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YOUNG TABLEAUX AND P.I. ALGEBRAS 

Amitai Regev 
Department of Theoretical Mathematics 
The Weizmann Institute of Science 

Rehovot, Israel 

INTRODUCTION 

This is a report about the relations between the theory of algebras satis­
fying polynomial identities (P.I. algebras) and the representation theory of 
the symmetric groups (Sn~rep.). The relations between Streps and the Procesi-
Razimyslov theory of trace identities is not discussed here. A review of these 
results can be found in [3]. 

The sequence {ĉ CA)} of a P.I. algebra A was introduced in [15] in 
order to prove that A ® B is P.I. It was later understood that these dimen­
sions are the degrees of certain Sn-characters, called the cocharacters of the 
P.I. algebra [18]. These sequences enable one to apply Ŝ -reps to study many 
questions about P.I. algebras. For example, Amitsur's s j ^ x ^ theorem was known 
with an upper bound for £ but not for k . Applying Sn-characters we can 
re-prove it, together with such bounds for both k and Jl . This as well as 
other applications are discussed here. One application of P.I. theory to Sn~ 
characters is also described in §5. 

We summarize here most of the results which are known to us and which are 
relevant to that relation between the two theories. Most of the results which 
are due to Amitsur are unpublished yet, although some of them can be found in 
[3]. Detailed proofs are avoided here, but we do give some proofs when they 
are both short and illuminating. For more results on T-ideals see [23], [24]. 
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A. REGEV 

To simplify the presentation we assume here the characteristic of the 
base field to be zero. 

§1. Some P.I. Algebras and Identities 

Let S n be the symmetric group on l,...,n . The following are two 
important non-commutative (associative) polynomials: 

sn[Xl,...,xn] = 
a€ S 

n 

(sgn a)x a ( 1 ) ...x a ( n ) is the n-th standard 

polynomial (of degree n ) , and 

dn[x1,...,xn;y1,...,yn_1] = 
a e S 

n 

(sgn o)* 0 ( 1 )y 1 x a- ( 2 )y 2 ••• y ^ i V n ) 

is the n-th Capelli polynomial (of degree 2n-l ). 

The definition of a P.I. algebra is well known. The most important P.I. 
algebra is F̂  , the algebra of k x k matrices over F . Since the Capelli 
polynomial D

n[ x!s • • • »xn;y1> • • • »y j_] * dn[x;y] is alternating in x1,...,xn 

and is multilinear, a "determinant" type argument shows that dR[x;y] is an 
identity for any algebra A of dimension dim̂ A < n . In particular, F^ 
satisfies d 9 [x;y] . It is shown in [2] that F, does not satisfy 

kN-1 K 

d 9[x;y] . This completely answers which Capelli identities are satisfied by 
k Z 

F^ : since d +^[x;y] i s a combination of n-th Capelli polynomials, if A 
satisfies dn[x;y] then it also satisfies dffi[x;y] for all m £ n . 

Next we note that dn[x^,...,xn;l,...,1] • s
n^ xi'•••» x

n^ » so if A 
satisfies dR[x;y] then it satisfies also s

n^xi»•••>x
n^ ( t n e converse is 

discussed below). The Amitsur-Levitski theorem says that Ffc satisfies 
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YOUNG TABLEAUX AND P. I. ALGEBRAS 

^k^l'* *' fX2k^ âs a n"-n̂ inal identity). Roset [22] used the Grassmann 
algebra to give a very short proof of that theorem. Kemer [8], used the 
Grassmann algebra in a different way to prove that if an algebra satisfies 
ŝ  [x] then it satisfies some d̂ Exjy] , n = n(£) . Thus (if Char F = 0) , 
an algebra satisfies a standard identity if and only if it satisfies a 
Capelli identity. It is interesting to mention that the Grassmann algebra was 
one of the earliest examples, given by Conn, of an algebra that does not satisfy 
any standard identity. 

We close this section with a classical theorem of Amitsur [1], to be 
revisited in §6. 

Theorem 1. If A satisfies an identity of degree d , then A satisfies 

( S 2 J l [ X l X 2 l ] ) k where l< [d/2] 

§ 2. P.I. Algebras and S -representations 

The identities 1(A) of a P.I. algebra A are elements of F<x> , the 
free algebra in infinitely many variables {x} . Also, I(A) = Q is a two-
sided ideal in F<x> , closed under substitutions (a T-ideal). 

A basic P.I. result says that every identity can be multilinearized and, since 
Char F = o , the multilinear identities determine the others. We therefore 
restrict our attention to multilinear identities. Those of degree n are com­
pletely determined by such identities in n fixed variables. We are led to the 
following construction : 

Fix xlfx2,... €{x} . For each n , let V n be the vector space of all 
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A. REGEV 

the multilinear polynomials in x^,...,xn : 

V = n a € S 
n 

a a(l) ' Xa(n) a € F 1 a 

Clearly, 
o £ S n 

a a •<->• 
a o1ESn 

aoxo(1) ' Xa(n) (*) 

is an isomorphism between the group algebra FS n and , as vector spaces 
over F . 

If Q = I (A) are the identities of A , then Q = Q fl V are the multi-
n n 

linear identities of degree n in x_ , ,x and {o }°° , determines 
I n *n n=l 

Q (char F = 0) . 
Since FS n is an algebra, the above isomorphism (*) induces an algebra 

structure on V It is convenient to use (*) to identify V with FS : n n n 
def a = x _ x x_ . The algebra structure of V is determined by rule o o(U cr (n) n J 

x x = an = x for a,n € S , [16]. Elements of FS are now realized as a n an n n 
polynomials in V R , and we proceed to describe the polynomials realizing the 
idempotents corresponding to some Young Tableau. T^ , [3], [16], [19]. Here 
A € Par(n) is a partition of n , the corresponding Young diagram and T^ 
a chosen Young Tableau. 

Example 1. A = (n) , Dx m 

TY= 1 I 2 I • • • | n The corresponding polynomial is 

eT ( xi V 
1 
n! a € S 

n 

Xa(l) Xa(n) * 

This is a multilinearization of x11 , hence an identity for all rings satis­
fying x11 =5 0 . 
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Example 2. Y=(1n) TY= 1 

n 

eT= 1 
n! a S 

n 

(sgna)x a ( 1 ) X i v = 

a (n) 
1 
n! s [x_/...fX ] n X n 

Example 3« A € Par(n) arbitrary with conjugate X* ~ (b^,b2,...) . 
Choose 

T x = 

1 V 1 

2 b + 2 

b l + b 2 

*1 

After evaluating eT(x^,...,xn> , identify 
xl ^i+l ^ + ^ + 1 

x2 ^ + 2 ^ + ^ + 2 

e (x) becomes a scalar multiple of 
s, [x , ,x. ] • s [x , , \ ] 

bl 1 ^ 1 b2 1 ^2 
If is an % x k rectangle, we obtain in this way the polynomial 

k 
(S^X^ ' X £ ] ) 
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Example 4. Start with an arbitrary tableau 

TY= 
"il °12 

°21 "22 

Distinguish the variables corresponding to the first column by z^,...,z^ , 
then e^(x^,...,Xr) is a combination of Capelli polynomials 
q^d^tz^,. - - ,ẑ ;q̂ ,.. . '^-l^n where ,. . - ,q̂  are polynomials in the other 
variables. 

We now turn back to {Q }, . If f(x_,...,x ) € V then 
n 1 I n n a f ( x . , x ) = f(x ... ,...,x . .) , which implies that Q is a left ideal i n a (1) a (n) n 

in V = FS . It is almost never two-sided. Thus Q determines an S -n n n n 
representation so an Sn-character X(Qn) t which can be determined by complements: 
FS n is semi-simple, (char F = 0) , so FS n

 = Q n ® J
n for some (not necessarily 

unique) complementary left ideal which determines a unique Sn-character 

X(J n) , and X(Q n) = X(FSn)-X(Jn) . 

Definition. Let Q = I(A) c F<x> be the identities of the algebra A , 
Q = V flQ and V E FS = Q © J as above, then x(J ) is the n-th co-*n n * n n *n n n 
character of A (or of Q ), denoted by X(JR) - X R ( A ) • We call ^ X N ( A ) J ^ - ^ 

the cocharacter sequence (c.c.s.) of A . Also c (A) = deg x (A) = &i-m v /Q 
n n n n 

is the n-th codimension of A , and ^ c
n^ A^i is the sequence of codimensions 

(c.d.s.) of A . 
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These sequences are tools for obtaining information about the identities 
of a P.I. algebra. Although ^Q n^ determines Q , its computation has so 
far been next to impossible. Since characters are much easier to handle than 
their representations, ^Xn(A)}^ does look like the right invariant to begin 
with. Several examples will be discussed later. 

§ 3. Codimensions 

The sequence of codimensions {c^fA)} is a significant invariant of A , 
which is also useful in determining {xn(A)}. Codimensions were introduced to show 
that if A and B are P.I. then so is A ® B , [15]. The main tool there is 
the exponential estimate c

n( A) * °^ t15* Th.4.7], the proof of which was 
considerably simplified by Latyshev (see [16]). We describe now his proof, 
which is further simplified by the Robinson-Schensted correspondence. 

Definition. a € S is "d-bad" (d $ n) n if there exist 
1 £ i, < ... < i^ £ n such that a(i.) > ... > a(i,) . Otherwise a is I d l a 
Hd-good". 

Lemma. If A satisfies an identity of degree d , then is spanned, 
modulo , by the d-good permutations. 

Latyshev then bounds the number of d-good permutations by a direct com­
binatorial argument, to conclude that 

C R (A) £ number of d good permutations £ (d-l)2n . 

A detailed proof of the above appears in [16,§1]. 

Using the Robinson-Schensted correspondence we can actually count that 
number 9 d( n) °f d-good permutations. 
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Let X = (a^,. .. ,ar) € Par(n) be a partition of n : a^+...+a r = n , 
a.. £ ... £ a > 0 . Clearly, h(X) = r is the height of the Young diagram 

1 r t 
. Let be the corresponding S - irreducible character, d^ its degree 

(given by the hook formula) and 1^ c FS^ the corresponding minimal two-sided 
2 

ideal: dim 1^ = d^ . Let U be an ^-dimensional vector space. Construct 
w Qn def U ® ... 0 U 

n 
map tp: -> End(U®n) by tp(a) = a , 

a(u, ® ... ® u ) = u ® ... ® u , x and extend <p from FS onto the 1 n a(l) a(n) n 
algebra B(£,n) spanned by the n! elements a: cp: FS n •+ B(£,n) c End(U ) 
A basic result in this construction of Schur is 

Theorem 2. (H. Weyl); BU,n) = 
X€Par(n) 
h(X)S* 

* *X 

Corollary. dim B(£,n) = 
X€Par(n) 
h(X)£il 

doY def . < » « and since 

B(£,n) c End (IT*1) „(2) , x ft2n (n) $ A 

The Robinson-Schensted correspondence, [9], maps each a € S^ to a pair 
(P,Q) of standard Young tableaux having the same shape. It is one-to-one, onto, 
and has the following property (among others): the height h(P) = h(Q) = d 
is the length of a maximal chain 1$ ••• < i ^ ^ n such that 
a(i^) > ... > crd^) • I n other words, a-*-* (P,Q) is "d-good" if and only if 

(2) 
h(P) $ d-1 . It follows that S^ (n) is the number of d-good permutations 
in S n . By the above and by Latyshev1s lemma we thus have 

Theorem 3, If A satisfies an identity of degree d then 
cn(A) £ No. of d good permutations = s ( 2 ) 

d-1 
(n) * (d-l) 2 n

 a which proves the 
exponential bound for codimensions. 
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Kemer [7] characterized the algebras A such that c
n^ A) - 0(n ) as 

those satisfying some very specific identities. This indicates that codimensions 
almost always have exponential rate of growth. 

In the very few examples that have been done so far (to be discussed 
later), ĉ (A) is exponentially smaller than (d-l) 2 n . However, unless the 
estimate "cn(A) £ No. of d-good permutations" is improved, one cannot signi­
ficantly lower the bound c

n( A) £ (d-l)2n : it is shown, [21], that as n <» , 

Sl(2) (n) di 
n-*» 

c -
[1/n] e.l2n 

where c is some (interesting) constant and e = 1 2 U2-l) 

We note also that the constant appearing in the asymptotic formula for 

S<e)(n) def 
X£Par(n) 
h(A)<c£ 

d£ , n + « f 

relates the theory of Young tableaux to a very interesting conjecture of 
I.G. Macdonald on the invariants of finite reflection groups (see [12], [21]). 

§4. Cocharacters 

Any character x n
 c a n D e written as x n -

msM 
m^x^ where m^ 

is the multiplicity of the irreducible character x^ (since char F = 0). 
This in particular applies to the cocharacter Xn(A) , and we are looking for 
information about its m̂  's. 

Example. [10], [14]: The infinite dimensional Grassmann algebra E satis­
fies [[x1,x2],x3] = 0 ([a,b] = ab-ba) . The polynomial f(x) € is of type 

Jd if 
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f(x1,...,xd) = x x

 xd + 

o(1)#1 
aa xa(l) xa(d) ' 

By [10], if A satisfies a J^-identity, then c

n^
A^ £ (d-l)n , so 

cn(E) $ 2
n ^ . The reverse inequality follows from studying the cocharacters 

n-k 

Xn(E) . The Partition A = (k,l ) € Par(n) defines a T-shaped Young 

diagram. For such A , it is easy to choose a polynomial in 1̂  which is 

not an E-identity. Hence x (E) = I m.xA and for each A = (k,ln K) , 
n A€Par(n) X X 1 £ k £ m , m ^ l . Thus 

A 

cn(E) = deg xn<E) >, 
n 

k=l d(k,ln"k) 

n 

k=l 

(n-1 
k) 

=2n-1 

It clearly follows that c (E) = 2 n~ 1 and that x (E) 
n n 

n 

k=l x(k,in"k) 

The only other cocharacters which have been determined are those of 

Q = T (ŝ  [x^x^rX^] ) , the T ideal generated by ^[x] # [6], [17]. Because 

of the importance of , the main goal in this direction should be to 

estimate cn(F^) and the multiplicities in xn(F^) . So far only partial 

information had been obtained when k ̂  3 . The results for Xn(F2) are quite 

satisfactory and appear in [19]. We here summarize the main results: 

Theorem 4. A satisfies the Capelli polynomial ^^^i^ty] ^ only 

if for all n , 

X N (A) • 
A€Par(n) 
h (A) £2, 

M A X A 

Corollary X n

( Fk> = 
XÊPar(n) ,h(X)sk2 

mX xX In particular, 

Xn(F2) = 
X€Par(n),h(X)*4 

mX xX 
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Let now X € Par(n) with h(X) £ 4 and write 

X = (w1+ti)2̂ 34ta4,a32+tJ3- 4̂,a)3+a)4,a)4) . Let be its multiplicity in 

X (F0) . It is shown that m, is very close to u) -a) -co . It then follows 
n 2. A X ^ «3 
[19, Cor. 5.5] that c

n^
F2^ "*"s asvmP'*;0̂ cal̂ y n̂ 00) sandwiched as follows: 

V2 
TT 

4 

VTT 
i 

nvn 
4 n 

n -¿ 
4 

/if 

i 

nVTT 
4 n 

There are indications, [19, Rem. 5.6] that the general results for X (F̂ ) and 

c (F. ) are similar, n K 

§5. Applications of Codimensions and Cocharacters 

These sequences can be defined for any algebra A , and A is P.I. iff 

c (A) < ni for some n . The theorem that A ® B is P.I. if A and B are, n ^ 

clearly follows from the exponential bounds (ĉ CA) £ a11,...) and from the 

inequality c

n (
A ® B) £ * c

n ^ ' Decause n' exceeds any (a-$)n . 

This codimension's inequality has an interesting cocharacter interpretation: 

Define 
X€Par(n) 

mÀ*A * \€Par(n) 
m^x^ i f m

A £ m^ f° r a i l A Given two 

Sn~characters xn* $nr i e t ® denote their Kronecker (inner) product. 

In [20] we proved 

Theorem 5. XR(A ® B) ̂  Xn(A) ® Xn(
fi) (A ® B is the usual tensor product 

of the algebras A and B .) Apply "degree" to both sides to deduce the 

previous codimensions inequality. Theorem 5 strongly relates P.I. algebras to 

Kronecker products of Sn~character. In what follows we bring applications in 

both directions. 
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Let Xn= 
A€Par(n) 

M A X A 
and define h(x ) = max{h(A) | ^ 0 in x > • 

n A n 
By applying (Weyl's) Theorem 2 one can prove (see [20]) 

Theorem 6. h(x ® ) ̂  h(x ) *h(ip ) for any two S -characters X , ̂   An n An rn 2 n An' rn 

We first apply S -characters to P.I. theory: 

Theorem 7. If A satisfies ^ -n^y] B satisfies d £ + x ' - X ; y ^ 

then A ® B satisfies cl̂ ^̂ ^ [x;y] . 

Proof. By Theorem 4, h(x (A)) £ k , h(x (B)) £ % , hence  n n 

h(xn(A ® B)) | h(xn(A) ® Xn(B)) % h(xn(A)-h(xn(B)) £ k-£ , so by 4, A ® B 

satisfies ^ ¿ + 1 v ^ " 

By Kemer's theorem (§1), existence of standard and Capelli identities is 

equivalent, so we obtain another proof of a result of E. Berman[4], 

Corollary. (Berman): If A and B satisfies standard identities, then 

so does A ® B . 

Examine now the inequality h(x ® ̂ ) £ h(x)h(i|>) of Theorem 6. Tables in 

[13] show that in many cases, h(x ® ̂ ) < h(x)h(ip) . The proper question should 

be 

Question Ht Given two heights h^, h 2 is there N = N(h1#h2) such that 

for any n ̂  N there are two Ŝ -characters x n # ̂ n satisfying: 

h(X n ) = h x , h(*n) = h 2 and h ( x n ® ipn) = h xh 2 = h (x R ) -h^) ?! 

Note that for outer products x ®' ̂  we do have h(x ® ' iJO = h(x)+h(i|;) 

as a consequence of the Littlewood-Richardson rule. Missing yet a rule for 

inner products, this we think, makes H rather intriguing. We do conjecture 

2 2 
"yes" to H ! At the moment we can prove it when h^ = k , h 2 = % are 
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2 
squares, by applying P.I. theoryI We sketch the proof: First, if n £ 2k -1 

2 
then h(x (Fv))=k . This follows from the fact that F, satisfies d , but n Jc jc k+1 
not d 0 , by an argument of Amitsur's which is also applied to prove (half of) 

kz 

2 2 2 2 Theorem 4. Given h 1 = k , = SL , let N = 2k & -1 , so 

h(xn(Fk£)) = k
2£ 2 if n * N : there exists A € Par(n) , h(A) = k 2£ 2 and 

Xx has a non-zero multiplicity in Xn(FkJl) . Since X n(F k £) = X n(
F

k ® F£) | 

Xn ( Fk* 0 X n ( I V ' there must be x x i n Xn ( Fk ) ' XA i n X n ( B V ' both with 

non-zero multiplicity, such that Xi appears in Xi ® X-v • B u t 

Al A2 
2 2 2 2 2 h(A1) $ k , h(X^) £ H and h(A) = k I , so necessarily h(A^) = k and 
2 

h(A2) = I , as was to be shown. 

§6. Explicit Identities 

We begin with the following "Structure" argument: For each I assume 

f^(x1# 'x

n(£)) is 311 identity for
 F£ • Let A be an arbitrary P.I. algebra 

and mode out its nil radical N . Since A/N is semi-simple, there exists I 

such that it satisfies all the identities of F̂  , hence in particular 

^xi' *" * ,xn(il) ̂  * B^ using "generic elements" (or other methods) one can lift 

f̂ (x) back to A : there exists a power k such that A satisfies 

(f^(x^,...*x

n(£))) - For example, assume A satisfies an identity of degree 

d ; Choose f^(x) = s2jt'"Xl' — ,x2s} tC> conclude that A satisfies 

(s 2 i[x»
k i Í Choose V * ) d 

* 2

+l 
[x;y] to conclude that A satis­

fies (d 
* 2

+l 
[x;y])k I £ d . 

This method, due to Amitsur [1], usually yeilds a bound for I but not for 

k . We now apply Young tableaux, to re-prove these results with explicit bounds 

for both indices k and I 
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It is well known that the minimal two-sided ideal I, cr FS (A € Par(n)) 
A n 

2 2 

is a direct sum of (d̂ ) minimal left ideals and (dim J^) = d̂  = dim 1̂  . 

As before, Q = 1(A) , and our basic tool is Lemma 8. If d% > c (A) then Q => I, . 
A ^ n *n —

 A 

Proof. 1̂  = ©J^ , minimal left ideals. If some £ Q n then 

Q H J, = 0 , so c (A) = dim V /Q 5 dim J, = d, , a contradiction. 

n À Tl n X\ A A 
Q.E.D. 

As in Theorem 3, let c

n^
A) £ (d-l)2n . We are therefore looking for 

n = n(d) and A € Par(n) such that d̂  > (d-l)2n ; all the elements of 1̂  

are then A-identities. If that A is "rectangular" A = (k ) , we deduce 

from §2, Expl. 3 that A satisfies ŝ tel • 

Such A is found in [16] by analytic methods. Amitsur [3], gave a very 

short and simple method for finding such A , which we now describe. 

By the hook formula, d - nl/-n h. . where {h. .} are the n hook 
ij 1 3 1 3 

numbers. Replace d̂  > (d-1)2n by the equivalent inequality (n!/ir h. .) ̂ n > 

(d-1)2 . It is well known that (n!)^ n > n/e , and since the geometric mean 
is smaller than the arithmetic mean. Or h ) 1/n 

1 
n h. . 

13 
It is therefore 

enough to .find A € Par(n) such that n2/l h ± j * e(d-1)
2 

Let A be "rectangular": n = k-Jl , A = (kÄ) . The hook numbers in 

D x are 

k+£-l . . . £+1 

I • • 

k+1 . . . 3 2 

k . . . 2 1 
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so I h.. = k£ k+£ 2 = n k+£ 2 If k£ 
k+£ 2 (d-1)

2 we then conclude that all the 
polynomials in I, , X = (k ) , are identities, hence also k r , 

s [X] (Expl. 3). 
There are many such k and £ : Denote a = e_ 2 Cd-1)

2 Since k,£ > k£ k+£ one 
must have k,£ > a , so choose £ > a . If k > a£ £-a then clearly kit 

k+£ > a 

We summarize; Assume A satisfies an identity of degree d , and let 
a = f (d-1)2 If £ > a and k > £-a then A satisfies the identity 
(s [x ,...,x ]) k Notice the gap: "Structure" yields the same result, with 
£ £ d (but no bound for k ). 

Using the codimensions inequality c (A 0 B) ̂  c (A)-c (B) one can con-
n n n struct similar such identities for A 0 B by replacing fCd-D 2 by 

f< dl- 1 > 2 ( d2- 1 ) 2 

k 
Next, consider the analog of Amitsur's s^[x] theorem, but with Capelli 

instead of standard polynomials. The following construction is essentially 
due to Amitsur (unpublished) and is based on the branching theorem. 

Construct the Capelli polynomial d^[x;y] in two steps: first write 
S £ [ X 1 X £ ] X £ - K L "' X2£-l *»* den°te X£ +l = Y l X 2 £ - l = y£-l " N°W' there 
exists o € s

2£_! such that (ŝ  [xx,... ,x£] x £ + 1 ... x
2)l-l*a = Eacjy] , [3], 

[16]. The construction of a product of Capelli polynomials is done similarly. 

Let X € Par(n) , y€Par(n+k) such that D extends D. , i.e.: D 
V X ]i is obtained from D by adding k boxes. A trivial consequence of the X 

branching theorem implies that d̂  ^ d̂  . 

Start with a P.I. algebra A , Q = I(A) , cn(A) $ (d-l)2n . Next, find 
Q 4n 

n = k£ such that (X = (k*)) , d x > (d-1) . Let u € Par(2n) such that 
4n D extends D. , then d £ d, > (d-1) £ c 0 (A) , hence I c Q_ . Since u X ' y X 2n y ~ *2n 
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this is true for any such y , the branching theorem implies that 

FS0 -I, -FS- c 0 o . Choose 2n X 2n — *2n 

3TY= 

1 £+1 . . . 

: ; . . . 

£ 2A . . . k£ (k = n) 

so, in FS 2 n , 

eT(Xl,...,x2n) = 
p€P 

* V X 1 X £ ] S £ [ X £ + 1 ' X2£ ] V---'*kAlxn+l---X2n-

Denote Xn+1 - y l X 2 n " yn ' There exists a 6 S- such that zn 

(Sl[x1,...,xl]...Sl[...,xkl].Y1...Yn)o= 

" V X 1 V y l y £ - l ] V V X l V y i + 1 y 2 A - l 1 - y 2 * 

Now equate Xl " X£+l X2£+l X2 " X£+2 X2£+2 

yl y£+l y2£+l Y2 y£+2 y2£+2 

and Y£ y2£ "* yk£ 1 

k 

to conclude that A satisfies (d̂ Cxjy]) (it is easy to deduce stronger 

results from these same arguments. See [3]). Recall that X = (k ) € Par(n) 
should only satisfy a > (d-D 4 n As before, let 3 = 

e 
2 

4 
(d-ir 

(instead 

of a = f (d-1)2) then choose £ > 3 and k > 
¿-3 

to obtain explicit £ 

and k . 
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