) = n H (IPI"8)'1 , (1) 
P P 

where p runs over prime divisors of k and |p| = ̂ k/QP " *N Part*cular' *or 
H(t)= det(l-tp) we get Lzi L(s, H) = ̂ w(s, p) , where Lw(s, p) is the Weil 
L-function associated to a representation p of W(K/k) . 

PROPOSITION 1. - The function si—* L(s,H) defined by (1) can be meromor-
phically continued to the half-plane C+= { s | Re s > 0 } . 

DEFINITION 1. - Representation p of W(K/k) is said to be of Galois type, if 
C £ Ker p . We denote by X cX the subring of X generated by the characters 
of representations of Galois type. 

DEFINITION 2.- A polynomial H^X[t] is called unitary, if for any g£W(K/k) 
the condition H (a)= 0 implies |a| = 1 , and non-unitary otherwise. 

PROPOSITION 2. - If H is unitary, the function L(s,H) can be meromorphically  
continued to the whole complex plane C; if H^XQCt] and is non-unitary, then 
L(s,H) has C° as its natural boundary. 

To state the next proposition we recall the Generalised Riemann Hypothesis 
(GRH) : every L-function Hecke ("mit GrBssencharakteren") has all its roots 
with Re s >0 on the line Re s = l/2 . 
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EULER PRODUCTS 

DEFINITION. - For any positive £ , c, x let X(x, e , c) denote the number of 
prime divisors p in k satisfying two conditions : 

a) Nk̂ Q p < x , and 

0) there exists |j such that H (|a )=0 and |log jp | - log (1+c) | < £ . P P P P 

We call the polynomial H strongly non-unitary, if one can find c>0 such that 
for any £> 0 there exists 

lim X(X:,£; C' = a(e, c)>0 ; 

where 
RR(x) = Z 1 . 

N p<x k/Q r 

PROPOSITION 3. - If the GRH holds and H is strongly non-unitary, then C° is  
the natural boundary of L(s,H). 

2. - As an application of these results, let us mention the following problem dis­
cussed by several authors [3-10] . Consider r finite extensions k„,...,k of 

1 1 r 
k and the Galois hull K of these fields over k , and fix a Hecke character y. 

I in k. . One can associate to v. an L-function I *i 

L(s,Xi)=2 V O J N ^ . - . E cn(X.)Nk/Q n"\ 

where Q (accordingly n) runs o\er all the integral ideals of k̂  (accordingly k) 
and c (xJ= £ X-(o)' ^e define the scalar product of these L-functions as 

Nk./ka=" 
1 

a Dirichlet series 

L(-;Xl.....Xr) = I cp(Xl)... c(Xr)Nk/Qn-s (2, 

convergent for Re s > 1 . It turns out [6, 8, 10] that up to a finite number of 
Euler factors 

L(s ; x 1 . ••• .XR)= LW(S>P) Us.H)'1 

for some representation p of W(K k) and a polynomial H^Xtt] . It can be 
proved that H is either unitary, or strongly non-unitary. Moreover, H is unitary, 
if and only if either no more than one of the fields k. does not coincide with k , 
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or two of these fields are quadratic extensions of k and all the others coincide 
with k ; in this case the function (2) can be easily evaluated [9] . The proposi­
tions 1 - 3 show that the function (2) can be continued to C+ and in most cases 
has a natural boundary C° . We refer to the work of Kurokawa's [6-8] for 
further applications of the propositions 1 and 2 . 

3. - To outline the method of proof of propositions 1 - 3 let us consider the most 
simple case k = Q=K . The following proposition is, in fact, a classical result 
e n ] . 

PROPOSITION 4 . - Let h(t) = 1 + S a. t> = S (1 - a. t) and a.gZ . Then the   
j=l J i=l i J 

function 

L(s,h)= n hCp"3)"1 (3) 
P + 

defined bv (3) for Re s> 1 can be meromorphically continued to C . If 
j a. I = 1 for any i , then L(s, h) = II £(ms) for some p and, therefore, 

1 m=1 m o 
L(s,h) is meromorphic in C ; if |a^| f 1 for some i , then C is the natural 
boundary of L(s,h). 

Proof. - Let us consider the ring C[[t]] of formal power series and define by 
induction a sequence 

in such a way that 

{bk|k = l ,2 , . . . }£ 

h ( t ) = n (1 - t k ) k in C [ [ t ] ] . ( 4 ) 
k=l 

This sequence is uniquely determined ; in fact, 

h(t)= n (1 -tk) k in C[[t]] 
(5) 

where u(x) = Ed , JJ is the Möbius function. In particular, it follows from 
i=l 1 

(5) that 
| b k l ^ n ( ^ - , Y k , (6, 

where x(k) = £ 1 , y = max |a.| . Therefore, the product ( 4 ) converges in 
£|k i J 

in the disk | t |<l /y . For any M , N > 1 we set 
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U (s)= fl h(p"S)_1 , 
AN p<N 

UM(s) = n n < 
M p k^M 

,„ -sk -b 
(1-p ) k 

N, M ^ - T . . x j r 

/- -sk - \ 
(1-P ) 

N'M p<N kSM 
/- -sk bk 
(1-P ) 

So that for Re s large enough 

L(s.h, =UN(s, VM(s, TNM(8)RNjM(s, . (7) 

We use now (7) to continue L(s,h) to C+ . The functions tLT and R„T are 
obviously meromorphic in C and so is the function 

Y (•)= n C(ns)bn . 
M nSM 

We prove that if N>y , then the product expansion for T converges 
absolutely for Re s> l/M . In fact, (6) implies 

llQg TN M(S^^ Z 1 ilog(l-p"Sk)|< N'M p^N k>M k 

Sn £ £ I 
p^N k> M m=l 

t(k) k -km(Res) 
km Y P 

^ „ „ k, lt2,-1 -k Re s <n £ £ y (f(k)) k p 
p^N k>M 

and the last series converges absolutely for Re s>l/M , N> y Taking M -» » 
we get the desired result. 

If |a.| = l for any i , then y = l , and it follows from (6) that b = 0 as 
1 -1 k 

soon as n T(k) k < 1 ; therefore, expansion (4) contains only a finite number of 
terms, so that L(s,h) is a product of a finite number of ^-functions, as it has 
been claimed. Assume that y> 1 . We prove that in this case any point in C° is 
a limit point of poles of L(s,h) in C+ . Suppose that |a1 | = y , and set 

i<l> 
a1 = Y e . Consider the sequence 

{sk(p,= log Y + i ($ +2nk) 
log p 

|k<:Z} 

of roots of the functions S M h(p S) and count the number S(v, 6) of ŝ .(p) 
in the region 

D (ô) = t s I —7T<Re s < - , t <Im sSt +6 } v w 1 v +1 v o o J 

where v is a positive integer, 6>0 and t > 0 . If 2TT 
log p 

< 6 and 

1 
V+L 

M l 
log p V 

then there exists k such that s,(p)€ D (6) . For 
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6 > —: we get S(v,6)^ £ 1 = n( y ) - TT (y ) - 1 , so that 
v log Y v v+1 

S(v,6)>A yV for some A>0 independent of v . On the other hand, if N> yV 

and p<yV+* > tne number ŝ (p) is a pole of Uĵ (s) *or anv k . Since 
s (p)/ s (p') for p/p1 , we conclude that U (s) has at least A yV dis-

tinct poles in D (6) as soon as N>y and (2rr/logY). Take M = v , 
then R , , ( s ) / 0 and T , , (s) /0 for s D (6). Finally, the function N , M N, M ' V 

M bn M 3 
^ (s) = II £(ns) cannot have more than L N(n(t +6))= 0(M ) distinct zeros 

M n=l n=l ° 
in D (6) , where N(T) denotes the number of zeros of £(s) in the region 

V 1 , 2tt 
0<lm s$T We see, therefore, that for large enough v and 6>— ( ) the 6 6 V log y 
function L(s,h) has poles in D^(6). Thus any neighbourhood of a point tQ € CQ 
contains a pole of L(s,h). This completes the proof of proposition 4. 

We should mention another classical result [l2j responsible for the ideas dis­

cussed here. 

PROPOSITION 5. - The function 
P(B)=Z P~S 

defined for Re s> 1 can be continued to C and has C as its natural boundary. 

Proof. - The standard expansion for log £(s) and Möbius inversion formula give 

P'(s) = E |i(m) £-(ms) , (8) 
m = l 

so that P1 is meromorphic in C+ . Let v(s) denote the multiplicity of a zero 
s of C(s) ; since N(T + 1) - N(T) = 0(log T) , it follows that v(s) < Aj log |lm s | 
for some Â  independent on s (assuming | Im s | > 2 ) . Moreover, for any 
6X) and t >0 we have o 

N(m(to+6)) - N(mtQ)> 0 as soon as m>A2(tQ, 6) . 

Keeping these facts in mind,consider a region 

D(6)= { s | 0 < R e s < 6 , tQ<Imt<to+6] 

and choose a rational prime q satisfying inequalities 

q>l /6 , q>2/tQ , q>Aj log((to+6)q), q>A2(tQ,6) . 
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Then one can find a root of £(s) such that 

| ^ R e s 1 < l , qto<Ims1S q(tQ+6), vfSjXq . (9) 

Obviously, Sj/q £D^(6). To prove that s^/q is, in fact, a pole of P'(s) we 
notice that £(m s^/q) / 0 , » for m^2q, and, therefore, it is enough to show 
(see (8)) that 

2q-l 
m=l 

U(m) 
m 

v 
ms. 

q 
) / 0 . 

But (10) follows from (9) because 
2q-l 
m=l 

u (m) 
m 

v| 
ms 
q 

dv 
V(B ) 

q 
v gt 

(m m S1 
where a/b= ? v( h. s° that qKb whenever a, b) = 1 . 

m/q m q 
m< 2q 

Thus the point tQ£ is a limit point of poles of P'(s) , and the proposition 
follows. 

For a generalisation of Propositions 4 and 5 we refer to a paper by 
G. Dahlquist [13]. 

4. - The proof of the results discussed in n° 1 can be obtained along the same 
lines [6-8, 10] with the help of the following lemma (whose proof we omit). 

n 
LEMMA. - Let H(t) £ X[t] , H(0)= 1 and H (t) = II (l-a.(g)t) for g W(K/k) ; 

8 i=l 1 
set y = sup [|a.(g)| | lSi< n , g€W(K/k)}. Then 

1) there exists a sequence of integers {a . | m, j = 1, 2, ... } such that 
m, j 

H(t)= n det(l-tm$.)amJ in [ x [ [ t ] ] , 
m, j J 

where are the irreducible representations of W(K/k) ; 

2) dimension of ^ does not exceed (K : k) = d ; 

3) | Z a_ tr($(g))\s^^ (d-1) Ym for any m and g W(K/k) ; 
XXI y X X XXX 

.. — 2 ^ 2m / T(m) , .., . 2 4) Z a < y (—~ for any m ; ^ m, I m 
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5) the product 

H (t) = n ( I - tm$ . (a ))amji 
P m,i 1 P 

converges absolutely in the disk | t | < y 
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