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ON THE CONSTRUCTION OF GENERIC RESOLUTIONS 

OF DETERMINANTAL IDEALS 

by 

Paul Roberts 

I. INTRODUCTION 

We consider the problem of constructing a minimal free resolution 

of the ideal generated by the minors of given size of a generic matrix. 

More precisely, let Z  b e the ring of integers, let X..̂ , i = 1, ..., n; 

j = 1, ,  m b e m n indeterminates , and let A  b e the polynomial 

ring Z[ X .] . Le t D . denot e the ideal of A  generate d by the t  * t • 3 t 
minors of the matrix (Xij).  Tnen we would like to find a minimal free 

resolution of the A-modul e A/D^ . 

If Z  i s replaced by a field of characteristic zero, this problem, 

and in fact a more general one, has been solved by Lascoux [3]; the 

resolution in this case has been constructed in different ways by Nielsen 

[4] and Roberts [6]. Al l of these resolutions are built from Schur 

functors, and each module in the resolution is a direct sum of tensor 

products of Schur functor s applied to certain free modules F  an d G . 

This is no longer true in the generic case. W e will give a simple example 

to show this later, but the main reason is that the constructions all use 

in some form or another the fact that the category of modules over the 
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rational group algebra of a symmetric group is semi-simple, either by 

defining maps through direct sum decompositions or by the direct use of 

the Young idempotents. Th e proof of exactness given by Lascoux also uses 

Bott's theorem on the vanishing of cohomology, which also fails in the 

generic case. 

Before discussing some ways of getting around these problems, we 

should explain more exactly what is meant by a generic minimal resolution. 

Since D t i s a graded ideal of the graded ring A  = Z[X..j], A/Dt wil l 

have a resolution 

X. = ->Xi -* Xi_ 1 -* ... X Q A/D t -* 0 

with each X ^ a  sum of modules of the form A[k] , i.e. A  wit h the 

grading shifted k  degrees . W e can also require the generators of X. . 

to be mapped to a minimal set of homogeneous generators of Ker(X._. | + ^i-2^" 

Since Z  i s not a field, such a resolution is not unique (although it can 

be shown that the number of times each A[k ] occur s in each X. . i s unique). 

By a generic minimal free resolution we mean something stronger; namely, 

a resolution in which each map: X. . -> Xi-1 can be defined by a matrix with 

entries of degree >  0. Th e existence of a resolution X . wit h this property 

is equivalent to any of the following (see Roberts [7] for a discussion of 

this): 

1. Fo r any ring R , X. 8> z R i s a minimal free resolution of (A/D t) ® z R 

over R[X..] • 

2. Th e Betti numbers of Z/p Z &> Z(A/Dt) d o not depend on p . 

3. Tor^(A/D t,Z) i s a free Z-modul e for all i . 

It is at present not known whether a generic minimal free resolution 354



GENERIC RESOLUTIONS 

exists. W e note that Nielsen [5] has constructed a resolution for A/Dt 

(and much more), but that it is not minimal. 

As noted above, the modules in a generic resolution will not be 

sums of Schur functors, at least not in a natural way. Nonetheless , they 

should clearly be functors which reduce to these when tensored with the 

rational numbers. 

To describe this further we need more notation. Le t m, n, an d t 

be integers with t > 1 an d m < n, and let (X̂ j ) be an (m+t-1 ) * (n+t-1) 

matrix of indeterminates. Le t F be a free A  ( = Z[X.|j])-module of rank 

n + t-1 an d G on e of rank m  + t - 1; then (X-jj ) defines a map 

cj>: F G . Then if Z is replaced by Q, the modules in a resolution of 

A/D^ ca n be written as sums of modules of the form Sj F <2> SjG. wher e 

Sj, Sj denote Schur functors of certain partitions I , J an d the boundary 

maps are induced by <j>. Thus in the generic case one might hope to find 
similar functors which are extensions of functors of this type rather than 

sums of them. Ther e is one further complication, however, in that there 

can be more than one functor over Z  whic h gives the same Schur functor 

over Q ; the symmetric and divided powers are the best known example of 

this. W e will, in fact, use both Schur functors and their duals; there 

exist others as well, but it is not clear whether they occur naturally in 

these resolutions. 

The idea of what follows is based partly, of course, on the charac-

teristic zero case and partly on some constructions of Nielsen [4] which 

have been extended to the generic case by Akin, Buchsbaum, and Weyman [2]. They 

constructed the Koszul complex (which here means the case of 1 * 1 minors of a 

matrix) by defining Schur functors of complexes and applying this to the map 

355 



P. ROBERTS 

<j>: F G  above . I n characteristic zero Cauchy's formula (see Lascoux 

[3], p. 210) gives a decomposition as described above; in the generic case 

one has a filtration whose factors are of the desired type. 

In this paper we will construct resolutions in more general cases so 

that they have filtrations of this sort. I n the first few sections we 

define the basic materials and prove some combinatorial results which 

originate from the characteristic zero case but which we prove directly. 

They will be used later to show the exactness of some of the complexes we 

construct, and, in addition, to justify the general methods used in their 

construction. 

II. THE MODULES IN A GENERIC MINIMAL RESOLUTION. 

We discuss in this section the form that the modules in a generic 

resolution should have; for the most part, this means reviewing the results 

which hold in characteristic zero. 

Let F  hav e rank n  + t - 1 an d G  ran k m  + t - 1 as before, and 

let cj>: F G  b e the map defined by a generic (m+t-1 ) x (n+t-1) matrix. 
— m  — 

Let (mn ) denot e the partition (n,n,...,n) . Le t I  = (i^, î * . i m) 
be any partition (we use the notation in which we assume 

i_ > i_ > ... > i > 0; the Young diagram associated to I  wil l have m 1 Z  m 
rows of lengths ij) . I f <  n fo r all J , we will say I  < (mn); in 

this case let (mn ) - I denot e the partition ( n - i , n  - i-j). Fo r 

any partition J , J wil l denote its adjoint; that is, the partition whose 

Young diagram is that of J  wit h rows and columns reversed. 

First assume t  = 1 (th e case of 1  * 1 minors) . Le t X . denot e 

a minimal free resolution; then Cauchy's formula gives 
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X. s © S Ï F ® S , x  T G 

K(mn) 

where |I| denotes 
m 

j=l 
ij 

This can be represented "pictorially" in terms of Young diagrams as 

follows: th e partition (mn ) is represented by the rectangular Young 

diagram n 

m 

The Young diagrams in the decomposition of X.. can be found by taking 

all Young diagrams which fit into the rectangle, removing each one in turn 

from the lower right corner and taking its adjoint: e.g., 

I = 

= (3,1,0) (mn)-I I 

Thus in the example given here one of the summands of X^ is 

S(2,1,1,0)F 0 S (4,3,1)G-

How suppose t  > 1. We will describe the partitions in this case by 

constructing them from the case t  = 1 fo r the same m  an d n (recal l 

that the matrix is of size (m+t-1 ) x (n+t-1), not m * n). 

We say that a partition I  has Durfee square k  if its Young diagram 

contains a square of side k  bu t no larger square. Equivalently , this 

says that i ^ > k and i^ < k. Suppos e I  c (mn) an d I ha s Durfee 
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square k . Let It = (i^t-1,... ,i*k+t-l ,i"k+-j,... ,i*m). Thu s the Young 

diagram of 1^ is that of I with t- 1 square s added to each of the 

first k  rows , so the Young diagram of 1^ is that of I wit h t-1 

squares added to each of the first k  columns . Similarly , let ((mn)-I) t 

denote the partition whose Young diagram is that of (mn ) - I wit h t-1 

squares added to each of the first n- k columns . The n 

Xi = 

Ul=i 
lç(mn) 

S; F® S / / x  Tx G I t ((mn)-I) t 

We show next that this definition agrees with that derived from 

Bott's Theorem (Lascoux [ ] , Corollaire 5.10). The more general formula 

given there (changing notation to agree with that used here) is 

X. = ® S7 F ® ST.G* 
1 |l|-n(I)= i 1 1 

where the integer n(I ) and partition I ' ar e defined in non-trivial cases 

to be the unique ones so that 

Hn(I)(SjQ*) = Sr(G*) 

where Q  i s the canonical bundle of the Grassmannian of quotients of G* 

of rank m . When worked out, this comes to: 

1. 1 . > k + t - 1 so that Sj.G * f 0 
i, < n + t - 1 so that Sj F f 0. 

2. I' = (1, - t + 1, ...» i k - t + 1, k, k , ik + 1 , i m) 
t - 1 

where k  is the size of the Durfee square of I. 

The first condition says that there is a partition J  c (mn) wit h 

Durfee square k  suc h that I  = Jt; in fact, we have 
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J = (i-j-t+1, ..., it-t+l, ik + 1» i m)> so that (mn ) - J = 

(n-im» ..., n^-ik+1, n-i"k+t-l, ..., n-im+t-l). Notin g that n-i k + 1 > n-k 

and n-i k+t-l < n-k (b y condition 1. above), we see that adding t-1 

squares to the first n- k columns of (mn ) - J give s 

((mn)-J)t = (n-im, n-i k + 1. n-k, n-k , n-i*k+t-l, ...). 

t - 1 

Thus ((mn)-J) t = (m+t-l)n - I', so, since the rank of G is 

m+t-1, we have 

S I - G ^ S ( ( m n ) - J ) t

G -

Thus the two definitions give the same sets of Schur functors. 

We now introduce some notation for the bases of the modules . 

Of course, this is done by applying the standard bases for Schur functors 

to the above decompositions; however, we wish to give two special forms 

of these bases for later use. The first will be used in the combinatorial 

computations of the next section, and the second will come into the actual 

constructions. 

Let m , n, and t be as above. Le t g-j, 9 m+t_-| be a basis for 

G an d f-j, f n + t_i a  basis for F; denote {g.. } by BQ and 
{f.j} b y Bp. Order BQ and Bp in the usual way. 

To the Young diagram (mn ) add t-1 square s to the top of each of 

the first n- m columns. B y "diagonal square" we will mean a square in 

(mn) (i.e. , not one of the added ones) in the diagonal starting at the 

lower right corner, marked x  in the following example (m=2 , n=4, t=2): 
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By "standard tableau" we mean a tableau in which: 

1. Eac h non-diagonal square contains an element of B p or BQ. 

2 . Eac h added square contains an element of Bg. 

3 . Eac h diagonal square contains either t  elements of BQ arranged 

in a column or t element s of Bp arranged in a row. 

4 . I f a square contains an element or elements of Bp, so do all squares 

to the right of and below it. 

5 . I t follows from 4 . that we can produce two Young tableau x by taking 

all the columns of elements of BQ and the rows of elements of Bp 

and arranging them so that the top squares and right hand squares 

respectively are in line. 

Example: 

g1g1 g 1g 1g 2 

g 2g 3 
gn2  

G 3 
fi " G 2 G 3 9 3 fl 

G 3 F 5 F 4 F 3 fl G 3 F 5 F 4 F 3 f l 

We require that the tableau of elements of BQ and the adjoint of 

the tableau of elements of Bp be standard. 

It follows from this construction that the set of standard tableaux 

in which exactly i  square s contain elements of Bp is a basis for X... 

The advantage of this basis is that it uses the same diagram regardless 

of the size of the Durfee square; its disadvantage is that it does not 

immediately show the Young tableaux involved. W e now give a second 

notation which is better in this respect but depends on the size of the 

Durfee square. 

For given k , we now construct a basis for that part of X.. o f 

Durfee square k  (thi s means that the partition I  i n the summand 
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Sï F ® S((mn)-I) G nas Durfee scluare k) - We take a diagram of the 
type: n-k k 

m+t-1 < L —p-p-i ^ 

I W E E S r 
V_ r ' 

n+t-1 
We then order u  Bp by letting g- | < ... < 9,,,+t-l < ̂ n+t- 1 < "* * < ^ 9 

and consider tableaux in which each square is filled with an element of 

BQ u Bp. Suc h a tableau will be called standard if: 

1. Th e upper left (m+t-l-k ) x (n-k) rectangl e contains only elements of 

BQ an d the lower right k  x (k+t-1) rectangl e contains only elements 

of Bp. 

2. Eac h row is non-decreasing, and strictly increasing in elements of Bp. 

3. Eac h column is non-decreasing, and strictly increasing in elements of 

v 

Again it is easy to check that the standard tableaux with i  + k(t-l) 

boxes containing elements of Bp for m a basis for the part of o f 

Durfee square k. 

III. A COMBINATORIAL RESULT. 

We prove a theorem in this section which will be used later to show 

that certain complexes are exact. We will be using the following method 

to show they are exact: th e complexes will have length m n as sketched 

above, so to show they are exact it will be enough to do so after localizing 
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at a prime ideal of height < mn. Sinc e such a prime ideal cannot contain 

all the t  x t determinant s (the height of that ideal is mn ) i t is enough 

to invert one t  * t mino r and show that the resulting complex is exact. 

We then should have the complex nomotopic to zero, so we can divide by 

an appropriate ideal and change bases of F  an d G  t o turn ( Xij) int o 

the matrix ^  pj , where I  i s a t  x t identit y matrix. W e remark 

that for this to work we must define the boundary maps in a natural way, 

so they will allow us to change bases. Th e theorem of this section is the 

combinatorial part of the proof that this complex is nomotopic to zero. 

Suppose 4>: F  G  i s defined by the matrix 0 
0 
0, 

as above. Rechoos e 

bases for F  an d G  b y letting BQ = {g-j, g2, g m_-j» k-j, k t> 

and B F = {f] S f n - 1, h i 9 h t>, where ^(f ^ = 0 an d ^(hj ) = ki. 

We now consider standard tableaux of the first kind defined in the 

last section. Recal l that each square contains one element of B p o r BQ 
unless it is on the diagonal, when it contains t , either all in B p o r 

all in B Q. 

We define a "corner" to be a square which either contains an element 

or t  element s of BQ whil e all to the right or below contains elments 
of B p o r contains elements of B p whil e all above or to the left contain 

elements of BQ. W e say that a corner a "ca n be moved" if it satisfies 

the following conditions. 

Suppose first that a contain s a single element of BQ. The n a ca n 

be moved if 

1. Ther e is an i  suc h that k. . i s in the column above (and including) 

a bu t h. . i s not in the row to the right of a. 

2. I f i  i s the largest such integer, the tableau obtained by removing 

k., shifting the elements of BQ belo w k. . u p one position, and 
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adding h. . to the row to the right of (and including) a i n the 

proper order, i.e.: 

ki-l 
ki 
ki+l 

W t - i ••• h A 
U < i < j) 

ki-i 
ki +i 

kt 
htht-l hj hi h£ 

is a standard tableau. 

If a i s a diagonal square containing elements of B^ , we say that 

a ca n be moved if 

1. a contain s exactly {k^ , k^} . 

2. Replacin g {k^ , k t> by {h-j , h t> give s a standard tableau 

(it suffices here that there be no h.. in the row to the right of a). 

The definitions if a contain s elements of Bp are the same with 

h.. and k.j, and "row" and "column" interchanged. 

Let S  denot e the set of all standard tableaux, and let denot e 

the set of those with i  square s filled with elements of Bp (th e basis 

for X..) . Define a map T: S + S as follows: fo r each standard tableau 

T, take all corners which can be moved, and choose the first one starting 

from the lower left and going up and to the right up to and including the 

diagonal; if none of these can be moved, choose the first one starting from 

the upper right going down and to the left. Le t a b e the corner so chosen; 
x(T) i s then defined to be the standard tableau obtained replacing k.. 

by h. . or vice versa or (k-j , k̂ } by {h-j , h t> or vice versa 
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as described above. Not e that if T e S . , then x(T ) e s.. ^ o r Si+1. 

THEOREM 1. x  i s well-defined and T 2 = the identity. 

PROOF: T o see that x  i s well defined we must show that at least one 

corner can be moved. I f a ca n be moved, then clearly the same corner can 

be moved back by interchanging the same h ^ an d k̂ , and to show that 
2 

x = 1 i t will suffice to show that no previous corner in the above 

ordering can be moved. T o show this w e need to examine precisely why 

the second conditions for a corner to be moved might fail. W e will assume 

the corner in question is in B Q; the case for B p i s the same. 

Start with the bottom right hand corner. Sinc e this column has 

m+t-1 = rank(G) squares , each k . mus t occur. Assum e some h. . doe s not; 

if they all do, we can begin again with the next corner and apply the same 

argument. Thu s we have: 

9l 

gm-t+l 
kl 

kt h.h. i ... h. ih . t t-1 l+ l j 3 < i-

Only one thing can prevent this corner from being moved. Th e tableau 

obtained by inserting h ^ i s necessarily standard, so there must be a 

problem in removing k. . an d a moment's reflection shows that we must have 

k i + 1 

kt 

ht 
ht 

hi +i 
hi+l 
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Thus at the next corner we have {h.. +.|, ..., ĥ .}, and some k j with 

i + l < j < t mus t be missing. Henc e we can repeat this argument with 

{k., ..., kt> replace d by th. +j, .... h^}. Th e only thing to check is 

that there will be no problem inserting kj , but the facts that the column 

immediately to the left is longer (since we are at a corner) and that this 

column contains {kj+1,..» •••» k̂.} imply that this is true. 

This process can be continued until the diagonal is reached. The last 

corner before the diagonal will look something like 

kt-2 
kt-l 

kt 

k3 

htht-l 

In the associated Young tableau k ^ wil l be to the right of the top 

entry in the diagonal square, and, since there must be t entrie s in this 

square, that entry must be a g... Thus the problem described above cannot 

occur and this corner can be moved. 

Summarizing, we see that the only way no corner before the diagonal 

can be moved is for each one to have the complete set of k.-'s above it 

and the complete set of h.-'s to its right. I f the next corner is a 

diagonal square it will also contain the complete set of ĥ 's or k..'s, 

and in any case one diagonal square will contain these. 

Before checking the upper right corner we show that T (T) = T i f a 
corner of T belo w the diagonal can be moved. Fro m the above discussion 

it follows that the only situation which must be checked is: 
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h kJ 
k. k. 

kt kt ht •• • hi+1hk 
I < j < i k  < i 

h kj 
ki ki +l 

kt. 
kt ht ... h ^ h^ 

It is clear that for the lower corner of the second diagram to be 

moved, we would have to remove a k s fo r s  < i; since i  > j thi s will 
o 

not give a standard tableau. Thu s T (T) = T i n this case. 

If no corner below the diagonal can be moved but a diagonal corner 

can, we will have 

kt 
h1 

kt 

fj kt ht h ! fj 

and again the lower corner cannot be moved. 

Thus the only part left to check is the upper right corner. I f a 
is the first corner from the upper right, supposing as before that a 
contains an element of BQ, there will be no elements at all to the right 
of a, s o there are two possible reasons why a coul d not be moved: 

1. a contain s a g. . rathe r than a k. . 

g k .. . g,. 

In this case the next corner will have only ĝ .' s abov e it and we 

can start there instead. 

2. W e have 

kj 

h k .. . h j 
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with i  < j. In this case *  wil l be either kl  for & < i < k 

or a g^ ; in either case, the next corner can be moved. Not e that 

after h ^ is moved we have 

kk 

ki 

h r ... h. 

and since r  > i and r < k the new h^ corner cannot be moved; 
p 

hence we will have x  (T) = T i n this case; the same is true if the 

original corner would be moved instead. 

To complete the proof we have to check what happens if no corner 

moves before we arrive back at the diagonal. I f the last corner before 

the diagonal contains a k ^ we have 

kT 

where *  i s h-j or an f.; thus this corner can be moved. I f the last 

corner before the diagonal contains a g . we have 

l hf-- hi 

In fact, the diagonal box A canno t contain {k^ , k̂ > sinc e 

this would not give a standard tableau. Thu s the diagonal square below 

g.. mus t contain {h^ , ĥ } fro m the previous discussion, and hence 

it must be a corner. I t is clear that this corner can be moved. I t is 
o 

easy to check that we have x  (T) = T i n either of the last two cases. 
2 

Thus we have shown that x(T ) is defined and x (T) = T fo r any standard 

tableau T. 
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It follows from this theorem that if we had a complex X . define d 

naturally in such a way that the bases described above gave bases for X ^ 

for each i , and whenever T  wa s a standard tableau in S. an d x(T ) e s . -i 
we had d . (T) = T(T), (when cj> is defined by the matrix ri 

10 0, 
then X . 

would be homotopic to zero when $ is I 
0 
0 
0 and exact in general. However , 

the condition that d̂ (T ) = x(T) i s much too strong; it is possible in some 

cases, however, to put an ordering on the standard tableaux so that 

d ^ T ) = T(T) + higher terms. 

This is enough to prove that the complex is nomotopic to zero. 

IV. SOME EXPLICIT RESOLUTIONS. 

We discuss here some cases where the results of the previous section 

can be used to construct resolutions explicitly. W e use the following 

terminology: w e represent Schur functors and dual Schur functors by 

generators and relations as in Towber [8]. W e recall the main facts: 

Sj(F) i s defined as the module whose generators are tableaux with shape I 

and entries in F  an d whose relations, in addition to multilinearity, are: 

1. Antisymmetr y in columns. 

2. Suppos e the tableau T  ha s columns 

fl 

fk 

fi 
f'l (4 < k) 

Let r  b e an integer <  «.. Fo r each r-tupl e 1  < i-j < i2 < • • • < ir

 < k » 

let T . j  denot e T  wit h f. . an d f. interchange d for all j . 
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Then we have the relation 

T+ E 
1,<...<! 
1 r 

V - v 

The most important case of relation 2 is when r  = 1, and it is enough 

to check this case when we wish to show that relation 2 is preserved by a 

map into a torsi on-free Abelian group. 

For the dual Schur functors the definitions are similar but with signs 

changed; we have symmetry in columns, and, because of this, use divided 

powers in the columns, and the case r  = 1 of the second relation becomes 

T = 
k 

1=1 
(T wit h f\ j and fj interchanged). 

We remark that the second relation implies that two columns of the same 

length can be interchanged (perhaps with change of sign in the case of dual 

Schur functors). We will denote dual Schur functors by S|. 

We now consider several cases of resolutions for specific m , n, or t. 

Case 1: t = 1. We give a brief outline of the construction of the Koszul 

complex following the lines of that constructed by Nielsen [4] and Akin, 

Buchsbaum, and Weyman [2]. Tak e the Young diagram (mn ) and let b e 

the module whose generators are tableaux with entries in F and G; more 

specifically, with i  entrie s in F and mn - i in G, and whose 

relations are those defining the Schur functor S^ mnj excep t that whenever 

two entries in F are interchanged the sign is changed (this is for relation 

1 and the case r  = 1 of relation 2). I n addition, we use divided powers 

in columns for entries in F. 

The module X.. , except for the divided powers, is a quotient o f a sum 

of copies of F ®* ® Q®(mn-i)̂  a n c| t h e c o n v e n t i 0 n on signs when interchanging 
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elements in F means that if we consider this as the ith piece of the 

complex ( F G) 8*™1, where F  ha s degree 1 , the boundary map 

<B(F0i ® G ( M N " 1 ) ) - ©(p®(i-1 ) 9 G (mn-i+l)} 

will preserve all the relations. Henc e we can use this to induce a boundary 

map X. . -> X.. -J . 

For a fixed i , we note that by rearranging each column and then 

putting the columns in proper order (using the relations defining S( mn))> 

we can put each tableau in the form 
~G I 
. J — 1 F 

where the entries in F for m a Young diagram I  with |l | = i an d those 

in G  for m the Young diagram (mn)-I. Orde r such diagrams by letting 

I < I' i f I* ha s more squares in the last column in which they differ 

(e.g. 

Let X j denot e the submodule of X.. generated by tableaux of shape 

J fo r J< I. The n if I ' < I ar e consecutive in this ordering, the 

relations defining X. . restricted to Xj giv e the relations defining 

S-jF and s( m n)_i
G modul o X j i ; we give a simple example to show how this 

works : 

g-,g2 g 2g! 9^3 9i?i 

9 3

f2 = 9 3f 2 +  9 2

f2 + g 3 f2 
fl f3 fl f3 fl f3 g2 f3 

in Xj, 

Thus we have X J / X J , ^ S J F ® S^^^jG, and we have a filtration of 

Xj wit h quotients those given by Cauchy's formula. 

370 



GENERIC RESOLUTIONS 

Now consider what happens to a standard tableau under the map 

X-f ~* Xj-i • Since t  = 1 ther e is only one h  and one k  (th e notation 

is that of Theorem 1), and a corner with an element of F look s like 

V 
k. 

or 

gj 
h..h.h" > r 

The first two cannot be moved and contribute zero in the image; the 

third can be moved and contributes r  times 

r-1 

9 J 
k 
h 

h 
fk 

Since we are using divided powers, however, the coefficient r! is 

replaced by 1 
(r-1)!' 

and this cancels the factor of r. It follows easily 

from these facts that if T is a standard tableau with x(T ) e S^-j, then 

the image of T in X̂ -j is x(T) + terms higher in the ordering given 

above. Thu s this complex is exact. 

We insert here a simple example of the problems which arise when one 

tries to use direct sums of Schur functors in the generic case. I n the 

case of the resolution of l x l minors of a 2 *2 matrix, the map from 
X 2 t o X-j would be 

(S*gF ® y O © (S*-j-F 9 S^) - S ^ F * Sgf. 

To preserve the relations, the first component of this map would have 

to send 
fi 
2 

® g-|g2 
to 
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1O 9^2 
f2 

+ f 1 ® 
g2g1 
f2 - f 2 ® 

9^2 
f1 - f 2 ® 

g2 9l 
f1 

The basis element ^  ® gg the n goes to 2 f ® an d there is 

2-torsion in the homology H,(X.) . On e could take divided powers in S^G , 

but this would create 2-tors i on in H 2(X.) fro m the element ^  ® kk. W e 

r:ote that in the filtration given above S* g F ® Ŝ G i s a quotient, and 

there is no map from this particular functor to X-j. 

In the next few examples we will be mainly concerned with that part 

of a resolution with a given size Durfee square. Th e modules will have 

generators which are tableaux of the type described in the second form of 

the basis constructed in section 2, with entries in F  an d G  i n certain 

places but not necessarily standard. Th e relations will be similar to 

those defining Schur functors. W e note that the Durfee square zero complex 

is just A  i n degree zero. 

Case 2: 1 x n. (Eagon-Northcott) . Her e we only have to construct the 

Durfee square 1 part and the diagram looks like 

n+t-1 

X. wil l be defined by tableaux as follows: 

G 

i+t>l 
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which are antisymmetric in entries in F and in entries in the same column 

in G ; the only other relation needed, since the rank of G i s t, is that 

we can interchange columns of elements of G of the same length ( t or 

t-1). I n addition, we take divided powers of equal columns of elements of 

G o f length t- 1 (thi s is really a divided power of G*). 

The map d.. : X.. X̂ - j is defined as follows: le t Cj be a column 

of t- 1 element s of G fo r j = 1, i-1 , and let 

T = 
T' cr-' ci-l 

f1" f1+1 

Then d^T) = 
i-1 

j=l 

i+t-1 

k=l 
(-l)k+1 

V C j c 2..c 

• <ffc> f 2...? k...f 1 + t > 1 

It is easy to verify that this makes X . a complex. 

If we now order the standard tableaux letting T < T ' i f when the 

first entry in F fro m the left at which they differ has f ^ e T and 
f\ e T , then i  < j. I t then follows that if T is a standard tableau 
with T(T) e S^-j, we have 

d. (T ) = T(.T) + highe r terms 

and this complex is exact. 

Case 3: 2 x 2 . (Gulliksen-Negard) . We do this case in some detail, 
as it is the first one where nontrivial problems occur, but it can be 

carried out more explicitly than the more general ones, which will only 

be outlined. 
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The important part is Durfee square 1 , and the diagram is 

t+1 

t+1 

X.. wil l be defined by tableaux where the upper left t  * 1 rectangle 

has entries in G and the lower right 1 x t rectangl e has entries in F . 

The boundary maps will be induced by those of the tensor product. 

Schematically this complex looks like: 

G G 
G 
G 
F F F F 

G F  G  G 
G v G  F  G 
G G  G 
R F F F G  G  F F F 

G F F F 

X3 " X2 ^ Xl 

The relations are ail relations which involve no entries in F  i n 

the upper left corner of the following: 

1. Relations defining the Schur functor associated to 

t+l 
We recall here that signs are changed when we transpose elements in 

F; thus this gives in X g th e dual Schur functor applied to F ; we 

also use divided powers in this case. 

2. Relations defining the Schur functor 

2 is replaced by 
t+1 except that relation 
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9 l  

gt 
fr-- ft +i 

gt+l t 

i = l 

g1 gi 

V l 
gt 
f r...f t + 1 

(ith place) 
t 

j=l 
: - D j + 1 

gl 
gt 
gt+iV-V- tt+i 

fj 

(Note: thi s relation was modeled after those given by Akin, Buchsbaum, 
and Weyman [1] in their Durfee square 1 complex). 

3. An y tableau with two or more entries in G in the bottom row is zero. 

It is easy to see that this gives the correct Schur functors in X-j 

and X 3 an d the correct filtration in X 2- We check two things: first , 

we show that relation 2 is compatible with the other ones; it is clearly 

antisymmetric in f̂ , ..., ft (thi s is the reason for the more complicated 

definition). Th e other thing to show is that it is compatible with the 

relation 

gi 
gt 
fl f2"- ft+l 

gt+l gl 

gt 
ft+iV-- fi 

gt+l gl 
gt 
gt+iV" ft+i 

fl 

In fact, if we substitute the right hand side of relation 2 for 

each term in the left hand side of the latter equation, we get 

t 

t=l 

gl 
gt +l 
gt 
fr-- ft +i 

gi gl 
gt+l 
gt 
f f l - f l 

gi 
t 

0=2 
-l)j+1 

gl 
gt+ifr--ft+i 

fj gl 
gt+ift+r--fi 

fj 

gl fl 
gt+lf2"-ft+l 

gl V l 
gt+lf2---fl 
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- [- t + (t-1) + 2] 
gl fl 

g t + 1f 2...f t + 1 

The other thing to notice is that it is indeed possible to use the map 

defined by the tesnor product, since if 4> i s applied to any entry in f , 

it is possible via the above relations to bring the resulting tableau to 

proper form. 

It is again easy to define an ordering on standard tableaux so that 

d.. (T) = T(T) + higher terms whenever x(T ) e S.. 
The methods of the three examples can be combined and will give a 

complex whose diagram is 

where r  i s the rank of G . Th e idea is to use the method of example 1 
in the upper right corner, of example 2 in the left side, and example 3 to 
connect them. I n particular, this gives a version of the Durfee square 1 
part of the resolution of D ^ fo r any m , n, and t . Th e point to notice 

here is that as in example 3, the relations defined are enough to move any 
entry of the form 4>(T\.) int o the proper position, so we can use the maps 
induced by the tensor product to define boundary maps. 

We conclude with a discussion of the 3 x 3 case . Her e the diagram 

for the Durfee square 2 complex (in the case t  = 2) look s like 
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If we try to carry out a construction as in example 3 we run into a 
problem when we try to apply t o the tableau 

9l H g5 

9 3 f , f2 f3  

f4 f5 f6 f7 

The problem is that we cannot bring 4>(f-j), for example, into proper 
position, and to define a map which preserves all relations means introducing 

higher coefficients in the formulas and torsion in the homology. I t could 

be that such torsion exists, but on the other hand this type of tableau 

should have a non-trivial image not only in the next lower term of the 

Durfee square 2 complex, but also down in the Durfee square 1 complex. Thi s 

is similar to the problem which arose attempting to use sums of tensor 

products of Schur functors, and it could be that one has to combine the 

constructions of the various size Durfee square complexes rather than construct 

each separately. 

We remark that this problem did not exist in the Durfee square one 

complex since the part of Durfee square zero is so simple. 
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