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INTRODUCTION 

Let k  b e a field and let A b e a commutative k-algebr a generate d by 

some finit e set H = {x-j,... ,x } c A. A s a vectorspace, A  wil l of course 

admit as basis a set of monomials in the x-j,...,x n, thoug h thi s set is far 

from unique. I t is even possible to arrange H  i n such a way that this 

basis set can be taken to be the complement of an ideal Z o f monomials (see 

section 1 for a precise definition), so that A  ha s a basis in 1- 1 corres -

pondence with the natural monomia l basi s of a ring of the form 

A Q = k[x1,...,x n]/I, 

where I  i s generated by the monomials Z i n the variables x^,..., x , but 

in general the relation between A  an d A Q will be very slight. 

In this paper we consider an additional conditio n on z, H, and A, which 

slightly limit s the multiplication in A , i n terms of a partial orde r on H 

(Section 1) ; if the condition is satisfied, we say that A  i s a Hodge  

Algebra, governed by Z. I f this condition is satisfied, then (among other 

things) the relation between A  an d A Q becomes ver y precise: A  is , in a 

very special way , the "general fiber " of a flat deformation whose specia l 

fiber is A Q , S O that many properties of A Q ma y be transferred to A 

(Section 3) . Thu s when A  i s a Hodge algebra governed by some "good" Z, 

many properties of A  ca n be read off directly. 

Many interestin g examples tur n out to be Hodge 

algebras governe d by "good" ideals Z, s o results of the above typ e may be 

used to unify and extend a large amount of information about difficult con-

crete examples, such as coordinate ring s of Grassmannians and certain 
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generalized Grassmannians, flag manifolds, Schubert varieties, determinantal 

and Pfaffian varieties, varieties of minimal degree , and varieties of com-

plexes. 

History 

The first explicit description of an interesting algebra via a basis 

of monomials and relations of our type that we know of is Hodge's stud y of 

the Grassmann variet y and Schubert cycles [Hodg e ] , undertaken with a view 

to obtaining explici t "postulation formulas" (in modern terms, the Hilbert 

functions of the homogeneous coordinate rings) ; the results are presented in 

a relativel y readabl e way at the end ot volume 2 of [Hodge-Pedoe ] . I t is 

because of this, following a suggestion of Laksov, that we have called the 

algebras here "Hodg e Algebras". Igusa , in [Igusa (1) ] also exploited what is 

in fact a Hodge-algebra structure in proving the projective normality of the 

Grassmann variety. Th e next occurrence we know of is the "straightening law" 

of [Doubilet - Rota-Stein ] ; this was re-proved in [De Concini-Procesi ] 

and [De Concini-Eisenbud-Procesi ] , where it is shown that this 

"straightening law " may be deduced in a simple way from the Hodge structur e 

on the coordinate rin g of the Grassmann variety. Afte r [De Concini-Eisenbud-

Procesi ]  was written, we made, at the suggestion of David Buchsbaum, a 

study of the relation between the Doubilet-Rota-Stein "straightenin g law" 

and the proof of the Cohen-Macaulayness of the Schubert cycles and determi-

nantal varietie s foun d in [Musili ] ; it was from this that the axioms for 

a Hodge algebra, in the special cas e called an "ordinal Hodg e algebra" below, 

emerged (Musili' s motivating proof, in our axiomatic form , is given in Sec-

tion 8). Thi s material was worked out by us in 1978, and a manuscript was 

then circulated ; it is summarized in [Eisenbud ] . 
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INTRODUCTION 

Shortly after, Baclawski slightl y reformulated the notion of straightening 

law, and gave direct combinatorial proof s of some of the results we obtained by 

deformation arguments [Baclawsk i ] . Hi s definition made an important step in 

that it disconnected the order structure on the set of generators for the 

algebra from the description of the ideal of monomials z. Seein g his definition, 

and considering som e other generalizations that we had worked out in order to 

deal with certain flag manifolds and varieties of complexes, we were led to the 

definition of Hodge Algebra given below. 

Because the current definition is so broad, interesting propertie s which 

can be deduced from a Hodge algebra structure are principally derived from 

interesting propertie s of the corresponding idea l of monomials z, and our 

emphasis is on exploiting these. 

Contents 

We now turn to a detailed sketch of the contents of this work. W e 

have eliminated much explanatory material fro m the body of the paper in 

favor of putting it together, here. 

For the deformation arguments we make we have developed the theory of 

Hodge algebras over a (nearly) arbitrary commutative ground ring R; however 

our interest centers on the cases where R  i s a field or, at worst, the 

integers; and even for the deformation arguments, at this leve l of speciality, 

it is enough to think of R  a s a polynomial rin g over a field or over the 

integers. 
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Chapter 1 is foundational. Sectio n 1 begins with the definitions of 

Hodge algebra, ordinal Hodg e algebra (wher e z is determined by the order on 

H), square free Hodge algebra (where i is generated by square-free monomials ) 

and discrete Hodge algebra (a polynomial rin g on the elements of H , modulo the 

ideal i). I t turns out to be crucial for inductive arguments to be able to 

measure the difference between an arbitrary Hodge algebra A  an d the "corres-

ponding" discrete algebra AQ; the correct measure seems to be the "indiscrete 

part" of A , a certain subset of the set H  o f generators. 

In addition to the definitions, section 1 contains two criteria for graded 

algebras to be Hodge which are useful in concrete examples (Proposition s 1. 1 and 

1.3) and the central consequence s (Propositio n 1.2) of the definition of Hodge 

algebra which we usually'employ. 

The next step, accomplished in Section 3, is to show how to "simplify" 

a Hodge algebra by passing to a certain associated graded algebra which is 

again Hodge, but with a smaller indiscret e part. Sinc e there are several 

different examples in which associated graded Hodge algebras (an d the corres-

ponding Ree s algebras) arise, we pass by way of a general treatmen t of "standard 

filtrations" of Hodge algebras in Section 2; here a standard filtration is 

essentially just one for which the graded ring inherit s a Hodge algebra structure. 

With this "simplificatio n process " prepared we are ready to derive 

properties of a Hodge algebra A  fro m those of the corresponding discret e 

algebras, and this is the program of Chapter 2. 

To make the simplification proces s worthwhile, a lot must be known about 

discrete Hodge algebras, so for motivation, we have collected some results of 

this sort in section 4. Thes e results are for the most part not logically 

necessary for the development, and the reader may wish to refer to them only 
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as needed. W e lean heavily on work of Hochster, Munkres, Reisner, Stanley, and 

Taylor, among others. (Thoug h the results are all more or less well known , 

they do not seem to be centrally available.) Sectio n 5 uses the simplification 

procedure to show that if A i s a Hodge algebra with corresponding discret e 

algebra A Q , the n A ha s no nilpotents (tha t is, A i s reduced) when thi s 

holds for A Q . Mor e generally, the disposition of the associated primes of 0 

in A i s studied, and a method of constructing "interesting " non-zerodivisor s 

in A i s formulated; this method works best in the case of ordinal Hodg e 

algebras, and lends some credibility to the conjecture that Hodge algebras which 

are domains tend to be normal if z i s nice. 

In Section 6 we show how to construct systems of parameters in certain 

Hodge algebras, and make explicit the result di m A = dim A Q , whic h follow s 

easily fro m the deformation argument. 

In Section 7 we give a method for studying the Homological propertie s 

(depth, gorensteiness, etc.) of A an d deducing the m from information about 

V 
In Section 8 we give our axiomatization of Musili's proo f of the Cohen-

Macaulayness of Schubert cycles; it is a special but useful conditio n on H 

which implies the Cohen-Macaulayness of an ordinal Hodg e algebra governe d by 

H. 

In Section 9 we go even further into the roots of the subject, and re-

mark on the way in which the Hilbert function and certain properties of a 

graded Hodge algebra can be deduced. Th e material of this section is largely 

a summar y of relevant results of Richard Stanley. 

The third chapter contains a list of examples of Hodge algebras which, 

we hope, is sufficiently ric h and varied to justify the preceding material. 
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In Section 10 we review severa l processe s for deriving new Hodge alge-

bras from old by factoring out certain ideals , or passing to associated graded 

rings or Rees algebras or (in some cases) restricted Rees algebras. 

Section 11 exhibits, in our language, the original example s of Hodge, 

the Hodge structures on the homogeneous coordinat e rings of Grassmann and 

Schubert varieties. Sectio n 12 shows off the example of Doubi1 let-Rota-Stein 

(determinantal varieties ) and a related one from [De Concini-Procesi ] . We 

have also include d here some new results on the graded rings with respec t to 

symbolic powers of a determinantal ideal . 

We the n turn in Section 13 to questions about the equations of reduced 

varieties of minimal degre e in IP n; thei r homogeneous coordinat e ring s are 

ordinal Hodg e algebras. 

Though ther e is a good classification of such varieties (due to 

Del Pezz o and Bertini in the irreducible case, and [Xambo ]  in general) we 

stop short of giving a normal for m for the equations of each type. 

Nextwelook at examples of small dimension . W e show tha t all 1-dimen -

sional square-fre e Hodge algebras are discrete in Section 14. I n Section 15 

we show that 2-dimensiona l square-fre e Hodge algebras tha t are domains are 

very special: fo r example, if A  i s such an algebra, and A i s the homogen-

eous coordinate rin g of a projective variet y V , the n V  i s a rational norma l 

curve! (Thi s result has been generalized by Watanabe to the case of two -

dimensional grade d Hodge domains generated by forms of various degrees.) W e give 

an extended analysis of the equations of a Hodge algebra of this type, and show 

that its associated graded algebra with respect to the powers of the "obvious" 

maximal idea l inherit s a Hodge structure. 

It seems reasonable to conjecture tha t such an algebra (ove r a field 

of characteristic 0 , say ) mus t have a rational singularity . 
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The Hodge algebras abov e are essentially all ordinal Hodg e algebras. 

In Sections 16 and 17 we treat two interesting examples which are square-free 

but not ordinal; they were our main motivation for extending the definition 

beyond the ordinal case . 

The examples of Section 16 are the varieties of complexes studie d by 

[Kempf ],[Hunek e ] , [De Concini-Strickland ]  and others. The y are the 

coordinate ring s for the varieties (really : affine schemes) parameterizing 

the complexes of the form 

n d) n  i  n , (| n n n 
0 —> A m - ^ -> A >  ... >  A - ^ - > A °, 

possibly with supplementary condition s on the ranks of the maps ^ . Ou r 

treatment follows closel y tha t of [De Concini-Strickland ] , though some 

change in details is necessary to conform to our current notions, and these 

changes allow a slightly simplified treatment, since it becomes enough to 

treat the case where no rank conditions are imposed. 

The second non-ordinal exampl e is that of the Schubert cycles in flag 

varieties in the multi-homogeneous embeddings . Her e the multi homogeneous 

coordinate ring of a flag manifold which is the ring generated by certain 

minors of a generic matrix, is an ordinal Hodg e algebra (the poset may be 

taken to be a subset of the one used in the Doubilet-Rota-Stein example , but 

the natural Hodg e structure on the factor rings corresponding to the Schubert 

cycles is not ordinal [Lakshmibai-Musili-Seshadri] . 

In the final section , 18, we discuss a generalization of the notion of 

Hodge algebras which allows one to treat the determinantal ideal s of symmetric 

matrices and certain generalize d Grassmann varieties. 

Further examples may be found in [Strickland 1, 2]. 
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Kelated technique s are also used in flgusa 2]. 

Buchweitz has recently used Hodge algebra techniques in proving the 

rigidity of a number of algebras; see [Buchweitz ]. Eisenbud and Harris 

have used them to analyse degenerations of intersections of Schubert varieties 

in a new approach to Brill-Noether theory. Se e [Eisenbud-Harris]. 

A speculation 

It seems worth remarkin g tha t there seems to be a connection, at least on 

the level of examples, between 3 interesting classes of algebras: square-fre e 

Hodge algebras, algebras with rational singularities , at least in characteristic 

0, and algebras of "F-pure type" in the sense of [Hochster-Roberts ]. The 

known theoretical connection s are rather slim: I t is known that complete, 

1-dimensional F-pur e algebras are exactly the completions of the 1-dimensional 

square-free Hodge algebras of Section 14 ([ Goto-Watanabe ]). It is also 

known that a square-free Hodge algebra which is a graded Gorenstein domain is 

F-pure [Hochster , unpublished] (bot h these results work over any field 

of nonzero characteristic); this gives the only known proof that the coordinate 

rings of Grassmann varieties are F-pure (in a strong sense) . 

The apparent connection of rational singularitie s and F-pure algebras 

was noted by Hochster. 

As for the connection of Hodge algebras to algebras with rationa l 

singularities, one may remark first that all the main examples of square-free 

Hodge algebras given in Chapter VI, below, are known to have rational singularitie s 

at the ideals generated by H; of course, for a ring to have rational singularitie s 

it must be a Cohen-Macaulay domain, so presumably one should only look at 

square-free Hodge algebras which are domains and which are governed by "perfect" 

ideals of monomials (tha t is, AQ should be Cohen-Macaulay; A ^ is then 

automatically Cohen-Macaula y too). 

A well-known theorem of [Elkik ] asserts that if the special fibe r in 

a flat deformation (of local rings , say) has a rational singularity , then so 
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does the general fiber . I t would be nice to use that theorem on the 

deformation "fro m A Q to A" in the language above; but although AQ has a nice 

resolution of singularities, it is essentially never a domain, and so does 

not have a rational singularit y in the usual sense . Perhap s there is some 

sense in which, if I is sufficiently nice , AQ does have a rational singularity , 

so that Elkik's idea s could be used, at least, say, on "deformations through 

Hodge algebras." 

Using recen t results of Flenner and Watanabe, Buchweitz has been able 

to explain virtually all the known examples of Hodge algebras with rationa l 

singularity by proving: 

Theorem [Buchweitz] : Le t A be a graded square-free Hodg e algebra of 

dimension >_ 2 over a field of characteristic 0 with generators H in 

positive degrees. Suppos e that for each prime PC A not containing the 

maximal homogeneou s ideal , the localization Ap has only rationa l singularities . 

If the discrete algebra AQ is Cohen-Macaulay the n A has only rationa l 

singularities. 

Other interesting application s and examples can be found in 

[Baclawski 2] and [Baclawski-Garsia]. 

An acknowledgemen t 

We would like to thank David Buchsbaum and Richard Stanley for their 

help and patience with the material of this paper. 

11 



C . DE CONCINI, D. EISENBUD, C. PROCESI 

Some preliminarie s 

We now collect a few pieces of terminology concernin g partiall y 

ordered sets which we will use: 

We write #  X fo r the number of elements of a set X. 

We often write poset for "partially ordered set". A  clutter is a poset 

in which no two elements are comparable. A  chain X  i s a totally ordered 

set; its length (or dimension) is ( # X) - 1. Th e dimension of a poset is the 

supremum of the lengths of chains it contains. Th e height of an element in a 

poset is the supremum of lengths of chains descendin g fro m that element. 

An ideal in a poset H  i s a subset I  suc h that x  e I, y  e H, and 

y < x togethe r impl y y e I. Fo r any x  e H w e write I  =  { ye H | y  ̂x), 

and call it the ideal cogenerated by x. 

We write I N fo r the set of non-negative integers . I f H  i s a set, 

then I N i s the set of functions fro m H  t o IN. 
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I- Definitions and basic methods 

1) Hodge algebras and ideals 

Let H  b e a finite set. A  monomial on H  i s an element of I N . I f 

M an d W  ar e monomials, then their product is defined by (MW)(x) = M(x) + 

W(x) fo r x  e H. W e say that N divide s M  i f W(x ) < M(x) fo r all 

x e  H. Th e support of M  i s the set sup p M := {x e H | M(X) t 0}. 
Lj 

An ideal of monomials is a subset Z  c IN suc h that M  G z an d 

W G IN impl y MA / G z. A  monomial M  i s called standard with respect to z 

if M  i Z. A  generator of an ideal Z  i s an element of Z  whic h is not 

divisible by any other element of Z . Th e set of generators of Z  i s finite, 

as can be seen, for example, from the Hilbert Basis Theorem by regarding Z 

as a set of multiindices, defining an ideal generate d by ordinary monomials 

in a polynomial ring . I f I  i s a subset of H , w e define Z/ I t o be the 

H-1 

ideal of I N " obtaine d by restricting elements of Z  whic h vanish on I . 

If A  i s a commutative ring and an injection <( > : H —> A i s given, 

then to each monomial M  o n H  w e may associate <J>(M) := n (|>(x)M ^ G A. 
XGH 

We will usuall y identif y H  wit h <j>(H ) an d write li e A fo r < J>(M) e A; i t 

will be clear from the context whether an abstract monomial or an element of 

A i s intended. I f A  i s a subset of INH , we may write A A fo r the ideal 

generated by the elements <|>(M ) fo r M  i n A. 

Now let R  b e a commutative ring and let A  b e a commutative R -

algebra. Suppos e that H  i s a finite partially ordered set with an injection 

(j> : H —> A, an d that Z  i s an ideal of monomials on H . 

We call A  a  Hodge algebra (or algebra with straigtening law) governed 

b^ z an d generated by <j)(H) i f the following axioms are satisfied: 

Hodge-1. A  i s a free R-modul e admitting the set of standard monomials 

(with respect to Z ) a s basis. 
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Hodge-2. I f hi e z is a generator and 

*) N  = pW,iMw,i; 0 " > i . i 6 R -

is the unique expression for We A a s a linear combination of distinct 

standard monomials guarantee d by Hodge-1, then for each x  e H whic h divide s 

hi an d each Ml ( . ther e is a yl ( . e H whic h divides M. f A an d satisfies 

yN , i < X-

The relations *) are called the straightening relations for A. Not e 

that the right-hand side of a straightening relatio n can be the empty sum 

(= 0) bu t that, though 1  i s a standard monomial, no M. . A ca n be 1. 
N , 1 

If the right-hand sides of all the straightening relation s are 0  - -

that is, if hi = 0 i n A  fo r all w e E - then we say that A  i s discrete. 

If we write R[H ] for the polynomial rin g over R  whos e indeterminates are 

the elements of H , the n R[H]/ Z R[H] i s a discrete Hodge algebra, and any 

other discrete Hodge algebra governed by z  i s isomorphic to it. 

Two special type s of Hodge structures are of such importance as to 

deserve names: W e will say that an ideal Z  o f monomials, or a Hodge alge-

bra A  i t governs, is square-free if Z  i s generated by square-free monomi-

ials. W e will say that Z  o r A  i s ordinal if Z  i s generated by the 

products of the pairs of elements which are incomparable in the partial orde r 

on H ; z  the n consists of all monomials whose supports are not totally 

ordered, and is, of course, square free. 

If A  i s suitably graded, as in the important examples, we can relax 

the axiom Hodge-1 slightly , and also show that the straightening relation s 

give a presentation: 
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I. DEFINITIONS 

Proposition 1.1: Suppos e that A  i s a graded commutative R-algebra , 

generated as an R-algebr a by a finite partially ordered subset H  o f homo-

l_l 

geneous elements of degree >  0. Le t £  c N  b e an ideal of monomials. I f 

the standard monomials with respect to z ar e linearly independen t in A 

and if , for each generator W  o f z, a  relation of the form *) holds, then 

A i s a Hodge algebra governed by z. Further, the straightening relation s *) 

give a presentation of A. 

Proof: I t suffices to show that any nonstandard monomial M  ca n be 

expressed as a linear combination of standard monomials by using the straight-

ening relations; this will prov e Hodge-1 directly , and it follows that the 

straightening relation s *) generate all the relations because the standard 

monomials are linearly independent. 

Let d  b e the maximum number of factors in a generator of Z . Defin e 

the weight of a monomial M  t o be the number 

I M(x)(d+l)dimx , 
XGH 

where di m x i s the maximum length of a chain of elements in H  ascendin g 

from x . I f we choose any generator N dividin g M  an d replace W  b y its 

expression * , w e see that M  ca n be expressed as a linear combination of 

monomials of the same degree but of strictly greater weight. I f any of the 

resulting monomials is non-standard, we repeat this process, but we must 

terminate eventually because there are only finitely many monomials of a given 

degree. / / 
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Despite a remark in [Eisenbud ]  to the contrary, we do not know whether 

the result of Proposition 1.1 holds in general. 

We now adopt the following notation, to be held throughout this paper: 

Notation: A wil l hencefort h denote a Hodge algebra, governed by an 
u 

ideal £  c  ]N ,  generated by 4>(H) , which we will identif y with H , and  

whose straightening relation s are given by * ). 

We wish to have a measure of the difference between A  an d the dis-

crete algebra R[H]/ £ R[H]. W e define the indiscrete par t In d A c  H o f A 

to be the set 

Ind A = u sup p MN,i, 

the union running over all .  appearin g on the right-hand sides of 

straightening relation s for A. 

We can now give the form of Hodge-2 that we will generall y use: 

Proposition 1.2 . a ) I f M i s a standard monomial non e of whose fac -

tors is >  an y element of In d A, an d W i s any standard monomial, then 

MW i s standard or is 0  i n A. 

b) I f I  c H i s such that I  3 x > y e Ind A implie s y e I, the n 

IA i s a free R-modul e admitting the standard monomials divisible by elements 

of I  a s a basis, and A/IA is a Hodge algebra governed by I/ I wit h gener-

ators H  - I. 

Proof: a ) I f MM i s not standard then, since N i s standard we may 

write M  = M'M" an d N = w*W" wit h M " f 1 an d M"W" a generator of Z. 

It follows from the definition of In d A tha t M"W " = 0 i n A. 
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b) Le t x e I b e a maximal elemen t of I  an d set J = I - {x}. B y 

induction, we may assume the result for JA an d A/JA. By a), the ideal 

xA/JA o f A/J A has a basis consisting of the standard monomials divisibl e 

by x , an d it follows tha t I A ha s a basis of the given form. Tha t A/IA 

is a Hodge algebra as claimed is now immediate. / / 

The following result , abstracted from [Seshadri ] , often gives a use-

ful method for verifying the Hodge algebra axioms in the ordinal case . 

Proposition 1.3 . Le t V b e a projective variety over R  wit h (reduced ) 

homogeneous coordinat e ring A . Le t He A b e a finite set of homogeneous ele-

ments, partially ordered in some way. 

If, for each x  e H ther e is a reduced irreducible subvariety V x of 

V suc h that 

1) x  < y implie s V x D V , 

2) I f y e H an d y  ̂x the n y  vanishe s on V"x, 

3) x  doe s not vanish identically on V  , 

then, for each x , th e standard monomials on H - I x = £ y e H J y > x j ar e 

linearly independen t in the homogeneous.coordinate rin g A x o f V , an d the 

ordinal standar d monomials on H  ar e linearly independen t in A. 

Further, if relations of the form *  hol d in A  fo r the ordinal idea l 

E associate d to H , the n A  i s a Hodge Algebra governed by £ , an d for 

each x , I  =  {y e H | y  ̂x} i s the homogeneous idea l of V v i n A. x x 

Proof: Suppos e i =  0 i s a nontrivial relatio n among ordinall y 

standard monomials M  o n H  - I , holdin g in A  . Sinc e x  i s a nonzero-ex x  3  x 

divisor on Ax , we may assume that not every M a i s divisible by x. 

Restricting the relation to a suitable V  c  V w e obtain a non-trivial 
y X 
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relation in A among ordinally standard monomials on H  - I . This is im-
y y 

possible by induction. Thus the ordinally standard monomials on H  - I ar e 

independent in Ax. 

If now relations of the form * hold, then A  i s clearly a Hodge 

algebra as claimed by Proposition 1.1. 

By Proposition 1.2, A/IxA i s a Hodge algebra on H - Ix, so the 

natural surjectio n A/Ix A — > Ax i s an isomorphism. // 
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2 ) Standard Filtrations and their Rees algebras 

Consider a filtration 

I : A = IQ D IL  D  ... 

of A  b y ideals which is multiplicative in the sense that IpI q c Ip+q fo r 

all p , q > 0, and such that R  n 1̂  = {0}. For any x  G A, we define the 

order of x  (wit h respect to I ) t o be 

ord x = sup {j I x G I.}. 
j 

We say that I  i s standard if for each p  > 0, th e ideal I  i s 

spanned by the standard monomials M  suc h that \ M(x ) ord x > p. I t 
X E H 

follows at once that n  I = 0. 
P p 

If I  i s any multiplicative filtration , we define the (extended) Ree s 

algebra to be 

R(i , A ) = .. . e At ke ••• e At e A Ф ^t" 1 e ••• e ikt"
k e • • • с A[t,t_1], 

where t  i s a new indeterminate. W e regard R(I,A ) a s an R[t]-algebra , 

and we regard A  = A t0 a s a subring. I n particular, if M  i s a monomial, we 

continue to write M  fo r o(M) G A c R(I,A). 

Theorem 2 . 1 : I f I  i s a standard filtration of A , the n R(I,A ) i s 

a Hodge algebra governed by I  ove r R[t ] with injectio n <j > : H —> A de-

fined by d)(x) = x t ~o r d x  fo r x  G H. Further , the straightening relation s 

19 
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for R(I,A ) hav e the form 

*(W) = 
i 

rn,i te(n,i) 0 (mn,i), 

where e(W,i ) > 0 an d e(N,i ) > 0 i f and only if 

XGH 
W(x) ord x > 

xEh 
M.. (x ) ord x 

N s 1 

= ordMWji. 

Corollary 2.2. Th e filtration I  i s standard if and only if 

gr? A := A/I.J-© I-j/^ ® ••• 1 S a Hodge algebra on A  ove r R  wit h generator s 

„, : H _ > g f j A  give n by * (x) = x + I(ord x)+] e IQrd X / I ( O R ( J X ) + ] . 

Proof of Corollary 2.2.: I f I  i s standard, then R(l,A ) i s Hodge 

by the theorem; since 

grj A a R[t]/tR[t] ®Rj-tj R(l,A), 

by an isomorphism sending (J ) (x) t o 1  <8>({>(x), i t follows tha t g r A i s Hodge 

in the required way. Th e converse is elementary; if I  i s not standard, then 

some a  e i ca n be written as 

a = I r.Mi 0 i r. e R, 

with the M. standar d and distinct, and for at least some M• , I M. W or d x < p. 
1 xG H 

Taking leading forms, we get a relation of linear dependence among the standard 

monomials in gr ^ A. // 
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Proof of 2 . 1 : We check the Hodge axioms for A := R ( I , A ) : 

Hodge-1; Linear independence: The R [ t , t - 1 ] algebra A [ t , t - 1 ] = 

R ( I , A ) [ t " 1 ] is Hodge with generators x e H, by change of base. Since t 

i s a un i t , the standard monomials in the xt~ord x are a lso l inear ly 

independent over R [ t . t " 1 ] , and thus over R [ t ] . 

Spanning: Since Ip i s spanned by standard monomials of order > p, 

i t s u f f i c e s , for each standard monomial M of A to write Mt~ord ^ as an 

R [ t ] - l i nea r combination of standard monomials in the putative generators 

xt"ord x. Since ord M > 
xeH 

M(x) ord x , the expression 

Mt"ordM = .XEH 
M(x)ord x - ord M 

TT 
xEH 

(xt-°rd x) 
M(x) 

i s the required one. 

Hodge-2: I f N i s a generator of E , then set t ing n = 
xeH 

W(x)ord x 

we have 

ü(N) = n 
<GH 

:xt-°rd x) 
W(x) 

= t"nw 

since I i s standard we have 

n < ord hi < 
XEH 

n i (x)°rd x 

for each i. Thus 

+ (W) 
D 

rN,it XGH 
Mn, i (x)ord x)-n 

•(«M§1) 

is a re la t ion of the desired form. // 
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3) The simplification of Hodge algebras 

The "simplest " Hodge algebra over R , governe d by E , i s surely the 

discrete one R[H]/ £ R[H]. The following result allows us to reduce many 

questions abou t Hodge algebras to questions abou t more nearly discrete, and 

therefore simpler Hodge algebras. 

Theorem 3.1 : If x G H is a minimal elemen t of In d A, the n 

I = {xnA} : A D x A D X2A D ... 

is a standard filtration and A  : = gr̂  A i s a Hodge algebra governed by z 

with 

Ind A# Ind A - {x}. 

u 
Proof: Th e standardness of I  follow s fro m Proposition 1.2a , so A 

u 
is a Hodge algebra over R , generate d by the leading forms x o f the ele-

ments x  e H, b y Corollary 2.2. The straightening relation s for A  ar e 

derived from those of R(I,A ) b y setting t  = 0; thus in the notation of 

Theorem 2.1 they have the form 

<D#(N) = 
i 

r W j / ( M W J ) , 

e(W,i)=0 

M 
whence In d A = 

1 M 
supp Mw . c Ind A. 

e(W,i)=0 
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Now if e(N,i ) = 0, the n x  occur s to the same power in W and 

Mw j.. Bu t if x divide s W , the n the corresponding straightening relatio n 

is 

W = 0 

because of the minimality of x i n In d A, s o x £ Ind A . // 

Applying the above result inductively we get 

Corollary 3 .2. Fo r any Hodge algebra A  ther e is a sequence of ele-

ments x-|,...,x n e  Ind A suc h that defining A. , inductively by AQ = A, 

A. = gr A . , we have A n = R[H]/I R[H]. // 
{ x ^ . ^ } 1- 1 n 

Using the Rees algebras, we may view this as a stepwise flat deforma-

tion, whose most special fibe r is R[H]/ Z R[H] an d whose most general fibe r 

is A . It is interesting to note that one can avoid this stepwise procedur e 

and make the deformation all at once; since we will no t apply the result, we 

leave the proof to the reader. 
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II. Results on Hodge algebras 

We adhere to the notation established in Section 1. If x   ̂Ind A 

is minimal, we use the notation <j > : H — > gr A  a s in Sections 2 and 3. 
{xn} 

Also, we will ofte n write 

AQ = R[H]/Z R[H] 

for the discrete Hodge algebra over R  governe d by Z . Man y of the results 

and proofs work without hypothesis on R , bu t we will fee l fre e to assume 

when necessary tha t R  i s noetherian and, when we speak of dimension theory, 

"universally Catenary", things which are true for any ring finitely generated 

over a noetherian Cohen-Macaulay ring--tha t is , any "reasonable" ring. 

4) Review of the discrete case 

All the results of this section are known, though perhap s some have not 

appeared in print before. The y are summarized here for the convenience of 

the reader. W e suppose throughout this section that R  i s a domain; the 

extension to the general cas e is straightforward. 

Proposition 4.1. Le t Z b e an ideal of monomials on H , an d set 

I = Z R[H]. 

a) I  i s prime if and only if Z  i s generated by a subset of H. 

b) I  i s radical if and only if Z  i s generated by square-free 

monomials. 

c) I  i s primary if and only if, whenever x  e H divide s a generator 

of Z , ther e is a generator which is a power of x. 

d) Th e associated primes of I  ar e all generated by subsets of H. 
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e) heigh t HR[H ]/Z R[H] is independent of R ; i t is the 

cardinality of H  minu s the cardinality of the smallest subset H 1 o f H 

such that every element of z i s divisible by some element of H'. 

The proofs are easy. 

Note that a decomposition of an ideal I  a s in 4.1 into irreducibl e 

primary components is easy to calculate: I f the generators of I  ar e 

Nr...,A»k, 

and if W- j ca n be written N1 = M-JM̂ 1 wit h sup p W-j n supp Ŵ ' = 0 , the n I 

is the intersection of the ideals 

(,V«,N2,...,Wk)R[Hj 

and 

(Wl1'5W2,...,Wk)R[H]. 

Repeating the procedure, we eventually write I  a s the intersection of 

ideals generated by powers of the elements of H , an d these are primary 

and irreducible . 

For some purposes it is useful to have an explicit free resolution 

of A Q = R[H]/Z R[H] as an R[H]-module . Th e following result is from 

[Taylor ] : 
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Let G  = {g-j,...,g2} b e the set of generators of I, and define a 

complex 

Л(1) = О — > A ( R [ H ] G ) - ^ - > . . . - ^ - > A ( R [ H ] G ) - ^ - > . . . - Ì - > R [ H ] 

whose differential is given by 

d(gi Л...Лд ) = I H ) J 

lcm(g. ,...,gi . ) 
41 k \ 

lcm(gi1 ,...,gi ...9,- ) 
gi1. Л̂...Л g Л...Л gi , 
^ Ъ k\ 

where 1c m denotes leas t common multiple and we have used the symbol g. 

both for an element of G c R[H] an d for the corresponding basi s element of 

R[H]G. 

Theorem 4.2. Л(Е) is a free resolution of An over R[H]. 

Taylor's proo f of this is a rather complex induction ; [Gmaeda ] 

and Ephrai m (unpublished ) have given much simpler proofs by decomposing 

A ( E ) a s a mapping cylinder of a map from A ( E ' ) to itself, where E 1 i s 

the ideal of monomials generate d by all but one of the g.. 

The following result , due independently to Weyman and Lofwal, allows 

one to reduce some problems about arbitrary ideal s of monomials to problems 

about ideals generated by square-free monomials: Le t E be an ideal of 

monomials on H = {x^,...,x } wit h generators N-|,...,Nk . Se t d.. = 

max (W.(x.)) » th e maximum degree to which x . appear s in one of the N. . 
j J 

We introduce new variables H * = { x ^ . } ^̂  - ^ v ^ . an< * define monomials H\ 

by replacing each factor x ? of N. by X . - . . . . X . .  Fo r example if 
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H - {x-j»X2}j W- j ~ X-|X2» ^ 2 ~ X-|X2> the n H 1 - {x-j-j »^i2'x139x21 ,x22,x23,x24̂  

and N1 =  x11x12x13x21x22 ' W 2 = xllx12x21x22x23x24* 

Proposition 4.3. Wit h the notation above, set A0 = R [ H ] / I an d 

A Q = R [ H ' ] / E ' . Th e elements of 

K = u {Xll - x12.....xi^.1 -  xisd._2> 

form a regular sequence (in any order)on A ^ , and A Q = A ^ / K . 

Proof. On e sees at once that 

R[H]<8>R[H»] A(E,) = A(E)s 

so that A Q = r[h3®R[H'] Ao and 

TorJCH'](R[H]^) = 0 

for i  > 0. Sinc e R[H' ] is graded and K  i s a sequence of homogeneous 

elements, we are done. / / 

Remark. I t is also easy to prove that the elements of K  ar e a 

regular sequence on A Q by ideal theory , using Proposition 4.Id. 

A usefu l way of looking at ideals generated by square-free monomials 

is the following, which was developed in [Reisner ] : 

Let A  b e a simplicial comple x with vertex set H ; tha t is, A  i s 

a set of subsets of H , calle d simplices, and containing all the singletons 
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{x}, fo r which T  с s e  A implie s Т е A. Defin e ЕД to be the set of 
monomials whose supports are ncrt simplices. £д is clearly an ideal, and is 
generated by the square-free monomials correspondin g to the minimal non -

simplices. Further , any ideal generate d by square-free monomials ca n be 

written as ЕД for suitable A. 
Recall tha t the dimension of a simplex is one less than the number of 

its vertices, and that the dimension of a simplicial comple x is the maximum 

of the dimensions of its simplices. 

Proposition 4.4. Suppos e £  i s an ideal generate d by square fre e 

monomials, and let A  b e such that E  = 1д. 
a) [Hochste r ] . The minimal prime s of A Q are generated by the 

complements of the maximal simplice s of A. In particular, if R i s noether-

ian then di m AQ = dim R + dim A + 1, and height HAQ = dim A + 1. 

b) [ S t a n l e y 1] . F or e a c h k , HkAQ/Hk+1A 0 i s a f r e e R - m o d u l e ; l et 

H« (k) be its rank. I f f. is the number of simplices of dimension i  in 

A, the n 

H (k ) 
dim A 

i=0 fi 
k-1 
i 

For example, we see from a) or b) that if R i s a field, then the 

projective variety corresponding to the graded ring A Q has degree equal to 

the number of simplices of maximal dimensio n in A. 

Finally, we quote 3 striking results on the homological propertie s of 

the ideals z  = z . Th e first was proved in [Hochster ]  using the methods 

of [Reisne r ] . To express i t we think of R[H] and A Q as graded by the 
u 

semigroup of elements of IN , wher e each monomial M  i n R[H] has degre e 
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M i n I N . Fo r M e IN w e think of sup p M c H a s the simplicial 

subcomplex of A  whos e simplices are the simplices of A  whic h happen to 

H H be contained in sup p M. Fo r any I N -graded module M, and any M e IN 
we write M. . for the part of M  o f degree M . W e set |M | = 7  M(x), 

M XG H 
the total degre e of M. 

Theorem 4.5. [Hochster , Theorem 5.2]: 

w|[H4>R)* 
0 i f M  is not square-free 

H|Ml'j_1(supp M;R). 

Here H denotes reduce d Simplicia! cohomology, with the convention 

Hj(0;R) = 
R j  = -1 

о j t -i 

Remark: Torj'-H-'(A0,R ) ma y be thought of as the jth homolog y 

module of the Koszul comple x over A Q correspondin g to H  c AQ. 

Open Problem: Construc t an explicit minimal fre e resolution of R[H]/Z , 

perhaps by combining 4.2 and 4.5. 

The next result, obtained by Munkres from 4.5, shows tha t the depth 

of the ideal HA Q depend s only on the topological spac e which is the 

"geometric realization", |A| , of A. 
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Theorem 4.6 ([Munkres; Theorem 2.1]): Th e depth of HA Q i s the 

smallest intege r j  fo r which eithe r 

H J ( | A | ; R ) t 0 

or, for some p e | л | , 

HJ(tA|,|A|-p;R) t 0 

By contrast the Gorensteinness of AQ reall y does depend on the 

combinatorial structur e of A . W e state only one of Hochster's several re-

sults in this direction. Recal l tha t if a e A i s a simplex, then lk(a) 

is the complex consisting of those simplices T fo r which a  n  x  =  0 and 

a u  T i s a simplex in A . W e specialize to the case R  = Z: 

Theorem 4.7 [Hochster; Theorem 6.7]. I f R  = Z, the n A Q i s Gorenstein 

if and only if it is Cohen-Macaulay and, for each (di m A ) - 2 - dimensional 

face a i n A , L k a i s either a line with at most 3 vertices or a circle. 

Finally, if H  i s partially ordered, we let b e the ideal 

generated by all product s of pairs x y suc h that x  an d y are incomparable 

in H . I f we let A (H) be the "order complex" whose simplices are the totally 

ordered subsets of A , the n it is easy to see that Z H = Д ( Н ) ' so that the 

methods above may be used conveniently in this case. 
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5) Nilpotents and nonzerodivisors 

We first collect some elementary consequence s of the simplification 

result of Sections 2 and 3. 

Recall tha t a ring is said to be reduced if it has no nil potent ele-

ments. Fro m 4.1 it is easy to see that A Q is reduced if and only if R 

is reduced and I  i s square-free. 

Proposition 5. 1 : a ) If A Q is reduced the n A is. 

b) I f y  G A is a nonzerodivisor modul o H A , then it is a nonzero-

divisor. 

c) If H A Q contains a nonzerodivisor, the n H A contains a nonzero-

divisor. 

Proof: Le t x e H b e a minimal elemen t of In d A. I f ye A i s nil-

potent, then so is its leading for m in g r A , an d since n  (xnA) = 0, the 
{xn} 

leading for m is nonzero. Th e same is true with th e word "zerodivisor " substi -

tuted for "nilpotent". Thu s the Proposition follow s by inducation on the 

number of elements in In d A, usin g Theorem 3.1 . / / 

Corollary 5.2 . I f A i s a domain, A Q i s reduced, and height 

HA > 2, the n H A contain s a regular sequenc e of length 2 . 

Proof: Le t x e H be minimal. Sinc e A  i s a domain, x  i s a 

nonzerodivisor, and since A Q / X A Q i s reduced, HA/x A contain s a nonzerodivi-

sor by Proposition 1.2b , 4.1a, and 5.1c. // 

Corollary 5.3 . a ) Ever y associated prim e of 0  i n A i s contained 

in an ideal of the form P A + HA, wher e P  c R i s an associated prim e of 0 

in R . 
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b) n  (HA) n = 0. 
n 

Proof: a ) is immediate from 5.1 b). I t is enough to verify b) 

locally at some prime containing each associated prime of 0  i n A , whence , 

by a), at primes containing HA . Bu t at these primes the result follows fro m 

the Krull Intersectio n Theorem. / / 

In good cases, such as those encountered in the examples, it is possi-

ble to produce nonzerodivisors explicitly : 

Theorem 5.4. Suppos e that the generators of E  ar e square free and 

let A  b e the simplicial comple x on \ \ with E  = E ^ . I f {x^,...,xn } c H 

is a clutter meeting ever y maximal simple x of A , an d if r^,...s r e  R are 

any nonzerodivisors, then 

У = 

n 

1 
r.x. 

is a nonzerodivi sor on A. 

In particular, if Л = A(M), the n the sum of the minimal element s of 

H is a nonzerodivisor. 

Proof: I f A  i s discrete, then the associated primes of A  ar e of 

the form P A + IA wher e P  c R i s an associated prime of R  an d I  c H 

is the complement of a maximal simplex , and the assertion follows. 

We now do induction on # Ind A. If there is an x  £ {x-j,...,xn} whic h 
n n 

is minimal in In d A, the n by induction I r_.<j> (x_.), whic h is the leading 
1 1  1 

form of y , i s a nonzerodivisor in g r n  , so y  i s a nonzerodivisor in 
{xnA} 

A. Thu s we may assume that every minimal elemen t of In d A i s in 
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{x-j,...,xn} or, since {x^,...,xn > i s a clutter, that no element of In d A 

is < one of the x.. Suppose that y I u.M . = 0, where the M. are 
• j j J 

distinct standard monomials (on e of which may be the empty monomial, 1) and 

0 f Uj e R. Choos e i  s o that {x.. } u supp i s a simplex of A . We have, 

by Proposition 1.2 a), 

О = xy uiMi - r! J J 
2 

where I ' denote s the sum over all j  suc h that u  supp Mj i s a simplex 

of A . Thi s is a non-trivial linea r dependence relation among standard 

monomials, contradicting the existence of £  u.M.. / / 
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6) Dimension and system of parameters. 

Recall tha t a noetherian ring R  i s said to be universally catenar y 

if, for every pair P  c Q o f primes in an R-algebra'o f finit e type, all 

saturated chains of primes between P  an d Q  hav e the same length. Any 

noetherian ring which is a homomorphic imag e of a Cohen-Macaulay ring--and 

thus in practical term s every noetherian ring--has thi s property . 

Theorem 6.1. If R is universally catenary, then 

dim A = dim A, 

Proof: Sinc e R  i s universally catenary we have: 

dim A = sup(dim(Rp) + dim(Rp/PRp ®R A)), 

where the supremum is taken over all primes P  o f R , s o it suffices to 

treat the case where R  i s a field. 

Let x  e Ind A b e minimal and let I  = {(xn)} b e the usual filtra-

tion. Sinc e R(I,A ) i s an affine ring, any nonzerodivisor u  e R(I,A) 

satisfies di m R(I,A)/uR(I,A) = dim R(I,A) - 1. Applyin g this with u  = t 

and u  = t - 1, w e get dim A = dim Gr, A, an d we are done by Theorem 3.1. / / 

Corollary 6.2. I f R  i s universally catenary then height HA  = 

height HAn. 

Note that by 4.1 e), height HA n i s independent of R. 
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Proof: Le t P b e a prime of A containin g H A , and Q a  minimal 

prime of A containe d in P , suc h that heigh t P/Q = height H A . Factorin g 

out Q  n R, we may assume R  i s a domain. Bu t then' H A is prime, so 

H A = P, and by Corollary 5.3a, H A contains every minimal prim e of A . 

Since A i s Catenary, di m A = dim A / H A + height H A = dim R + height H A , 

and th e corresponding fact holds for A Q . Since di m A = dim A Q , we are 

done. / / 

To get a more explicit result, we follow an idea of Richard Stanley. 

Recall that elements p^,...,p e  H A are a system of parameters in H A if 

n = height H A and H A is nilpotent modulo (p19...9pn). 

Theorem 6.3. Suppose A  i s ordinal. I f H = 
о 

n 
H.J, where each H.¡ 

is a clutter, then H A is nil potent modulo the ideal generate d by the elements 

D . = 
хеН. 

X i = 0,...,n, 

and A/(pQS...,pn) A i s generated as an R-modul e by square-free standard 

monomials. I n particular, if A i s ordinal an d we set H. = {x e H | 

height x = i} the n the p. are a system of parameters in HA. 

Proof: I t suffices to prove the first statement. W e do induction on 

# H. Le t X Q be a minimal elemen t in H, and suppose for definiteness tha t 

X Q G H Q . B y Proposition 1.2 b), A/xQ A i s a Hodge algebra governed by 

£ / ( X Q ) , S O by induction H A i s nil potent modulo (pQ,...>Pn>Xg) » and 

A / ( P Q,...»Pn»xQ) i s generated by square free monomials not involving xQ . 

By Proposition 1.2 a) we have xQp 0 = X Q , S O (pQi...>Pn>x0)2 c (pQ9...,pn), 

and H A i s nil potent modulo (pn,..., p ) a s claimed. Th e right-exact 
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séquence: 

A/(p0....,pn,x0) 
X 0 -> A/(p, 0 n 

A/(p 
0 n 0 0 

shows that A/(pQ5...,pn ) i s generated as in R-modul e by square free 

monomials not involving X Q together with x Q multiplie d by thèse. Sinc e 

the product of x Q wit h a standard monomial is either 0  o r standard, we 

are done. / / 
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7) Koszul homolog y and homological properties . 

The déformation argument of Section 3 leads, by standard methods, to 

a comparison of the homological propertie s of the Hodge algebra A  wit h 

those of the discrète algebra A^ ; the latter were treated in Section 4, 

and we regard them as known. Her e is a sketch. 

Consider the Koszul comple x 

IKA : 0 
# H M 

A A -
2 
AAH A A, 

where A  i s the free A-modul e whose basis is H , and where the différent!'al 

(j> i s given by 

(l)(x1A...Axk) = 
1 

(-1) i (x1A...AxiA...Axk), 

for xr...,xk H. Here we have written x . i n the product on the right 

where xi is to be omitted, and we have used the same symbol x - fo r a 
Lj 

basis élément of A  an d an élément of A. 

By the results of Section 3, we may choose a séquence of éléments 

x,,...,xM e  H such that, setting h =  A, an d A. , = gr „  A. I n  n  i- l {(xn) } i 

(i = l,...,n), eac h A ^ i s Hodge, governed by Z , x ^ i s minimal in 

Ind A., an d An i s discrète. 

A standard spectral séquenc e argument [Serre Ch. 1] or a simple argu-

ment with Rees algebras yields: 

Theorem 7.1. Fo r each j  = 0,...,#H an d i = 1,...,n, ther e is a 

filtration of H.(IKf l ) b y submodules intersectin g in 0  suc h that 
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gr Ho.(IKA.) 

is isomorphic to a subquotient of HjOK 
1-1 

) • / / 

Note that Proposition 4.3 and Theorem 4.6 allow an explicit 

détermination of H.(IKf l ) = Tor 
J " g 

H (R>AQ). 

Corollary 7.2. I f M i s a maximal idéa l of A conta i ni ng H  and 

Mn = HAn + (Mo R)An, the n 

RI 
j 

depth A, A depth 0 
1 

Further, if A 
3 M, 
0 

is Gorenstein, then so is A M* / / 

Thèse result s are particularly nice when A  i s graded, the éléments 

of H  havin g degre e > 1, fo r it is well-known that then A  i s Cohen-

Macaulay, Gorenstein, or locally of dept h > a given number iff this is true 

locally at maximal ideal s containing HA . See , for example [Matijasevic-

Roberts ]  or [Hochster-Ratcliffe ] . 

The converse of 7.2 is false: I t is easy for A t o be Gorenstein 

without A Q being so, and presumably the same could happen with Cohen-

Macaulayness. 

The same idea can be used, in simple cases, to construct a free reso-

lution of A a s an R[H]-module : startin g with a resolution, such as 

Taylor's resolutio n A(Z) , of AQ one lifts it step by step to resolutions 

of A,,A9,.. . .  Fo r this it is convenient to use the expression 

A1 = R( ï+1 ,A. i+1 )/(t); afte r "lifting" the resolution of A., modulo t 
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to an R[t][H]-fre e resolutio n of R({x"+ i },A.+.j ) s on e sets t  = 1 t o get 

the desired resolution of A.+,. Of course the resolution obtained for 

A = A 
n 

will gênerail y not be minimal, even if the resolution for An was. 
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8) Wonderful Posets . 

Throughout this section, we will suppos e that A  i s an ordinal Hodg e 

algebra, that is, we assume Z  = 1 ^ . W e give a simple condition on H  whic h 

implies, by a direct argument, that the System of parameters Pg,...,p n 

(n = height HA) give n in Corollary 6.3 is a regular séquence. O f course 

this is practically équivalen t to dept h HA > dim H + 1; bu t though the re-

suit of this section is far less gênerai tha n that of Theorem 7.4, Corollar y 

7.2 and Theorem 4.5 or 4.6, it is useful in many significant examples wher e 

the condition yielded by 4.6 is not trivial to check. 

The proof follows closely the ideas of [Musili]. 

Définitions. 1 ) A n élément y  e H i s a cover of an élément x  e H 

if x  < y an d no élément of H i s properly between x  an d y. 

2) H i s wonderful (o r locally semi-modular) if the following condi-

tion holds in the poset H u {-«>,«>} obtaine d by adjoining leas t and greatest 

éléments to H : I f y-j , y^ < z ar e covers of an élément x , the n there is 

an élément y  < z whic h is a cover of both y , an d y0. Pictorially : 

Note in particular that a distributive lattic e is a wonderful poset . 
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Theorem 8.1. Le t A b e an ordinal Hodg e algebra, and set 

p i = 
X G H 

ht x=i 

x. I f H  i s wonderful, then pQ,...,p n ( n = dim H) i s a 

regular séquence. 

To prove the theorem, we need some elementary combinatorial propertie s 

of wonderful posets . I f H  i s a poset, the idéal I  cogenerated by a subset 

{x-j,... ,x }̂ c H i s { x e H | x > x. fo r ail i}. 

Lemma 8.2. Le t H  b e a wonderful poset . 

(1) I f I  i s an idéal in H  an d if for any z G H - I and any two mini-

mal élément s y-j , y^ i n H  - I with y-j , y^< z , ther e is a common cover 

M < 7 fnv v . v . _ t h p n H - T i <: w n n H p r f ni 

(2) An y maximal chai n in H  ha s length equal to di m (H). 

(3) I f x-|,...,x k ar e the minimal élément s of H , wit h k  > 1, and 

if I  c H i s the idéal cogenerate d by x ^ whil e J  c H i s the idéal cogene -

rated by x 25...»xk, the n I  n j = 0 an d M  - I, H  - J an d H  - (Iu3) are 

wonderful, the last having dimension dim(H ) - 1. 

Proof: 1) : Immédiat e from the définition. 

2): W e use induction on the number of éléments in H t o prove that 

the lengths of two maximal chain s x Q < x-j ••• and <  y-j < ••• ar e equal. 

We may assume X Q f y^; els e pass to H - (the idéal cogenerate d by x- j ) -{x^}. 

Since x Q an d yQ bot h cover -«> , they have a common cover z-j . Let 

zl < Z2 < ^ e a maximâ  cnain ascending fro m z-j . Passin g to H - (the 

idéal cogenerated by xQ) , we see that X Q < x^ < ••• an d x Q < z^ < ••• 

have the same length, namely one more than the length of z- j < z2 < 

Repeating the argument with y n i n place of xn , we are done. 

3): Immédiate . / / 
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Proof of 8.1 : W e do induction on #  H. I f H  ha s a unique minimal 

élément x , the n x Q = x i s a nonzerodivisor by Theqrem 5.4, so we can 

factor it out and finish by induction, using Proposition 1.2 b) and Lemma 

8.2 (1) . 

Now suppose H  ha s minimal élément s x-|,...,x k wit h k  > 2. W e 

write I , J containe d in H  fo r the ideals defined as in Lemma 8.2 (3), 

and we write T , J" for the ideals I A an d JA o f A . B y induction and 

Proposition 1.2 , it follows tha t P Q , . . . , P i s a regular séquence on A/T 

and on A/T, and that p^,...,p ^ i s a regular séquence on A/(T+J), whil e 

(pQA) C (I+J). Further , 0  = Tn J  b y Proposition 1.2 b), so we have a short 

exact séquence 

0 —> A —> A/I 0 A /J —> A/I + J —> 0. 

The theorem now follows from the next, well-known lemma (whic h was also used 

by Musili). 

Lemma 8.3. Suppos e 0  —> A —> B —> C — > 0  i s a short exact se-

quence of modules, and that P Q p^ ' are ring éléments such that P Q C = 0. 

If P Q , . . . , P ^ i s a regular séquence on B an d p-j,...,p d i s a regular 

séquence on C , the n pn,...,p , i s a regular séquence on A. 

Proof: Sinc e A  £ B , p Q i s a nonzerodivisor in H . Modul o p Q we 

obtain the exact séquence 

0 — > C —> A/p0A —> B/p 0B —> C — > 0 . 
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Let K  = ker(B/pQB —> C). Sinc e p.j,...,p d i s a regular séquence on 

B/p0B an d on C , i t is regular on K  a s well, and repeating the argument, 

on A/pnA . / / 
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9) Graded Hodge Algebras. 

Throughout this section we suppose that A  i s IN-grade d in such a 

way that R  ha s degree 0  an d each x  e H i s homogeneous of degree >  0. 

We are grateful to Richard Stanley for expiai ning the material of this sec -

tion to us. I t is clear that the component A  o f A  i s a free R-modul e 

over R  admittin g as basis the standard monomials M  wit h v  = 
H 

M(x)deg x. 

fhus the Hilbert function H.(v ) = rankD A 
V 

n 
is the same as for R[H]/Z . 

This is calculated, in the case where Z i s gênerated by square-free monomi-

als in Stanley's Propositio n 4.4b. 

In particular, this ide a allows one to check whether a graded Hodge 

algebra which is a Cohen Macaulay domain is Gorenstein, using some othe r 

results of Stanley's: 

Proposition 9.2 [Stanley 2]. I f A  i s a graded Cohen-Macairïay domain, 

and F(t ) = 
t=0 

H,,(v)t , the n A  i s Gorenstein if and only if , for some 

integer r , F  satisfie s the formai identity : 

F(l/t) = ±trF(t). 

Of course it may be combinatorially difficul t to check thi s criterio n 

if E  i s not simple. Bu t in a spécial cas e which often arises in the 

examples, a resuit from Stanley's thesis , reproduced in [Stanley 2], makes il 

easier. I n our case it says: 

Proposition 9.3. Suppos e R  i s a field and A i s ordinal, and graded 

in such a way that the éléments of H  hav e degree 1  an d the éléments of 

R hav e degree 0 . I f A i s a domain and H  i s a distributive lattice , then 
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A i s Gorenstein if and only if ail maximal chain s of join-irreducible 

éléments of H  hav e the same length. 

Remark: Buchweit z has recently generalized this resuit, dropping the 

assumption that ail the éléments of H  hav e degree 1 , an d replacing it by 

the assumption that they are ail homogeneous of positive degree, and that 

deg : H —> Z i s a valuation in the sensé that de g h + deg h' = deg hV h* 

+ deg h A h'. 
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III. Examples 

10) New Hodge Algebras from old. 

Before beginning with the examples themselves , we collect a number of 

useful gênera i constructio n techniques . W e maintain the notation (R,A,H,Z,... ) 

of Section 1. 

a) Th e simplest method of construction a new Hodge algebra from A  i s 

to factor out the éléments of some idéal of the poset H  a s in Proposition 1.2. 

b) I f H  ha s a maximal élémen t y  suc h that y M i s standard whenever 

M is , then one sees immediatel y tha t A  i s a Hodge algebra over R[y ] 

governed by £/(y) . Applyin g change of rings, it follows tha t for any r  G R, 

A/(y-r)A i s a Hodge algebra over R  o n Z/(y) . 

c) Give n a standard filtration I  o f A , we have seen m Sectio n 2 

that the Rees algebra and the associated graded algebras of A  ar e again 

Hodge algebras. 

Here is a spécial exampl e o f a standard filtration; we shall see in 

Section 12 that it arises naturally in the filtration of a polynomial rin g by 

symbolic powers of a determinantal idéal . W e restrict ourselves to the case 

where A  i s ordinal. 

Suppose that A  i s graded in such a way that éléments of H  are 

homogeneous of degre e > 0 an d éléments of R  hav e degree 0 S an d that A 

satisfies : 

1) I f y i n H  the n de g x deg y. 

2) Th e standard monomials M 
Xi 

on the right-hand sides of the 

straightening relation s 

M = xy = r 
N,1 

M 

X 
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ail hav e <  2 factors ; that is, 
X€EH 

M, (x) 2 fo r ail W , i. 

With thèse assumptions, we défi ne for each monomial M  an d each 

integer k  > 0  a  number 

Y k (M) = deg x>k 
M(x)(deg x - k + 1). 

We write :P) for the R-linea r span in A  o f ail th e standard 

monomials with [M) p. 

Proposition 10.1. r(PJ 

k 
is an idéal o f A , an d it contains ail 

monomials M  wit h y . (M) > p . Further , the filtration 

Ik : A -
!«>) r V • (1) 

is a standard. 

Proof: On e uses th e straightening algorithm in the proof of Proposi-

tion 1.1 t o show tha t if M  = z r^M^ i s the relation expressing any monomial 

M a s a linear combi nation of standard monomial s, then T ^ C ^ ) > Y ^ C M ) fo r 

ail i . Th e resuit follows at once. / / 

d) Blowing up . Th e following gênerai construction is treated in [Eisenbud-

Huneke, Theorem 2.3]. Le t A  b e ordinal, and suppose that I  c  H i s an idéal 

in the poset A  suc h that for any incomparable x , y G I  th e product x y G A 

is in the idéal { z G H  |  z < x}A I o f A . Th e algebra A[It ] c  A ® It 0 . . . c 

A[t] i s then an ordinal Hodg e algebra i n a natural wa y on the poset H  <* I 
* * 

defined as the disjoint union of H  wit h a poset I  =  {x |  XG 1 } = I , 

the order being given by that already defined on H  an d an I  s i , wit h 
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x* < y i n H  <* I i f x  < y i n H . Her e the injection H  <* I —> A[It] 

is given by x  —> x fo r x G H an d x — > xt fo r x  G I. 

e) Segre Product. If A  = 
k 0 

A. an d B = 
fcX) 

B. ar e graded Hodg e 

algebras generated by homogeneous éléments , then the "Segre product" 

1 Ak ® Bk 

is also a Hodge algebra, generated by the "product" poset in an obvious way. 
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1 1 ) The Grassmannian. 

For definiteness, we now take R  t o be the ring of integers or a 

field. Le t U-jj ) De a d  x n matri x of indeterminates over R , an d set 

G. equa l t o the subring of the polynomial ring  R[X . .] generate d by ail o » n i  j 

the d  x d minor s of the matrix (X..) . Th e algebra G , i s the 
i j a  » n 

homogeneous coordinate ring of the Grassmann variety of d-plane s i n n-space ; 

see [Hodge-Pedoe ]  or [Kleiman ] . Th e ring G . i s a Hodge algebra in 
u s n 

the following natural way, which was first investigated in [Hodge ] . 

Let {̂ } b e the set of symbols [î^,...,^ ] wit h 1 < i  1 <  • • • < i" d < n 

integers. W e make {[! } int o a poset by setting 

[ir ...,id] < [Jr...,Jd ] 

if 

i 
k 

j k for k  = l,...,d. 

We défi ne an injection {[! } Gd n b y taking ir...,id; to the d  x d 

minor of (X^- ) whic h i s the déterminant of the sub-matrix of (Xjj ) ln _ 

volving columns numbered I-J,...,^ . W e will als o write [ i -j,... ,1*^] fo r 

this minor. 

Theorem 1 1 . 1 [Hodge ] . G 'd,n' 
with th e structure defined above, is 

an ordinal Hodg e algebra. 

See [DeConcini-Eisenbud-Procesi ]  for a modem treatmen t of this 

resuit. 
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The most interesting subvarieties of the Grassmann variety are the 

Schubert varieties. I f V  i s an n-dimensiona l vectorspace , and if 

v = vn  ̂vn_i ^ •••  ̂vi 0 i s a complète flag of subspaces, we define the 

Schubert variety Q t o be the set of d-dimensiona l subspace s suc h ar...,a. 

that dim( W n  Vn a  ) > i- Th e idéal of forms in G 
vanishinq on fi 

a 1 . . ,ad 

i s the idéal generate d by the idéal of {̂ } consistin g of those [i-j,.. . ,id] 

not less than [n - ad + 1,... ,n - â  + 1]; thus the homogeneous coordinat e 

ring of.n i s again a Hodge aîgebra (Proposition 1.2) . (Note : th e 
ar...,ad 

above notation for the Grassmannian and the Schubert varieties coexists in 

the literature with its dual!) 

Since f̂ } i s a distributive lattice , it is wonderful, and it follows 

from the result of Section 8 that the Grassmann variety and the Schubert 

varieties are ail projectively Cohen-Macaulay. Usin g 9.3 one can combinatori-

ally décide which are Gorenstein; this has been carried out by Stanley in 

[Stanley 2]. 

One can treat in a similar way the (multi-homogeneous) coordinat e ring 

of the Flag manifold, the Grassmannian of isotropic spaces corresponding to an 

orthogonal grou p modulo a maximal paraboli c subgroup and various other reduc-

tivegroups modul o maximal paraboli c subgroups (see [Lakshmibai-Musili-

Seshadri ]) . 
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1L ) Determinantdl a nd Pfaffian varieties. 

Let A  = RtX^jJ-j^^, an d suppose for convenience d  < m. Th e 

Kj<d 

algebra A  ca n of course be given a discrète Hodge structure, but there is 

another, due to [Doubilet-Rota-Stei n ]  which is suited to the study of 

determinantal varieties . I t was furthe r studied in [De Concini-Procesi ] 

and [D e Concini-Eisenbud-Procesi]. 

Let H  b e the set of ail symbol s of the form (i^,..., i |  j-|>...,Jr), 

with r  < d an d i- j < •• • < i^ , <  <  *• • < Jr> partiall y ordered 

by 

(îr ....ir|Jr ..-.Jr) < (i- j »-..»islJ-j ,-..»Js) 

if 

r > s  an d 

ik<1'k' J'k<J' k fo r k = 1 . - — s . 

We may injec t H  int o A  b y sending (i-j,.. . ,i'r| j-j,... ,j'r) t o 

the r  x r mino r of involvin g row s i^,...,i ^ an d columns 

J 1 » • • • 5 Jp • 

Theorem 12.1. Wit h A  an d H  a s above, A  i s an ordinal Hodg e 

algebra on H  ove r R . 

51 



C. DE CONCINI, D. EISENBUD, C . PROCESI 

For the original proof , see [Doubilet-Rota-Stein ] . Fo r a faster but 

still combinatoria l treatment , see [Désarménien-Kung-Rota]. Th e theorem may 

also be deduced from the Theorem 10.1 as is done in [De Concini-Eisenbud-

Procesi ] . 

It is easy to verify that 

R [ X l J ] Ki<m 
1<j<d 

G 
d,d+nï ([m+l,...,m+d] - 1) 

Since [m+1,...,m+d ] i s the unique maximal élémen t of {   ̂}, ther e is by 

section 10b an induced Hodge algebra structure on RCX ^ .]. A  combinatorial 

argument, carried out in détail in [De Concini-Eisenbud-Procesi ] , identifies 

this induced Hodge algebra structure with that of Doubilet-Rota-Stein. 

In particular, H  = {d*m} - {[m+1,... ,m+d]}, an d this is again a 

distributive lattic e (a s may also be verified directly without difficulty. ) 

Thus in particular H  i s wonderful. 

Now consider, in H, the set 1^ o f ail minor s of orders >  k. 

This is clearly a poset idéal, and IkA is just the idéal generate d by the 

k x k minor s of (X..) . Sinc e H  - I. i s wonderful, one shows in this way 

that k[Xij.]/I k i s Cohen-Macaulay, and sees that it is Gorenstein if and 

only if m = d o r k  = 1. 

This Hodge structure on R[X-jj ] satisfie s the conditions of Section 

10cs so we may define the ideals l[P^ - It is shown in [De Concini-Eisenbud-

Procesi ]  that 1 ^ i s precisely the pth symboli c power of the idéal 

L A . Combinin g thi s with the fact that H  i s wonderful, we have: 

Theorem 12.2. Th e "symbolic qraded rinqn A v ' = A/I (1) ei k (1) k 
(2 
e 

... ©I<p)/l[p+1)©.. . is a Hodge algebra on H . I n particular, it is 

Cohen-Macaulay whenever R  is. 
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This answers a question of M. Hochster; it was also proved by him 

(unpublished) by invariant-theoretic methods, in some special cases . 

In a completely analogous way, one can treat the ideals of Pfaffians 

of a generic alternating matrix, using the "straightening law" of [De Concini-

Procesi ] . I n this case one takes A  = RCx-jj^i<-j<j<n' 

H = 

r^ri 

n 
2r 

partially ordered by 

[il,...,i2r] < [il,...,i2r] 

if r > s and 

ik < jk for k = l,...,2s. 

One injects H  int o A  b y sending [il,... , i2r] to tne Pfaffian of the 

submatrix obtained from the rows and columns numbered i^,...,i2r . Th e 

example has been treate d extensively in [Abeasis-Del Fra]. 
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13) Projective varieties of minimal degree . 

Throughout this section we work over an algebraically closed field k , 

and write F p fo r P n(k) . W e use the word variety for reduced (but 

possibly reducible ) projective scheme over k . A  subvariety K  Pn  i s 

nondegenerate if it is contained in no hyperplane. 

An elementary resul t of algebraic geometry asserts tha t an i,reducible 

nondegenerate sub-variety of codimension c  i n a projective space has degree 

> c . Further , a classical resul t of Del Pezzo and Bertini classifie s the 

subvarieties of minimal degree . 

Theorem 13.1 (De l Pezzo-Bertini). Le t V b e an irreducible nondegen-

erate subvariety of codimension c  an d degree c  + 1 i n a projective space. 

Then either: 

1) V  i s a rational norma l scrol l 

or 2 ) c  = 1 an d V  i s a quadric hypersurfac e 

3) c  = 3 an d V  i s a cone over the Veronese surface P 2 ^—> IP̂  . 

A proof of this is given in the book [Bertini] . J . Harris has given 

a modern arrangement of the proof in [Harris ]  (fo r cha r k = 0); an 

improved version of the proof is in [Xambo ] . 

Remarks. 

For our purposes the "rational norma l scrolls " (which we take to in-

clude, for example, the cases of n  + 1 point s in general positio n in P n) 

may be defined equationally: Give n integers a- j > a^ > • •• > > 0 wit h 

Z a . =c + l, th e k-dimensiona l scrol l S(a.j,.. . ,ak) c Pc + k ma y be defined 

as the locus defined by the 2 x 2 minor s of the matrix 
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x0 xl ••• xa.-l ' V l ••• xa1+a? ' ' x ï. (a,+l) xl (ai+l)-2 
1 I  1  1  1  |  ,  i <k 1 

1 ' 
i x] x 2 .. . x ^ j  xa^+2 .. . x a ^ + 1 ( 

i<k 
( a ^ + D + l ••• xE(a.+l)-l 

i 

This variety i s ruled by k  - 1-planes, given by the vanishing of the 

éléments of a linear combination of the two rows i n the matrix above. Th e 

statement in 1) of the theorem means that V  is , in suitable coordinates, 

some S(a,,.. . ,a. ). 

Possibility 2) of the Theorem is self-explanatory. Possibilit y 3 may 

be taken to mean that in suitable coordinates V  ha s as équations th e 2 x 2 

minors of the qeneric symmetric matrix 

y0 x l x 2 

x1 y ] x 3 

x2 x 3 y 2 

It is an easy corollary tha t an irreducible subvariety of minimal degre e 

is projectively Cohen-Macaulay (thi s has recently been proved directly by S . 

Goto and the second author). 

Note that the inequality degree >  c + 1 ha s an analogue for local ring s 

only under the assumption that the local rin g i s Cohen-Macaulay; in this case 

the multiplicity must be strictl y greater than the embedding codimension. 

For reduced , possibly reducible , pure dimensional subscheme s V p 

Xambo has shown that if V  i s assumed connected in codimens ion 1 
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(that is, removing a codimension 2  subse t does not disconnect it), a 

necessary condition for projective Cohen-Macaulayness by a theorem of 

Hartshorne, then again the degree of V  mus t be >  c, a  classification is 

possible, and V  i s projectively Cohen-Macaulay. Th e classification resui t 

is essentially the following: 

Theorem 13.2 (Xambo) . Le t V  c Pp b e reduced and pure-dimensional 

codimension c  an d degree d  + 1. I f V  i s connected in codimension 1 , 

V = V-j u •• • u  Vr i s a décomposition of V  int o irreducibles, and L ^ is 

the linear span of V̂ . , then each i s a variety of minimal degre e in L^, 

and (afte r rearranging the indexing if necessary, for j = 2...r we have 

vJn<vlu-uvJ-lî-LJn <L1+--H-J-1 ) 

is a "linear space of dimension di m V - 1, whic h is a ruling of V.. 

The précise équations satisfie d by reducible subvarieties of minimal 

degree remain mysterious. However , we have 

Theorem 13.3. Le t V b e a nondegenerate projective variety, connected in 

codimension 1, o f dimension d  an d codimension c  i n IP ircl+c • The 

homogeneous coordinate ring of V  i s an ordinal Hodg e algebra over k  on 

the poset: c * 1 

H: 
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where ail th e éléments of H  correspon d to linear forms. 

Proof: W e do induction on d , admittin g th e case d  = 0 o f c  + 1 

independent points i n gênerai position : 

d =  0: I t is easy to see that the équations of c  + 1 independen t 

points i n P  ma y be put into the form 

^iVcKi^c * 

The coordinate rin g is thus the (necessaril y discrète) Hodge algebra on the 

c + 1-élément clutte r 

To complète th e induction we use the following easy resuit: 

Proposition 13.4 . Le t V  c IP ^ b e a subvariety of pure dimension d , 

and suppose the homogeneous coordinate ring of some hyperplane section 

{ X Q = 0} n V c {x 0 = 0} = Pn_ 1 o f dimension d  - 1 i s an ordinal Hodg e 

algebra with pose t H . Th e homogeneous coordinat e ring of V  i s an ordinal 

Hodge algebra with poset 

H' = {xn} + H (ordina l sum ) 

if and only i f the homogeneous coordinat e rin g of V  ha s dept h > 2 . 

Here the ordinal su m { XQ} + H i s the poset on { X Q } U H wher e order 

relations within H  ar e kept as before, and x n i s taken < every élément of H . 
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Proof: I f the homogeneous coordinate ring A  o f V  i s a Hodge 

algebra with poset {xQ } + H, the n A  ha s dept h b y Proposition 5.2. 

Conversely, if dept h A > 2, the n the maximal homogeneou s idéa l of A  i s 

not associated to the idéal (xn) , so that A/(xn ) i s the homogeneous 

coordinate ring of V  n {xn = 0} i n IP 
n-1 ' 

0 iiuiiiuyciicuuo 

and A/(xn ) i s Hodge on H. 

Choose any lifting H  —> A o f the injection H  —> A/(xQ), an d consi-

der the standard monomials in the éléments of A  correspondin g to 

H ' = { X Q } + H. Sinc e x Q i s a homogeneous non-zerodiviso r in A , i t is 

easy to see that A  i s a free module on thèse, so that Hodge-1 is satisfied. 

Further, if x-|...x k = £ r^M̂  i s the standard expression of any monomial wit h 

x-j,...,xk e {xQ } + H, the n each M - eithe r occurs in the standard expression 

for x-|...x k i n A/(xQ ) o r is divisible by xQ ; Hodge- 2 is satisfied by 

both thès e types. / / 

To finish the proof of 13.3, it remains to note only that a gênerai 

hyperplane section of a non-degenerate, connected in codimension 1 , variet y 

of minimal degre e will be a variety of the same type and that the homogeneous 

coordinate ring s of thèse varieties will be arithmetically Cohen-Macaulay , 

which follows easily from Theorems 13.1 and 13.2. // 

Example: Conside r the Segre embedding *  Pn —> IP2n+i wn<>s e 

image is defined by the 2 * 2 minor s of the 2 * n+1 matri x 

x0 

n+1 

X 

*2n+lJ X , 

58 



III. EXAMPLES 

Its homogeneous coordinat e rin g is easily seen directly t o be an ordinal 

Hodge algebra with pose t 

(Of course i t is also an ordinal Hodg e algebra on the poset 

using th e Doubilet-Rota-Stein straightenin g la w of Section 12) . / / 
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14) One -dimensional square-fre e Hodg e algebras. 

In this and the next section we will stud y the Hodge algebras of low 

dimension governed by square-free ideals . I t seems tha t square-free Hodg e 

algebras, particularly if they are domains, are very spécial; the low 

dimensional case s treate d here exemplify the phenomena. 

Since we are interested here only in square free ideals, we may write 

for some suitable simplicial comple x A  (se e Section 4). 

We assume throughout this and the next section that R  i s universally 

catenary. 

Proposition 14.1. I f di m A = 0 the n A  i s discrète. 

Proof: I f not, we may choose an élément X Q which is minimal in 

Ind A. Sinc e A  ha s no 1-simplices , the only standard monomials are powers 

of the vertices of A , and the straightening relatio n in which x Q occur s 

on the right may thus be written 

xy = 
X G H 

ax(x), 

where a  (x) i s a polynomial i n x , withou t constant term, a  7 e 0, and x x Q 

x, y t X Q . Sinc e x Q annihilâte s any élément of H  excep t itself we may 

multiply thi s relation by x Q t o obtain 

0 = xQa (xQ), 

contradicting the linear independence of the powers of X Q . Thu s In d A - 0 

and A  i s discrète. / / 
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Corollary 14.2 . I f A  i s a square-free Hodge algebra over R , the n 

A i s a 1-dimensiona l noetheria n ring i f and only i f R  i s noetherian and 

either 

1) di m R = 1, A  = 0; tha t is, A  = R, 

or 

2) di m R = 0, di m A = 0, an d A  i s discrète; that is, A  ha s the 

form A  = R C ^ n / a x ^ . } ^ . ) . 

Proof: Immédiat e from 14.1 an d 6.1 . 
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1 5 ) Some two-dimensional square-fre e Hodge algebras. 

We retain the assumption that R  i s universally catenary . 

Proposition 1 5 . 1 . I f A  i s a 2-dimensional domain which is a square 

free Hodge algebra generated by H  c A ove r some ring T , the n either: 

a) H  = 0 , an d A = R. 

b) H  ha s one élément, x , an d A  = R[x], th e polynomial rin g in one 

variable over R ; or 

c) H  ca n be re-ordered so that it has a unique minimal élémen t xQ , 

and the non-minimal élément s x^,...,x n ar e incomparable: 

H: 

and A  satisfie s the axioms for an ordinal Hodg e algebra generated by H . 

Proof: I t is enough to show that if H  ha s at least 2 éléments, then 

we are in case c . Writ e £  = EA. Le t x n b e minimal i n H , an d let 
A 0 

x-j,...,xn b e the other éléments of H . Sinc e A  i s a domain, the product 

of X Q with any standard monomial mus t be standard by Proposition 1 . 2 . I f 

now some product x..x . were standard, it would follow that X Q X - J X J i s 

standard, and thus di m A > 2 , whenc e di m A > 3 . Thu s the standard mono-

mi al s in A  ar e the same as for the ordinal Hodg e structure associated to 

the partial orderin g of H  exhibite d in c). 

It remains to show that the straightening relation s have the right 

form, and for this it suffices to show that if 1 < i < j < n, the n x 
divides every monomial M 

ixlXjJ 
occurring in the right-hand side of the 
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straightening relatio n for x^, . Bu t by 1 . 2 , A/xQ A i s a Hodge algebra 

governed b y £ A _ { X y Sinc e A  - {xQ} i s zero-dimensional, A/xQ A ha s b y 

Proposition 1 4 . 1 th e discrète Hodge structure, whence M 
x i x j 

is divisible 

by x0 . / / 

We now turn to a more détailed analysis o f ordinal Hodg e algebras A  ove r 

a field R  = k whos e pose t H  ha s the form 

H: n > 2 

as in Proposition 1 5 . 1 c . W e fix the above notation. 

Our most striking resui t is that if A  ha s this form, then so does 

the associated graded ring of A  wit h respec t to the idéal HA . I n particular 

grwû A i s reduced. 

Theorem 1 5 . 2 . I f A  i s an ordinal Hodg e algebra over the field k 
M 

on the poset H  o f * ) , the n A  =  gr^A A i s again an ordinal Hodg e algebra 
Jl M 

governed by Z H wit h injectio n H  —> Af f give n by x i —> x? 5 th e leadin g 
2 

form of x. j e  A. Moreover , if some x i e  H satisfie s x i e  (HA ) ,  the n 
2 § § X Q G (HA ) ,  n  = 2 , an d gr^ A A s k C x ^ x p , th e polynomial rin g on 2 

variables, with xZ = cx-jx! fo r some nonzero c  G k. 

Of course i t follows fro m Corollary 2 . 2 that the first statement of the 

theorem i s équivalent t o the standardness o f the filtration {(HA)n} . 
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Corollary 15.3 . I f X  c IP ^ (k) i s a 1-dimensional , irreducible, 

non-degenerate subschem e whose homogeneous coordinate ring is an ordinal 

Hodge algebra over k  wit h generators insid e the maximal homogeneou s idéal , 

then X  i s a rational norma l curv e of degree m . 

Proof of the Corollary: I f the homogeneous coordinate ring has an 

ordinal Hodg e structure, it is reduced, and thus a domain. B y 15.1 and the 

nondegeneracy of X  th e underlying pose t H  mus t have the form *) with 

n > m. B y 15.2 we may défi ne a new Hodge structure by taking the leading form 

in place of the ,  s o we may assume that the generators are homogeneous. 

If de g xi > 2 fo r any i , then , by 15.2, n  = 2, m  = 1 an d X  = P] . Els e 

n = m an d factoring out X Q A , w e get the homogeneous coordinate ring of m 

reduced points in P  . j , s o de g X = m an d m i s the rational norma l curv e 

as claimed. (Alternatively , one could, as in Section 9, compute the Hilbert 

function of A  directly) . // 

Proof of Theorem 15.2: Sinc e 

** A/x0A=k[X1,...,Xn]/(XiX.)1<.<j<n, 

the (discrète ) ordinal Hodg e algebra governed by the n-elemen t clutter, the 

2 2 
vectorspace HA/(HA ) ha s dimension n  i f x Q e (HA) o r n  + 1, if 

2 2 X Q £ (HA) . I n particular no othe r than x Q ca n lie in (HA ) . 

Set y  = l x.j . Bot h x Q and y ar e nonzerodivisors on A  b y Theorem 5.4, and 

y i s a nonzerodivisor modulo xQ , as well. Further , one sees by applying 

the straightening relations to the expressions x^ y ( i = l,...,n) that 

(xn,y)A 3 (HA)2 . 
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Now suppose x Q G (HA)2 , an d set B  = A/yA. W e have xQ B D (HB)2. 

Since the local ring  A ^ i s 2-dimensional , we have di m B B̂ > 1, whenc e 

(HB)2B f 0 an d x Q £ (HB)3 . Further , it follows that xQBH B = x ^ . B^ fo r 

some i , j wit h 1  < i ,j < n. 

In particular, x ^ an d x̂ . are nonzerodivisors on B^B , and 

dimk B/xQB > dimk BHB/x0BH B 

= dimk BHB/xiBH B + diR,k BHB/xjBHB-

Since xQ A c x^A w e compute from **) that di m B^g/x̂  = n-1 (an d similarly 

for j ) whil e dimkB/xQ B = dimk A/(xQ,y) = n. Thu s n  > 2n-2; w e have 

assumed n  > 2, s o we get n  = 2. 

Further, the obvious epimorphis m k[x^,x2 ] —> g r^ A sendin g x ^ t o 

# 2 x.j mus t be an isomorphism because di m grHA A = 2. Becaus e XQ G (HA) an d 
JL JL 

x-jx2 + 0, w e see that in A  th e straightening relatio n has the form 
u M n 

x-jX2 = CXQ + x0(in HA) , whenc e x -jX2 = cxQ, a s required. 
p 

We may now assume x Q £ (HA) , an d it follows tha t rx Q ( r G R) 

never appears as a term on the right-hand side of a straightening relation . 
2 

The form of the straightening relation s no w shows (HA ) = (x0,y)HA, an d it 
JL 

follows fro m the main resuit of [Sally ]  tha t A  =  gr Â A i s Cohen-
IL M n  » 

Macaulay, the éléments xfl , y =  J x. formin g a regular séquence. Furthe r 

A#/xïA#a9 r ( x r . . . , xn)A/(x0)A 

-k[x^...,x-]/(x?x])1<i<;].<n 
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is an ordinal Hodg e algebra on the n-elemen t clutter. Th e resuit now follows 

from Proposition 13.4. / / 

We now analyze the possible straightening relation s for a graded Hodge 

algebra on the poset * ). 

Définition: Le t A b e a free k[X,Y]-modul e on generators 

eQ»e1»•••»en- A  set of linear forms 

1J 

n 

k=0 £ijkXk 
k[XQ,...,Xn. Ki<j<n 

will be called associative if , setting lji  : = lij  th e following multiplica-

tion table makes A  int o an associative k[x,Y]-algebra : 

e0ei = ei 0 < i < n 

ei6 j £ijOx2eO j, ^ 1 < i f j < n 

•5- -X2 
n 

J7i 

eo + Y - X 
n 

0=1 
J7i 

iji 
e. i 

k?M 
£ijkV 1 < i < n. 

Note that the somewhat barbarous expression for e f i s just Ye . - l e.e. , 
1 1 jjM 1 J 

written out. 

If {J ^ .} i s associative, we will write A({^IJ.} ) fo r the k[X,Y] -

algebra just defined. 
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Theorem 15.4. I f A i s a graded ordinal Hodg e algebra over k  on 

the poset H  o f * ), suc h tha t the éléments x . G H ai l have degree 1, the n 

for some associative set of linear forms U . .} 

A^k[X0,Xl,...,Xn]/(X1Xj-X041J)L<1<J<H 

A U 
i j 

the isomorphism carrying e . e A U. } to the class of X., and X, Y G A U . .} 
n 1J J 

to the classes of X n and l X. , respectively. u 1  i 

Conversely, if {£..} is an associative set of linear forms, then 

M!x0,. . . ,x]]/(x1xj-a1j.) Ki<j<n 

is a Hodge algebra on the poset H  o f * ). 

Proof: Suppos e tha t A  i s a Hodge algebra as in the hypothesis of 

the first statement. A  admit s a présentation of the form 

A*k[X0....,Xn]/(X1Xj-X0*1j) 

n 
by Proposition 1.1 . Also , X  := Xn, Y := J x. for m an A-sequenc e by 

u j  i 

Theorem 5.4, and since everything is graded, A  i s a finitely generated free 

k[X,Y]-module with basis e ^ = 1, e-j = x^,...,en = xn- A  trivial calculatio n 

shows that thèse fui fi 11 the multiplication law defined for A W ^ . } , s o the 

set U_ . _•} is associative and A  = A{1. .} a s claimed. 
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Conversely, suppose tha t {£.. } is associative. Sinc e the éléments 

x,e^,...,en e A{H.IJ} fulfil l the relations eiej  =  xlij(x,el,...,e n) ther e 

is an évident epimorphism 

A : = k [ X0 , . . . , X n ] / ( X i W i j ) - > A U I J } . 

n 
Regarding A  a s a graded k[X,Y]-modul e by X — > Xn, Y — > £ X., we see 

u 1 i 

that A  i s generated by 1  ,X-j,... .X .̂ Sinc e thès e éléments go to the free 

generators of A{£.jj} , th e map above is an isomorphism; in particular, A 

is a free k[X,Y]-module , and X Q i s a nonzerodivisor on A . Sinc e A/(X Q) 

is visibly a (discrète) Hodge algebra on the n-elemen t clutter, we are done 

by Proposition 13.4 . / / 

Remark. A  classification up to isomorphism as algebras of the Hodge 

algebras of Theorem 15.4 is of course given by the results of Section 14. 

The case of curves needed here is actually qui te elementary; see [Artin]. 

Explicit minimal fre e resolutions for the algebras in Theorem 15.4 may 

be constructed by the technique of [Eisenbud-Riemenschneider-Schreyer]. 
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16) The variety of complexes. 

In this section we exhibit a natural Hodge structure on the coordinate 

ring of the "variety of complexes". We follow [De Concini-Strickland ] , 

introducing a slight simplification, and adapting everything to our présent 

concept of a Hodge structure. We are grateful to R.-O. Buchweitz for pointing 

out and correcting an error in an earlier version. 

Fix a séquence of natural numbers n0,...,nm. We wish to produce the homogeneous 
rnnrdinate rina A of the variety parameterizinq ail complexes of the form 

0 
n m rm -> A 'm-l A *1 

A 

To this end, consider the polynomial ring 

B = R[{{X*} KKn, 1 
l<j<nk 

Kk<m 

in the £ n|<nk_1 variables X^.. We think of X .̂ as the (i , j)— entry 

of a generic n^-j by n̂  matrix $k> which we regard as a map 
n, n , , 

$k : B —> B " . Now let C c B be the idéal generated by the entries 

of the m-1 matrices ^ ° £k+1 (k = l , . . . ,m-l), and set A = B/C. We 

write <j>. : A —> A for the map induced by 
"k* or for the corres-

ponding matrix, whose (i , j)— entry is the class of X 
ij in A. 

We will now give A a Hodge structure in such a way that the 

Doubilet-Rota-Stein example of Section 12 becomes the case m = 1. 

Let H c A be the set of minors of ail orders of ail the maps 

<f>l,"--,<J>m# We wil1 write 
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(i1?....? is!j1, ,js) (k), 

with 

1 < i 1< ... < i$ < nk-1 an d 1 < j} < ... < j$ < nR 

for the s  by s minor of <j>k involving rows î ,...,i s an d columns 

jl,...,js. 

Set 

x = ( i r . . . , i s | J r . . . S ( j ,(k) 
s 

x = (ij,....,is, j ., j's')(k'). 

We partially order H by declaring x  and x' 

to be incomparable if k f k', whil e if k = k' the n x  < x' if 

s > s' and 

i't < îj.> J t < Jti fo r t  = l,...,s', 

exactly as in the Doubilet-Rota-Stein Hodge structure. 

Next, we define the product xx ' to be standard if , possibly after 

interchanging x  and x' to ensure k > k', on e of the 3 following condi-

tions holds: 

1) k > k' + 1 

15 1 
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2) k  - k' an d x  an d x ' ar e comparable in the partial order on H . 

3) k  = k' + l, n . , - s >  s', and, writinq z 1 < . . . < £ 

for the (ordered) complément of {î^,..., ^ } i n {1,...,n k,}, w e have 

J's'.t+l < \,-s-t+ l f o r t  = ls...,s'. 

Note. I f we symbolically write x  = (l|J)^, x ' = (P | J' )(k' *, 

I fo r the séquence [£-,,..., £ , c], an d ~ ~ fo r the opération that takes i nR- s 

any séquence [h-j,.. . ,hp] c {l,...,nk,} t o the séquence [nk,-hp+l,.. . ,nk,-h-|+*l], 

then condition 3) could be more suggestively re-written as k  = k" + 1, 

and î < J'. 

We may now define an arbitrary product of minors x-j...x n t o be 

standard if each product x^X j (suitabl y ordered) is; correspondingly, we 

define an idéal Z o f monomials in H  a s the idéal generated by the products 

of pairs of minors which are not standard. 

Theorem 16.1. A  i s a Hodge algebra over R  governe d by Z ; i n 

particular, A  i s reduced if R  is . 

Note. Thi s is a mild strengthening of Theorem 2.2 of [De Concini-

Strickland ] , which is proved simply by examining their proof carefully. 

However, the reader should be aware that the notion of standardness given 

above corresponds to that of [De Concini-Strickland ]  only after taking 

the transposes of the matrices <f> . of the complex; this seems necessary if 

one wishes that the ordering of minors should be as given above, and that 

the straightening relations should be generated by those given in Prop. 1.4 

of [De Concini-Strickland ] . 

Next consider a séquence rn*-**,rm+i of i légers W1'th 
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rQ = 0 

0 < r-, < min (n, , nn) 

0 < r < m min (n n i ) m-1 

rm+l = °-

and let I ( r , , . . . ,r ) c  H be the set 

I ( r , , . . . , r ) = {x G H | x is a p x p minor of <\>. with p > r.}. 

This is clearly an idéal of H, so we have: 

Corollary 16.2. A/I (r-j,... ,rm)A is a Hodge algebra governed by 

Z/I(r1,...,r ); in particular, it is reduced if R is. 

Since ail the ideals £/I(r \ . . , r ) are generated by square-free 

monomial s , we may write: 

«rl rm } = (r. 1 " 
. . . r ) ' m 

where A ( r , , . . . , r ) is a simpl icial complex with vertex set H - I ( r , , . . . , r ). 

Theorem 2.4 of [De Concini-Strickland ] asserts: 
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Theorem 16.3. I f r k +  r ^ <  n k fo r k  = 0, . . . ,m+l, the n th e 

géométrie realizatio n o f A(r]»---»rm ) i s homeomorphi c to a  cel l ; i n partic -

ular, A/ I (r19. . . , r ) A i s Cohen-Macaula y i f R  i s . 

The second statement follows from the first by the criterion given 

above as Theorem 4.6, together with the fact that A/I(r-j. . ,r )A is suit-

ably graded. 

From this it is not too difficult to show [De Concini-Strickland, 

Theorem 2.11]: 

Proposition 16.4. I f r] satisfie s the hypothesis of Theorem 

16.3, and R is a normal domain, then A/I(r-|. . ,r )A is a normal domain. 

In particular, the idéal I(r-j,.. . ,rm) i s prime. 

Remark. I f R is a domain and r^,...,r m doe s not satisfy the 

hypothesis of Theorem 16.3, then the radical idéal I(r^,..., r ) is an 

intersection of primes of the form I(r^,.. . ,rffî), wher e (rj,...,r^ ) 

satisfies the hypothesis of 16.3. 
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17) Schubert Cycles in the Flag Variety. 

We follow the notation of section 12, and, for definiteness, take R 

to be the ring of integers or a field. 

Set d  = m-1, s o that (x-jj ) i s an (m-1 ) x m matri x of indetermi-

nants. Le t A  b e the subring of R[X.. ] generate d by the minors 

H1 = (l,2,...,e|j1,...,je) 1 < e < m-1 an d 1  < j-j < < J < m-1), 

that is, by the union over ail e  o f the set of e x e minor s of the sub-

matrix consisting of the first e  row s of U-jj) - Tn e rin9 A  is , in a 

natural way, the multi-homogeneous coordinate ring of the flag variety 

F = V V 2 ' V i 0 c  v] c  . . . c  vm_1 c  R , 

and V g i s a direct summand of rank e  i n Rm} , 

embedded in 

m-1 

e=1 
G e,m 

m-1 

e=l 
p e R m 

m-1 

by sending a flag (V-j,.. . ,Vm_-j ) to ( A V- j , . . . , A V  -j) . Fro m the form of 

the Doubilet-Rota-Stein straightening law given in section 12, it follows that 

A i s an ordinal Hodge algebra on the sub-poset H ' o f the poset H  o f sec-

tion 12; this fact was essentially noted in [Hodge ] . I f we change notation 

and write 
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[Jr...Je] fo r (l,2,...,e | Jr...,Je), 

then we can think of H' a s the poset 

n-1 

e=l e 

where [JR...,JE ] < C j-J, - -. .J .̂ J if f 

e > e* an d j' k < j£ fo r k  = 1.. ,e'. 

For each permutation a : {l,...,m} —> {l,...,m} an d each flag 

V = V, c vo c . . . c v ,  c Rm w e define a Schubert variety f\ =J1L (V) as 1 2 m-1 —  o av 
follows: 

For l<e<m-l , le t ĉ e; = (oye) (1 ),... ,o{e) (e) ) be the séquence 

whose éléments are the éléments of the set {a(l),...,a(e)} , written in 

increasing order, 

1 « a(e)(l) < ... < a(e)(e) < m. 

We may regard as an élément of j™l c H, and we note that 

,(™-l> <a(m-2) « ... <aO). 

We now define the Schubert variety fi c T t o be the set of flags 
a rn 

(V-j,... ,Vm_-j ) such that each Ve , a s an élément of GQ m, satisfie s 
V G Q . x ( x .  Le t A  b e the homogeneous coordinate ring of n . 
e a(e)o),...,a(e)(m) '  y o 
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We may partially order the permutationsof {!,...,m} by setting 

q < t i f a ( e ) < T ( e ) in j™j for each e = l , . . . , m - l ; this is the 

(reverse) "Bruhat order". We note that a < t i f f q ^ q . 
a — t 

Following the construction of [Lakshmibai-Musili-Seshadri ] in this 

spécial case, we may define non-ordinal Hodge algebra structures on the AQ 

as follows: 
Let 

H = 
G 

m-1 

e=1 
h m 

e 
h > a(e)} c H'. 

We regard as a sub-poset of H' c A, and embed i t in via the 

natural projection A —> A^. 

Let z- be the idéal of monomials in generated by those square-

free monomials h-jh2...hk such that either {hp . . . ,hk} is not totally 

ordered in H or i t is totally ordered, say 

h! < . . . <hk, 

but there is no séquence of permutations a. < . . . < a. of { l , . . . ,m} 
1 k ( e j 

such that for some séquence of integers e-j > . . . > e^ we have = 

The idéal £ is the idéal associated in the sensé of [Reisner ] (see 
o 

section 4 above) with the simplicial complex of chains of éléments of H' of 

the form 

(el} 
*1 < < a ek 
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where a- j < ... < ak i s a séquence of permutations, or, equivalently, 

fi ^  ... 3 fi  i s a séquence of Schubert cycles. - -  a . 

Since i s a factor-ring of A , w e may regard a s embedded in 

A . 

Theorem [Lakshmibai-Musili- Seshadri ] : A ^ i s a Hodge algebra 

generated by H  an d governed by £  . 

De Concini and Baclawski have jointly shown, by a lengthy unpublished 

analysis, that the simplicial complexes abov e are cells; it follows that 

A i s Cohen-Macaulay. Simila r results may be proved for Schubert varieties 
a 
in varieties of partial flags. 
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18) Dosets, Generalized Grasssmanians, and Symmetric matrices. 

The following materi al is largely summarized from [De Concini-

Lakshmibai ] . 

Let H  b e a partially ordered set. Se t 

Ou = ((a,3) e H x H | a < B) 

DiagH = {(a,a) G H x H}. 

Définition. A  Poset of H  i s a set D  c H x H suc h that 

Diag.. c  D c 0, 

and such that if a  < $ < y i n H  the n 

(a,y) e D o (a,B) e D an d (3,y ) e D. 

Given an injection D  c A, fo r sonie ring A , w e define a standard  

monomial to be a product of the form 

(a-j ,a2)(a3,a4) ... (a2n-l 'a2n̂  

where a- j < <  <  ... < an e H an d (̂2 1 -1 ,a2i  ̂G ^ fo r 1  =  ̂>•••»n-

Now let R  b e a commutative ring, A  a n R-algebra , H  a  fini te 

poset, and D  a  doset of H . 
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Définition. A  straightening law for A  o n D , ove r R , i s an 

injection D  c A suc h that: 

SL 1 ) A i s a free R-modul e admitting as basis the set of standard 

monomial s in the éléments of D . 

SL 2) Le t M  = (a-jo^)... (a2k-la2k̂  ^ e any monomia^ ln tne éléments 

of D . I f 

M = Z ^(«irai2)*,'(ai,2krl'ai,2ki ) 0 t r. e R 

is the unique expression of M  as a linear combination of distinct standard 
monomials, then for each i, we have k . > k and the séquence a. a . -

is lexicographically earlier than a - j , . . . , 0 ^ . 

SL 3) If a- j < a2 < a3 < e  H are such that for some permutation 
o of {1,2,3,4 } we have (a0(i)aa(2)) G D an d ^aa(3)'ao(4) ^ G D 

then: 

(aa(D'aa(2))(aa(3)'aa(4)) = ±(ara2)(a3,a4) + l r.^ 

where the ar e standard monomial s distinct from (a- j ,a2) (a^a^). 

As in the case of Hodge algebras, we call the relations exhibited in 

SL2 the straightening relations; those with k  = 2 ar e the quadratic 

straightening relations. 

In analogy with Proposition 1.1 we have 

Proposition 18.1. Le t A  b e a graded R  algebra , let D  b e a 

doset, and let D  c A b e an injection making each élément of D  homogeneou s 
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of degree >  0. Suppos e thèse data satisfy SL 1 and SL 3, and also satisfy 

SL 2 for k  = 2. The n they satisfy SL 2 for ail k , an d thus D  c A i s a 

straightening law. Further , ail the relations on the (a S) G  D ar e 

generated by the quadratic straightening relation. 

Proof: W e may define, for each (a,3 ) e D, a n integer le x dim(a,3)5 

as the dimension of (a,3 ) i n the lexicographie partial order on D . Th e 

proof of 1.2, with le x dim i n place of dim , yield s the resuit. / / 

We say that a straightening Taw D  c A i s discrète if for (ct- j , 0 ^ ) e  D 

and (a~,ad ) e D, w e have 

(a-j ,a2)(a3,a4) 

t^cta(l),aa(2)^c'a(3),aa(4)^ ^  ther e is a permutation o o f 

{1,2,3,4} suc h that oo(1 ) < oa(2) < ao(3) < oo{4); 

0 otherwise . 

Example 1. Le t D  b e any doset of a fi ni te poset H , an d let R{D } 

be the sub-algebra of R{H } generate d by the products a 3 fo r (a,3 ) E D. 

We call R{D } th e doset algebra of D . Th e injection D  3 (a,3) —> a 3 e R{D} 

is a discrète straicihtenina law. 

Problem: Trea t ail Veronese embeddings of Hodge Algebras in a similar 

style. 

In this example, R{D } i s a direct summand of R{H } a s R{D}-modules ; 

one easily checks that the R-linea r span of the standard monomials 

ar..ak wit h <  ... < a. e H 
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of R{H } whic h are not in R{D } i s a complementary R{D}-submodu1e . Sinc e 

R{AH>, th e ring generated by ail the a  fo r a  e  H, i s again a doset 

algebra, and 

R{Diag„} c R{D} c  R{H} 

we see that also R{DiagH > i s a summand of R{D } as R{DiagH}-modules . 

Since R{DiagH > = R{H} i n an obvious way, this shows in particular tha t the 

depth of HR{H } on R{H } i s the same as that of DR{D } on R{D}. 

The following construction from [De Concini-Lakshmibai] gives a 

similar resuit for ail discrète doset algebras: Le t D  b e the set of ail 

( a - , . . , c w ) such that 

«1 < ••• <a2keH 

(a1a2),...,(a2k_-|,a2k) e D 

(a2i,a2i+1) £ D fo r ail i . 

We partially order D  b y setting 

(ar...,a2k) « [»v...,&2i) 

if for each i  < l ther e is a j  < k s o that 

l2j-l <62i-1 <B2 i <a2j -
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Proposition 18.2 . Le t D  b e a doset and let De A b e a discrète 

strai ghtening law. Th e induced inclusion D e A sendin g (a -j,... > a2 n ) — > 

(a-j , a 2 )
, # • (a2k_-j ̂ 2^) make s A  a  Hodge algebra on D . Furthermore , the 

simplicial comple x A g is a subdivision of the simplicial comple x A ^ , s o 

that if R{H } is Cohen-Macaulay, then A  i s Cohen-Macaulay. 

Proof: A  standard monomial in the éléments of D  ha s an obvious 

expression as ±  a  standard monomial in the éléments of D ; thi s establishes 

a one-to-one correspondenc e between the sets of standard monomials for D  and 

D, a s one can show by explicitly Computin g the inverse. On e checks tha t this 

correspondence préserve s the notion of discrète straightening law; see 

[De Concini-Lakshmibai] for détails. 

Example 2. Minor s of a symmetric matrix: Le t A = R[Xj]]<-j<j<n 

be a polynomial rin g with enough indeterminate s to fi 11 a generic symmetric 

matrix. Fo r i  < j w e set X^- := X.. an d write (X ) fo r the generic 

symmetric matrix. Le t H b e the poset of ail non-empt y subsets of {l,...,n} , 

with ordering [ i ^,..., i ]̂ < i f k  > l an d (assuming 

i ] < i 2 < . . . < i k an d J'i < J2 < — <  j£) the n i- j < ,.. . ,i^ < j£ . 

Let D  = {([i-j.. »i^],[j-j.. ,j^]) e 0^, th e set of comparable pairs of subsets 

of the same size. D  i s clearly a Doset. 

Théo rem [D-P] : Th e inclusion D — > A sendin g (a , 3) to the minor of 

(X) wit h row indices 3  an d column indices a  i s a strai ghtening law on A. 

As in Section 1, we may define ideal s associated to an idéal of H , and 

we get 
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Corollary. I f I k i s the idéal o f k  x k minor s of (X) , an d 

is the sub-doset of pairs of subsets whose common length is <  k , the n 

the induced inclusion Dk —> A/I k i s a straightening law for A/Ik « 

(This example is treated in détail i n [Abeasis ]. ) 

The algebras above may be thought of as coordinate ring s of affine 

open subsets of Schubert varieties i n a Grassmann associate d to a symplectic 

group. I n fact there is a gênerai pattern , into which thi s and the examples 

of Sections 1 1 and 12 fit, which has emerged following work of Demazure and 

Lakshmibai, Musili, and Seshadri: 

Example 3  [D e Concini-Lakshmibai ] : Le t G  b e a semisimple algebraic 

group with Weyl grou p W , P  a  maximal paraboli c subgroup of classical typ e 

with Weyl grou p W p c  w, an d regard G/ P a s a projective variet y i n the 

standard embedding. Th e homogeneous coordinat e rin g of G/ P i s then an alge-

bra with straightening la w on the "doset of admissible pairs" in W/Wp , wher e 

W/Wp i s endowed with th e Bruhat partial order . 

Here th e doset of admissible pairs i s the smallest doset containing 

the pairs (a, 3) suc h that, the Schubert subvariety of G/ P associate d to a 

appears with multiplicity 2 in the hyperplane section of that associated to 3 . 

As in Section 11 , the homogeneous coordinat e ring s of the Schubert 

varieties i n G/ P inheri t straightening laws , on intervais i n W/Wp . 

Standard filtrations and a simplification procédur e analogous t o those 

of Section I may be defined for straightening law s on Dosets: se e [De Concini-

Lakshmibai ]  for détails. Takin g int o account the resuit of [Bjorner-Wachs ] 

that ail intervai s i n Coxeter groups (unde r the Bruhat order) are Cohen-

Macaulay, one deduces tha t the algebras of examples 2  and 3 are ail Cohen-

Macaulay. 

83 



C. DE CONCINI, D. EISENBUD, C. PROCESI 

Abeasis, S.: Gl i ideali GL(v)-invariant i i n S[S2 V]. Rend. Mat. 2(1980) , 
vol. 13 , p. 6. 

Abeasis, S., and Del Fra, A.: Youn g diagrams and ideals of pfaffians. 
Preprint, Univ. of Rome, 1978. 

Artin, M.: Lecture s on Deformations of Singularities, Tata Institut e of 
Fund. Research, Bombay (1976). 

Baclawski, K. (1) : Rings with lexicographi c straightening law . Advance s 
in Math. 39 (1981) 185-213. 

Baclawski, K. (2) : Recursive algorithms for unitary and symplectic group 
representations, SIAM J. of Alg. and Discrete Math (to appear). 

Baclawski, K., and Garsia,: Combinatoria l decomposition s of a class of rings, 
Adv. in Math. 39 (1981) 155-184. 

Bertini, E.: Introduzion e a la Geometria Proiettiva degli Iperspazi , 
Guiseppe Principato , Messina (1923). 

Buchweitz, R.-0.: Rigidity and Straightening Laws . (I n preparation). 

De Concini, C., Eisenbud, D., and Procesi, C.: Youn g diagram s and 
determinantal varieties. Inv. Math. 56 (1980) 129-165. 

De Concini, C. and Lakshmibai, V.: Arithmetic Cohen-Macaulayness and 
arithmetic normality for Schubert varieties. Preprint , 1980. 

De Concini, C., and Procesi, C. : A  Characteristic-free approac h to 
invariant theory. Advance s in Math. 21 (1976) 330-354. 

De Concini, C. and Strickland, E.: O n the variety of complexes. 
Adv. in Math. 41 (1981) 57-77. 

Desarmenien, J., Kung, J.P.S., and Rota, G.-C: Invarian t theory, 
Young bitableaux , and combinatorics. Adv . in Math. 27 (19/8) 63-92. 

Doubilet, P., Rota, G.C., and Stein, J.: O n the foundations of combinatorial 
theory IX, Studies in Applied Math. 53 (1974) 185-216. 

Eisenbud, D.: Introductio n to algebras with straightening laws . I n 
Ring theory and algebra III , proceedings of the third Oklahoma conference, 
Ed. B. R. McDonald, Marcel Dekker , New York, 1980. 

Eisenbud, D., and Harris, J.: Divisor s on general curve s and cuspidal rationa l 
curves. (t o appear). 

Eisenbud, D., and Huneke, C.: Cohen-Macaula y Ree s algebras and their 
specialization, (t o appear in J. Alg.). 

84 



REFERENCES 

Eisenbud, D., Riemenschneider, O., Schreyer, F.-0.: Projectiv e resolution s 
of Cohen-Macaulay algebras. Math . Ann. (1981). 

Elkik, R.: Singularite s rationel les et deformations. Inv . Math. 47, 
139-147 (1978). 

Gmaeda, D.: Multiplicativ e structure of finite free resolutions of ideals 
generated by monomials i n an R-sequence. Thesis , Brandeis University, 1978. 

Goto, S., and Watanabe, K.: Th e structure of l-dimensiona l F-pur e rings, 
J. Alg. 49 (1977). 

Harris, J.: A  bound on the geometric genus of projective varieties, Thesis, 
Harvard University, 1976. Ann . Sc. Norm. Sup. Pisa (1981). 

Hochster, M.: Cohen-Macaula y rings , combinatorics, and simplicial 
complexes, in Ring Theory II , Ed. B. R. MacDonald and R. Morris, Lec. 
Notes i n pure and appl. math. 26, Marcel Dekker , New York (1975). 

Hochster, M., and Ratcliffe, L. J. Jr.: Fiv e theorems on Macaulay rings, 
Pac. J. Math. 44 (1973). 

Hochster, M., and Roberts, J.L.: Th e purity of the Frobenius and 
local cohomology , Adv. in Math. 21 (1976). 

Hodge, W. V. D.: Som e enumerative result s i n the theory of forms. 
Proc. Cam. Phil. Soc. 39 (1943) 22-30. 

Hodge, W. V. D., and Pedoe, D.: Method s of algebraic geometry Vol. 2 
Cambridge University Press , Cambridge, 1968. 

Huneke, C: Th e arithmetic perfection of Buchsbaum-Eisenbud varieties and 
Generic Modules of Projective Dimensio n Two, Trans. Am. Math. Soc. 
265 (1981) 211-233. 

Igusa, J.-I(l): O n the arithmetic normality of the Grassmann variety. 
Proc. Nat. Acad. Sci. U.S.A. 40 (1954) 309-313. 

Igusa, J.-I(2): O n Siegel modular forms of genus two (II) Am. J. Math. 86 
(1964) 394-412. 

Kempf, G.: Image s of homogeneous bundle s and varieties of complexes. 
Bull. A.M.S. 81 (1975 ) 900-901. 

Kempf, G.: O n the collapsing o f homogeneous bundles, Inv. Math. 37 
(1976) 229-239. 

Kleiman, S.L.: Geometr y on Grassmannians an d applications to splitting 
bundles and smoothing cycles, Publ. Math, de l'Inst, des Hautes Etudes 
36 (1969) 281-297. 

85 



C. DE CONCINI, D. EISENBUD, C. PROCESI 

Lakshmibai, V., and Seshadri, C. S.: Geometr y of G/P II: Th e work of 
De Concini and Procesi, and the basic conjectures . Proc . Ind. Acad. 
Sci. 87 (1978) 1-54. 

Lakshmibai, V., Musili, C. and Seshadri, C. S.: Geometr y of G/P II, III: 
Proc. Ind . Acad. Sci. 87(1978); IV: Proc . Ind . Acad. Sci . 88A(1979). Se e 
also, Bull. A.M.S., new series, 1 (1979) 432-435. 

Matijevic, J., and Roberts, P.: A  conjecture of Nagata on graded 
Cohen-Macaulay rings . J . Math. Kyoto Univ . (1974 ) 125-128. 

Munkres, J. R.: A topological characterizatio n o f the depth of the 
ring associate d to a simplicial complex . (Unpublished) . 

Musili, C.: Postulatio n formul a for Schubert varieties , J. Ind. Math. 
Soc. 36 (1972). 

Reisner, G. A.: Cohen-Macaula y quotient s of polynomial rings . Adv. 
in Math. 21 (1976). 

Sally, J.: O n the associated grade d rin g of a local Cohen-Macaula y 
ring. J . Math. Kyot o Univ . 1 7 (1977) 19-21. 

Seshadri, C. S.: Th e Geometry of G/P I: i n "Tribute to C.P. Ramanujam , 
p. 207-234, (Tat a Institut e Publication ) Springer-Verlag , N.Y . 1978 . 

Stanley, R.: The upper boun d conjectur e and Cohen-Macaulay rings . 
Studies in Appl. Math. LIV (1975) 135-142. 

Stanley, R.: Hilber t function s of graded algebras . Adv . in Math. 28 
(1978) 57-83. 

Strickland, E. (l) : The symplectic grou p and determinants. J . Alg. 66 
(1980) 511-533. 

Strickland, E. (2) : On the conormal bundl e of the determinantal variety . 
J. Alg. (to appear). 

Taylor, Diana: Ideal s generate d by monomials i n an R-sequence, Thesis , 
Univ. of Chicago (1960) . 

Xambo, S.: Varietie s of minimal degree , Thesis, Barcelona, 1980. 
To appear in Collectanea Math . 

De Concini, Corrad o 

Mathematics Institut e 

University of Rome I I 

Rome 

Italy 

Eisenbud, Davi d 

Dept. of Mathematics 

Brandeis Universit y 

Waltham, MA 0225 4 

U.S.A. 

Procesi, Claudi o 

Mathematics Institut e 

University of Rome 

Via Vicenza 23 

Rome 

Italy 

86 



RÉSUMÉ 

Une algèbre de Hodge est une algèbre commutative dont les générateurs 

et les relations satisfont une condition qui perme t d'écrire l'algèbr e d e façon 

particulièrement agréable comme déformation d'une algèbre dont les relations 

sont des monomes en les générateurs. De ce fait, beaucoup de propriétés d'une 

algèbre de Hodge peuvent être déduite s d'une manière combinatoire simple de la 

forme de ses relations. Cet article contient un exposé des fondements de la 

théorie et présente quelques uns des principaux exemples, comme les anneaux de 

coordonnées de variétés déterminantielles et Pfaffiennes, des cycles de Schubert 

et des variétés de complexes. 
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