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APPLICATIONS OF DECOMPOSITIONS OF HOLOMORPHIC FUNCTIONS TO 

PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 

by J.-L. LIEUTENANT (University of Liège) 

(Research Assistant F.N.R.S.) 

NOTATIONS. 

We consider 3Rn endowed with the usual scalar product defined by 

<y,£> = Ey_. 5j an& t n e euclidean norm |y| = Ay,y> as a closed submanifold of 

(C n . We shall denote by s n * the unit sphere of IRn and for any cone T C TRU 

we define the polar of T by r A = e TRn \ {0} : <y,£> > 0, Vy 6 T} . 

By a salient cone, we mean a cone that does not contain any straight line. Given 

an open subset ft of JR1 and an open convex cone T C 3Rn , a subset A of (En 

will be called of profile ft + IT if for every compact sets K C ft and 

K. C T PI S n * , there exists P Q > 0 such that the wedge 

{x + ipy : x e K, y e K, P G ]0,P Q]} 

is contained in A . We are going to represent by the ring of linear partial 

differential operators with constant complex coefficients. It is well known that 

@ is unitary and noetherian. If P = a D belongs to we shall 
| a | <m 

o 

write P the principal symbol of P and car(P) the characteristic variety of 

P , i.e. the set {£ + in 6 (Cn : | £ | 2 + |n|2 = 1 , P(£ + in) = 0} . Finally, let 

us denote by the sheaf of holomorphic functions on (C and by the linear 

space of (C-valued analytic functions on ]Rn . 
Let us first recall two decomposition theorems proved in C53 and [63. 
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Theorem 1: Fo r any F G t an d any finite family of open convex salient cones I \ 

of 3R n whos e polars cover S n * , there exist domains of holomorphy V 

containing JRn  and an open convex tube IR n + ift.. o f profile lR n + il\ an d 

n 

F E  C (V\ ) suc h that F  = ZF_. hold s on a neighborhood pf H R .  Moreover , if 

the interiors of the polars of the ^j' s cove r S n * , given r E 30 , + °°[ ,  one 

can assume that the V_.' s ar e open pseudoconvex neighborhoods of the closed tubes 

TRn + i{y E F :  |y| < r} . 

Theorem 2: Le t T  b e an open convex cone of TRU  , ft an open subset of TRU  and 

V a n open subset of (C n o f profile ft + iT . Fo r any r  G]0, + °°[ ,  any 

F E O(V) and any open subcone T*  o f T  whos e intersection with S  i s 

relatively compact in T  ,  ther e exist an open convex neighborhood ft'  o f 

{y E T1 : 0 < | y | <_ r} i n lRn  f an open pseudoconvex neighborhood W  o f ft 

contained in ft + i 1R , A E ^ ( W) an d G  E ^(3Rn+ ift') suc h that 

W D  (lRn + ift') C V an d F  = G + A o n W n +  ift') . 

Remark 3: Thi s last statement constitutes in fact a slight improvement of the 

result obtained in L6l . T o establish it, one only needs (besides evident 

modifications) to remark that lemma 6 of C5D can be precised as follows: if the 

U_.'s ar e stricly pseudoconvex tubes with C^-boundarie s 3U_ . D TRn , for any 

complex neighborhood W  o f an open set ft  o f MU  ,  there exists an open pseudo-

convex neighborhood V w o f ft U (fllK) suc h that V w \ (R U ) C W . 

Lemma 4: Le t V  b e an open convex non void cone of ]R n .  Th e polar of ]R n x T 

coincides with 0  x an d is a convex salient cone closed in ]Rn+ n \  {0} . 

Moreover, for any open cone y  D 0 x TX , there exists p  > 0 suc h that y  X i s 

contained in 

fp = { (x,y) : |x| < M ,  y ^ 0, d(-ŷ |- , S11'"1 \ D >  p} , 

where d  denote s the euclidean distance. 
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Proof: On e obtains immediatel y th e equality (]R n x T) 4" = 0 x r A an d as T  i s 

open and non void, thi s i s a salient cone closed i n ] R n + n \  {0} . 

For th e secon d part of th e statement , let us first choose £  > 0 suc h tha t 

o) e =  {(Ç.n ) e s""*""'"1 :  |ç | < e , d(-j^- , r A n s n ' _ 1 ) < e} C Y ' 

hence suc h that y x i s contained i n 

r' = <Ç,n )ea> { ( X , Y ) :  < X ' ^ + < Y ' n > - ° } * 

As i t is clear by definition o f OJ tha t f  \  {0} is disjoint fro m 

{(x,o) :  x E fcn] i we are going t o show that the existence o f sequence s ^ x

m '
v

m ^ 

or (x',y' ) E r 1 \  {0} suc h tha t I x I  > mly I  o r suc h tha t ly' I =  1  an d 
m m 1 m 1 1  m ' 1 m 1 

d(y', S n ^  \ D <  — lead s t o a contradiction i n each case. A s a  matter of fact , 
m m 

for any n  E  r X P I Sn 1  ,  the points ( £ ,ri ) = . ( - \  ™\ , mr) ) belon g t o 
o ^  ^ m ' m 1 / 2  \  x  o / 

Kl+m 1 m 1 ' 

0) for m sufficiently larg e and one obtain s 

m.y I m. y 
0 <  <x > + <y ,n >  <- 4=4+ 4=4 = 0 , 
— m  ^m 2m ' m l / 2 \L 2 Vl+m Vl+m 

hence a  first contradiction. I n the second case , we ca n fin d y" E S* 1 *  \ r suc h 
m 

that ly ' - y" I < — and by convexity o f T  , there are points n ' € r Afl S n 1 

'"'m Jm' m 1 1  *  ' m 

verifying <y",n' > < 0 . J m ' m 

As th e points (£ ,n ) = -7—--^ (0,mrl, "  Y )  belong t o a ) fo r m 
^m m 1 / 2  ' m m  e 

Kl+m 

sufficiently large, we obtain another contradiction : 

0 < . <x* ,£ > + <y' ,n > < 7 7 = r C m < y' -  y",n'> + m <y,',n'> - H 
m ^m J m 'm —  l/ 1 + m2 m m  ' m ^m 'm 

1 

< Й + ш 2 

Cm I y1 -  y"I 
1 m  Jm' 

- 11  <  0 . 
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Definition 4: Adaptin g a definition due to Bony and Schapira (cf . C13) to the 

particular situation we have in mind, we shall say that a point Z q o f the 

boundary of an open subset V  o f (C N verifies the condition C(ZQ,Y,V ) wit h 

respect to a convex salient cone y  close d in ]R n \ {0} i f for any e  > 0 , there 

exists r ) > 0 suc h that 

{z € V : |Z-Zq| < n) - i(y € (Y£)" L : |y| < >̂ 

is contained in V  , where Y £ denote s the conic hull of the set of points of 

Sn * whos e distance to y  fl sn * i s less than e  . 

Lemma 5: a ) If T  C ]Rn i s an open convex non void cone and V  = lRn + ±0,  an open 

tube of C n , then for any z  (  9 V , the condition c( z ,-rX,V) i s equivalent to 
o o 

the cone condition C( z , (Oxr"1) n S2n *) state d in 4.1 of 111. 
o 

b) Let r  belon g to DO , + °°C , T  b e an open convex non void cone of 

]Rn and V  denot e the open tube {z£3R n + ir : |y| <r} .  Ever y x f l " C 3V 

verifies then the condition c(x,-r"L,V ) . Moreover , if y  i s an open conic 

neighborhood of (-rA ) \ {0} an d if V  =  1RU + ift i s an open tube of profile 

Hn + iT ,  there exists an open convex subcone T'  o f r  suc h that -r" L C y  an d 

any x£HR n C atV P I (0Rn+±r1)• verifie s the condition cCx,-r,J" , V f l (]Rn+ir')3 

Proof: a ) We first show that c  implie s C  . Le t I ' b e an open neighborhood of 

(0 x T"1") n S2n 1 i n S2 n 1 . B y Lemma 4, the polar of 1 1 i n the sense of Bony 

and Schapira (whic h is the opposite of ours) is contained in - r fo r some p  > 0 . 

There exists e  >  0 suc h that (r1 " )"*" contain s { y £ S11-1 : d(y,Sn~1\r) >_ p} . 

Now let r ] be the number which corresponds to £  b y application of c( z ,-r*L,V) . 
o 

For V  =  {z : |Z-ZQ| < an d the set A  o f the points of the polar of I ' 

(in the sense of Ell) whose module is less than ^  , the inclusion 

(V fl V) + A C V i s easy to obtain because V  i s a tube. 

The proof of C  -> c i s similar and as we shall not use this implication in 

what follows, we do not give further details. 
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b) The first assertion follows immediately from the inclusion 

C(rJ")£3"L C T , which is easy to obtain. Fo r the second one, let us denote by y ' 

an open convex cone of 3R n verifyin g 

- r A C Y ' C 7 \ {0} C y 

and set T ' = -Y,A° • On e has evidently T ' = -y,Am = -y1 """C V*"*0 =  T  an d 

-r'"L = Y' \ (0} C y an d as TRU  + ift i s of profile TRU  + ir , there exists 

PQ > 0 suc h that { y E T' : |y| < pQ} C Q  . Henc e the conclusion by application 

of the first part of this result. 

Theorem 6: Le t P  G ^ZJ , r G ]0, + °°C an d I \ b e a finite family of open convex 

non void cones of TRU  . I f car(P ) n C-i U T^l  i s empty, the equation P u = f 

is solvable in the subspace of ,  whose elements can be written IF . wit h 

F G  f l ^C3Rn + i {y G I\ : |y| < r}3 

3 l * n 

If there moreover exists an open convex conic neighborhood y  o f ~Ur^ " such 

that car(P ) fl iy i s empty, the same equation is solvable in the subspace of 

whose elements can be written E F . wit h F . G . ) , where V . 
31 ]Rn 3  3  3 

denotes an open convex tube of profile JR R + ±T^  -

In particular, when P  i s ^-hyperboli c in the sense that it verifies the 

following two conditions 

a) P(£Q) ? 0 

b) P doe s not vanish on 1RU  + i{A£ :  A > c} fo r some c  > 0 , 
o — 

the second situation occurs if -Urf " is contained in the open convex cone 

Yp = n  { £ G JRn : P(? + XE)  *  0 } 
A>0 

Proof: Accordin g to the Malgrange-Ehrenpreis theorem (cf . [4] or [7]), the 

equations PU ^ = F_. ar e solvable in both cases in a convex tube of profile 
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1RU + ±T  .  B y the precedent lemma, we can apply theorem 4. 1 o f Cl 3 and therefore 

suppose that the Uj' s ar e als° holomorphic on a neighborhood of JR n . Henc e the 

conclusion by linearity of P  . 

o 
The third assertion is a direct consequence of a slight modification of Garding's 

well known result on hyperbolic polynomials (cf. [22) which asserts under our 

° n hypothesises that P  doe s not vanish on 1 R +  iyp . 

o 

Remark 7: a ) Our definition of ^-hyperbolicit y differs from Garding's one 

because we interchange the roles of the real and imaginary parts of the complex 

directions. 

b) When P  i s ^-hyperbolic , it is easy to prove by Hurwitz's theorem 

that Y p coincide s with the connected component of 

G Mn :  P(?) = 0} 

that contains £ q . 

c) Combining theorems 1 and 6, one obtains immediately the following 

well known result: 

Corollary 8: I f P  G i s elliptic, one has P  (D)«_y =̂ . 

Proof: On e only needs to point out that car(P ) doe s not meet iHR n . 

Proposition 9: Le t T  C TR1 b e a closed convex cone with non void interior and 

t)[)fl be a finitely generated i ^-module. Fo r any r  6 ]0,+ °°C ,  one has 

E x t ^ C ^ J f , &(F^,  r)] = 0 fo r all j  >: 2 , where r  denote s 

{x + iy £ 3Rn + ±r : |y| £ r} . 

Proof: Th e K m = {x + iy G 1RU + IT  :  |x| <_ m, |y| <_ r} ( m GIN) for m a sequence 

of compact convex sets which increases towards F ^ ^ i n such a way that one has 

£^(Fr )  = lim £^( K ) an d consequently li m H o m ^ [, ^ ( K ) ] = 
T,r <  m  < — C/)  m 

m m  ^ 
Hom^-^ ) ] fo r any N  G U .  Le t 
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o - n ^ r % - ^ s r ^ . . . J s r ^ ' u - o ( q i n )o - n^r%-^sr  ̂.. 

be a free projective resolution of Jjl an d consider the commutative diagram 

0 —> Horn 
o- n^r%-^sr^ ... Jsr^'u-o (qin)o- n^r%-^sr^ ... Jsr^'u-o (qin)o- n^r%-^sr^ ... J 

car) m+1 cy</ m+1 
o- n^r%-^sr^ ... Jsr^'u-o (qin)o- n^r%-^sr^ ... Jsr^'u-o (qin)o- n^r%-^ 

0 —• Hom^-v K  ) ] —•...— > Hom^-^o- n^r%-^sr  ̂... 
0/Ì m /S/ T m 

A well known result (cf. [3D, p. 410, for example) asserts that the canonical maps 

$j : E x t ^ C Jit,  f y\FT r) 3 -+ lim Ext^t/fil, & , Vj > 2 

are isomorphisms because Mittag-Lef fier ' s condition is satisfied since we have for 

every j  >_ 1 and m 6 IN 

EJ (0-> Hom^-̂  )]-•.. .—•Hom^ ) 1 —• 0) = Ex ti C )1  =0 
£3^ m  m  m 

by virtue of the Malgrange-Ehrenpreis theorem. Henc e the conclusion. 

Notation 10; I f Y  i s an open convex non void cone of lR n , we set 

^yST = lim ^(V ) , 

where V  run s over the open subsets of (E n o f profile 3R n + il1 . W e shall also 

denote by th e family of open convex non void subcones T 1 o f T  suc h that 

T' fi Sn ^ i s relatively compact in T  . 
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generated i^-modul e IflfC  i one has 

, lim Ext?— jr lim Exti -^c2)?,.^ri/cy^] = 0 , Vj >_ 1 

Proof: Give n any T1  ,  we are going to establish that for every j  >_ 1 and 

every 1 
such that T ' K^^-^W the canonical operator 

Ex^r:Mf,cy^riI/^: —• E x t^ r c ^ , ^ r , / ^ ] 

vanishes. Usin g the same notations as in the precedent proof to denote the free 

projective resolution of ,  we are lead to prove that the image of 

( ^ . . z ^ ) ^ - 1 ^ ( ^ r „ / ^ ) r j X < ^ r n / ^ > r j + 1 

in the complex 

Theorem 11: Fo r any open convex non void cone T  o f ]R n an d any finitely 

Ex^r:Mf,cy^riI/^: —• Ext^rc^,^r,/^]Ex^r:Mf,cy^riI/^: aah 

is exact. I n other words, we have to prove that given any F G Apm  verifyin g 

\b. F = 0 mod ^ .  (1 ) 
3 

~ r 
there exists 13  € ^  * suc h that 

ф._jU =  F mod (2) 

By theorem 2, we can decompose F  i n G  + A wit h 

+ i{y e T1 : 0 < |y| <. r}3 an d A  G Therefor e (1) and (2) 

become respectively 

*.G € < ^ W. +  1 (3 ) 

^j_jU = G mod (4 ) 
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As we have trivially = ^ ^ e P r e c e c l e n t lemma assures the existence of 

) ^ such that i(i. H = I|J . G and we can replace ( 3 ) and ( 4 ) 
1 / 3 D 

respectively by 

. (G - H) = 0 on F p , 
3 J- , r 

_ = G - H mod . 

Since ]Rn + i{y 6 f : |y| < r} is an open convex subset of F-=r, / another 

application of the Malgrange-Ehrenpreis theorem allows to conclude.* 

I thank Professor P. Schapira for the frequent discussions I had with him 

during this meeting. 
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