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APPLICATIONS OF DECOMPOSITIONS OF HOLOMORPHIC FUNCTIONS TO

PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

by J.-L. LIEUTENANT (University of Lidge)

(Research Assistant F.N.R.S.)

NOTATIONS.
We consider R" endowed with the usual scalar product defined by

<y,E> = Zyj Ej and the euclidean norm |y| = /<y,y> as a closed submanifold of

@« . We shall denote by Sn-1 the unit sphere of R" and for any cone [ C r"
: 4 n
we define the polar of I by I " ={g€mr \ {0} : <y, &> >0, vy €T} .
By a salient cone, we mean a cone that does not contain any straight line. Given
an open subset § of R" and an open convex cone [ cr" , a subset A of c”
will be called of profile Q + il' if for every compact sets K C Q and
KCrn Sn_1 , there exists Po > 0 such that the wedge
{x +ipy : xex, y € K, 0 €10,p 1}
is contained in A . We are going to represent by @ the ring of linear partial

differential operators with constant complex coefficients. It is well known that

_@ is unitary and noetherian. If P = Z aa Da belongs to @, we shall
lo|<m

o
write P the principal symbol of P and car(P) the characteristic variety of

P, i.e. the set {£ +inec” : l£|2 + lnl2 =1, P(§ +in) = 0} . Finally, let
us denote by @ the sheaf of holomorphic functions on «” and by L/@ the linear

space of @-valued analytic functions on r" .

Let us first recall two decomposition theorems proved in [5] and [6].
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Theorem 1: For any FE€Eec "Z and any finite family of open convex salient cones l"j
of R" whose polars cover Sn_1 , there exist domains of holomorphy Vj
containing R"” and an open convex tube r" + in of profile Rr” + iT'j and

Fj € (j(vj) such that F = ZFj holds on a neighborhood pf r" . Moreover, if
the interiors of the polars of the Fj's cover Sn_1 , given r € 10,+~[ , one

can assume that the Vj's are open pseudoconvex neighborhoods of the closed tubes

]Rn+i{y€Tj : |yl <2} .

n
Theorem 2: Let [ be an open convex cone of R ,  an open subset of R" and

V an open subset of c  of profile Q + il' . For any r €10,+«[ , any
F € J/(V) and any open subcone [' of I whose intersection with Sn_1 is
relatively compact in I , there exist an open convex neighborhood ' of
{y € T" :0¢< |y| <r} in Rr" , an open pseudoconvex neighborhood W of

contained in § + iIRn, A € @(w) and G € @Rn+ iQ2') such that

WN@R"+i')CV and F=G+A on W n (R + iQ")

Remark 3: This last statement constitutes in fact a slight improvement of the
result obtained in [6]. To establish it, one only needs (besides evident
modifications) to remark that lemma 6 of [5] can be precised as follows: if the
Uj's are stricly pseudoconvex tubes with C2—boundaries 8Uj D ]Rn , for any
complex neighborhood W of an open set § of ]Rn , there exists an open pseudo-

convex neighborhood VW of QU (ﬂUj) such that Vw\ (nt) cw.

L
n
Lemma 4: Let I be an open convex non void cone of R . The polar of R X T

Fy X n+n'
coincides with 0 X '~ and is a convex salient cone closed in R \ {0} .
1 . )
Moreover, for any open cone y D 0 x I'*, there exists p > 0 such that y* is

contained in

P o=t s xl <y s, aqtr s 20}

where d denotes the euclidean distance.
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Proof: One obtains immediately the equality (Rn X T)‘ =0 x FJ' and as [ is
. c s . . n+n'
open and non void, this is a salient cone closed in IR \ {0} .

For the second part of the statement, let us first choose ¢ > 0 such that

n'-1

- n+ X n 4 n'-1
w, = {E&m €es .|g|<e,d(m,rns ) <elCy,

hence such that YL is contained in

r' = {(x,y) & <x,8> + <y,n> > 0} .

n
(E:n)EwE

As it is clear by definition of ws that T' \ {0} is disjoint from

{(x,0) : x € Rn} , we are going to show that the existence of sequences (xm,ym)
or (x$,y$) € I'' \ {0} such that |xm] > m[yml or such that |y$| =1 and
1]
- 1
d(y&, Sn ! \T) < o leads to a contradiction in each case. As a matter of fact,
-1 X

4 n . _ 1 _ m
for any N er ns , the points (Em,nm) = vsza- ( ]:g;r, mno) belong to

we for m sufficiently large and one obtains

my my
0 5_<xm,gm> + <y n > <= VLJE% + —1—9% =0 ,
1+m 1+m

-1 \ f- such

-1

nl

hence a first contradiction. In the second case, we can find y& €S
— '
that |y$ - y;] < i— and by convexity of T , there are points n; € r*ns"

verifying <y&,n$> <0

: — 1 [ v
As the points (Em,nm) = Vf:;ﬁ (O,mr]m ym) belong to we for m

sufficiently large, we obtain another contradiction:

1
' [ o n [ " ' -
0 < <xm,gm> + <ym,nm> < 1+m2 [m < Yy ym,nm> + m <ym,nm> 1]

1
<——1Im|y' -y"| -11<0
V&+m2 n n
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Definition 4: Adapting a definition due to Bony and Schapira (cf. [1]) to the

particular situation we have in mind, we shall say that a point z, of the

boundary of an open subset V of @” verifies the condition c(zo,Y,V) with
respect to a convex salient cone <Y closed in R\ {0} if for any € > 0 , there

exists n > 0 such that

{zev: |z-z | <n}-ilye (b = |y| <n}

is contained in V , where YE denotes the conic hull of the set of points of
n-1 . n-1
S whose distance to Y N S is less than ¢

: . n .
Lemma 5: a) If T C ]Rn is an open convex non void cone and V = R + il an open

tube of € , then for any zo€ oV , the condition c(zo,—l""',V) is equivalent to

the cone condition C(zo,(OXF'L) a) sZn—l) stated in 4.1 of [1].

b) Let r belong to 10,+«L, T be an open convex non void cone of

R" and V denote the open tube {z €R" + il : ly| < r} . Every x€ R C ov

verifies then the condition c(x,-T*V) . Moreover, if Y is an open conic
neighborhood of (-I'*) \ {0} and if V' =R" + iQ is an open tube of profile
R + il , there exists an open convex subcone [' of T such that -I'* C Y and

any XCJRn Calv' N (]Rn+iF')] verifies the condition c[x,-T'%, v' n (]Rn+iT')]

Proof: a) We first show that ¢ implies C . Let I' be an open neighborhood of

2n-1 in S2n—1

(0xTIHns . By Lemma 4, the polar of I' in the sense of Bony

and Schapira (which is the opposite of ours) is contained in _Fp for some p > 0

1

There exists € > 0 such that (I‘"‘g)"‘ contains {y € st d(y,sn—i\l") >p} .

Now let 1 Dbe the number which corresponds to € by application of c(z -I"L,V)

ol
For V' = {z : |z—zo| < nz—} and the set A of the points of the polar of I'

(in the sense of [1]) whose module is less than % , the inclusion
(V' nvVv) +ACV is easy to obtain because V is a tube.
The proof of C =+ ¢ is similar and as we shall not use this implication in

what follows, we do not give further details.
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b) The first assertion follows immediately from the inclusion
E(F‘)el* C I , which is easy to obtain. For the second one, let us denote by '

n .
an open convex cone of 1R verifying

-T*Cy'Cy N {0} Cy

and set ' = _Y,Lo . One has evidently T' = -t = —;TJ'C r**°=r and

-rt = ;T-\ {0} Cy and as R" + iQ is of profile r" + i , there exists
P, > 0 such that {yer' : |y| < po} C Q . Hence the conclusion by application

of the first part of this result.

Theorem 6: Let P € 5222 r € 10,+°L and Fj be a finite family of open convex
non void cones of R . If car(P) n[-i U F;ﬂ is empty, the equation Pu = f

is solvable in the subspace of L/f%, whose elements can be written ZFj' n with
R

n
Fjngn @[]R +i{y€1"j : |y] < £33 .
If there moreover exists an open convex conic neighborhood <y of -UF; such

that car(P) N iy is empty, the same equation is solvable in the subspace ofg/ég

whose elements can be written ZFj n with Fj € L/ég n (f;ivj) , where Vj
R

denotes an open convex tube of profile :m“ + iFj

In particular, when P is Eo—hyperbolic in the sense that it verifies the

following two conditions
) B 0
a) P(E)) #

b) P does not vanish on R" + i{AEo : A > cl for some ¢ > 0,

s s . L . .
the second situation occurs if —UFj is contained in the open convex cone

Yo = n {£€R" : P(E + AL ) # 0}
P A>0 o

Proof: According to the Malgrange-Ehrenpreis theorem (cf. [4] or [7]), the

equations PUj = Fj are solvable in both cases in a convex tube of profile
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r” + iFj . By the precedent lemma, we can apply theorem 4.1 of [1] and therefore
suppose that the Uj's are also holomorphic on a neighborhood of R" . Hence the
conclusion by linearity of P

The third assertion is a direct consequence of a slight modification of Ggrding's
well known result on hyperbolic polynomials (cf. [2]1) which asserts under our

o
hypothesises that P does not vanish on Rr® + iYP .

Remark 7: a) Our definition of go—hyperbolicity differs from G;rding's one
because we interchange the roles of the real and imaginary parts of the complex
directions.

b) When P is Eo—hyperbolic, it is easy to prove by Hurwitz's theorem

that Yp coincides with the connected component of
n o
{Eer : P(E) =0}

that contains EO .

c) Combining theorems 1 and 6, one obtains immediately the following

well known result:
Corollary 8: If P € @is elliptic, one has P(D)(/g=g/z .
Proof: One only needs to point out that car(P) does not meet i]Rn .

Proposition 9: Let T C R’ be a closed convex cone with non void interior and
m be a finitely generated @—module. For any r € 10,+«[ , one has

J _ .
Ext@[m, @(Fr’r)] =0 for all j > 2 , where Fl",r denotes

{x +iye R" + il : |y| <} .

Proof: The K = {x + iy €R" + il : [x] <m, |y|] £r} (m€N) form a sequence
of compact convex sets which increases towards Fl" r in such a way that one has
’
N
@(F ) = lim @(K ) and consequently 1lim Hom [@ , @(K )] =
T xr -— m i @ m
m m

= Hom@,[@N, @(Frlr)] for any N € N . Let

208
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t t t
o Mo Yopn M1 Yergpts o g ew

be a free projective resolution of m and consider the commutative diagram

f@ro, @FI‘ r)] - ... Hon@,[e@(rq, @Fr r)] —0
! 1

l l
Oaﬂox@[@ro, @(Kmﬂ)] ... Hom@,@rq, @Kmﬂ)]——» 0
!
{
E@%,@(Km)l —*...—'Hon@,@rq,@(l(m)] -0
! +

0—*Hon:@,

O—+Hon‘1@,

A well known result (cf. [3], p. 410, for example) asserts that the canonical maps

o . Exfj@[ m (/\\(Frlr)] — }_1_:_:1 Ext:j@,[m, @(Km)l , Vi>2

m

are isomorphisms because Mittag-Leffler'scondition is satisfied since we have for

every j 21 and m€EN

l:@ro, p(xm)]—». . .—Ho E@rq, @Km)l —0) = Bxt) Em @Km)] =0

Hj(0—> H

by virtue of the Malgrange-Ehrenpreis theorem. Hence the conclusion.

. . . n
Notation 10: If T is an open convex non void cone of R , we set
xotation 'Y ]

J@F = lim @v) ,
—
v

where V runs over the open subsets of c®  of profile Rr” + il' . We shall also
@

denote by g/‘i, the family of open convex non void subcones [I'' of [ such that

rn Sn.1 is relatively compact in T .

209



J. L. LIEUTENANT

Theorem 11: For any open convex non void cone I of R" and any finitely

generated féa;module Q}Zr one has

lim Ext) [m,a@ ,/L/@ZI =0, vVi>1 .
e I

Proof: Given any I' € L;ﬁ;, we are going to establish that for every j > 1 and

P —~
every I" € (37? such that TI' € L}g}" the canonical operator

Exigzar[)geigzﬁé;"

vanishes. Using the same notations as in the precedent proof to denote the free

/J@] — Ex1zj@,[ mm/g}./ﬂ]

projective resolution of Q?Z , we are lead to prove that the image of

7 -1 ¥3-1 7 ry Yy 7 Fy+1
WS (A A B (A

rll l"ll I‘II
in the complex
7 Tjor ¥y o ¥y > 341
) Al I A

~ r.
is exact. 1In other words, we have to prove that given any F E.,/é%ru J verifying

Y,F = 0 mod A , (1)

~
r
j-1
there exists U G(,7égr, J such that

v, U=Fmodn/@. (2)

j-1

By theorem 2, we can decompose F in G + A with
G € C?atmn +i{y €T : 0« {y| <r}l and AE€ b/f%. Therefore (1) and (2)

become respectively

r.
Ve € O, o (3)
¥, ,U = G mod . (4)

j-
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As we have trivially wj+1 ij = 0 the precedent lemma assures the existence of
r,
H € C?%FT3 r) J such that wj H =~wj G and we can replace (3) and (4)
’

respectively by

lj"J(G - H) = 0 on FF',I‘
wj_1U=G-HmodJ@.
since R" + i{y e T' : ly] < z} is an open convex subset of F= , another

I'',r

application of the Malgrange-Ehrenpreis theorem allows to conclude.’

I thank Professor P. Schapira for the frequent discussions I had with him

during this meeting.
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