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CONSTRUCTIVE INVARIANT THEORY 

V.L. Popov - Moscow 

1. Let k be an algebraically closed field, char k = 0. 
We denote by V an n-dimensional coordinate linear space 

(of columns) over k, by Matn the space of all n><n-matrices 
with its coefficients in k and by GLn the subgroup of all 
nondegenerate matrices in Mat . We use the notation (a..) for 

n x j 
an element of Mat : this is the matrix with the coefficient a.. 

n 1 3 

situated in its i-th row and j-th column, 1 < i,j < n. Let us 
denote also by , 1 < i < n, and resp. by x^^, 1 < i,j < n, the 
coordinate functions on V, resp. Mat^, with respect to the 
canonical basis 
(i.e. x̂ 1 

a 
n 

) = a. and x..((a )) = a..). 
1 1 3 pq 1 3 

Let G be a reductive algebraic subgroup of GL^. The group 
GL^ (and hence also G) acts in a natural way on V (by means of 
a multiplication of a matrix by a column). This action defines 
an action of GL^ on an algebra k[V] = k[x^,...9x ] of all 

G 
polynomial functions on V. Let k[V] be the subalgebra of 
G-invariants. This is a finitely generated graded subalgebra. The problem of constructive invariant theory is to find 
explicitly a minimal (i.e. noneliminatable) system of homogeneous 

Q 
generators of k[V] . This means, from the theoretical point of 
view,that we must find such an algorithm that provides in principle 
a specified system by means of a finite number of effectively 
feasible operations (of course, from a practical point of view , 
a question arises immediately about the amount of all needed 
calculations, but it is already another side of the problem that 
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is connected with an improvement of the corresponding estimates 
or with a choice of a more effective algorithm but not with the 
existence of the algorithm itself). Solving this problem one 
assumes that G itself is "known", i.e. that one can solve in 
an effective way certain questions about its structure. Thus, 
the central concern mainly of this paper is with the case of 
a connected semisimple group G and we assume that the following 

data ave known: 

a) the Lie algebva Lie G of G (we consider Lie G as a linear 
subspace in Matn and it will be sufficient to know for instance 
the set of matrices that is a basis of this subspace), 

b) a maximal torus T of G (we consider T as an image of a 
standard torus k*r = k* x ... x k* under a known homomorphism 

r 

(1) 4>: k*r - GLn, •((a1,. ,ar)) = ( f ± ̂  ( EL± , . . . , ap ) ) , 

where f (t^ , . . . ,t^) , 1 < i,j < n, are known rational functions 
of the canonical coordinate function t , 1 < s < r, on k*r, 
i.e. ts((a1,...,ar)) = ag). 

For example, a typical situation occurs in the invariant theory 
when G is an image of a known standard group Gf under a known 
homomorphism (say, Gf = SL^ and G is its image under a natural 
representation in a space of forms of a given degree in m variables). 
Clearly, if one knows the Lie algebra and a maximal torus of GT, 
then one also knows a) and b) for G itself. 

Now, an algorithm for finding explicitly a minimal system of 
G 

homogeneous generators of k[V] being given, one can in principle 
G 

calculate such a constant M G ]N , that k[V] is generated by a 
subspace 
(2) 

M 
e 

d=0 
k[V]G 
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CONSTRUCTIVE INVARIANT THEORY 

(here and further is a space of all homogeneous elements of 
degree d of an arbitrary U -graded k-algebra R). On the contrary, 
if it is known that for a certain M ^ ]N the subspace (2) 

G 
generates the algebra k[V] , one can in principle find explicitly 
a minimal system of homogeneous generators of this algebra. Let 
us show how it can be done. Q 

First of all one can explicitly describe the subspace k[V]d 
of k[V] , for any concrete d. It is as follows. If G is finite then k[V] , is clearly a linear span of 1 

l e i 
2 

g G G 
e.f, as f ranges 

over all monomials in x^,...,xn of degree d. If G xs connected 
then k[V]d = {f e k[V]d|(Lie G)f =• 0} with respect to the natural 
action of Lie G by means of differentiations of the algebra k[V]. 
Therefore, the question in this case is reduced to solving the 
corresponding system of linear equations. In general, the question 
can be reduced to the above two cases. 

Let now d^ be such a minimal integer, 0 < d^ < M, that 
k[V]^ =£0. Let us take a basis f. ,...,f of k[V]^ . 

Q ̂  1 q u. ̂  
G 

Let d2 be such a minimal integer, d^ < d^ < M, that k [ V ] ^ is not 
a linear span of all possible monomials in f^,...,f^ that lie in 

G 
k[V] , . Let g. ,. . . ,g be a basis of an arbitrary linear supplement a2 -«- P 

Q 
to this linear span in kCV]^ . Analogously, let d^ be such a minimal ~̂ G integer, d0 < d0 < M, that k[V] , is not a linear span of all I 6 0.3 G possible monomials in f f ,g^3---3g^ that lie in k[V], , l q i p Clg 
and let h^,...,hg be a basis of an arbitrary linear supplement to 

Q this linear span in k[V] , and so forth. a3 
This process will stop after a finite number of steps and it is 
not difficult to see that a finite set of polynomials 
f^,...,f^,g^,...,gp,h^,...,hg,... is in fact a minimal system of 

Q 
homogeneous generators of the algebra k[V] and that an arbitrary 
system of such type is obtained by this procedure (it also follows 305 
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from this that a minimal system of homogeneous generators of 
Q 

k[V] is defined, in a sense, in a unique way; specifically, 
the number of such generators is well defined and equal to 

2 G dim I /1 , I+ being the ideal in k[V] generated by the homogeneous 
elements of strictly positive degree). 

So we see that the problem of the constructive invariant 
theory is in fact equivalent to the problem of the finding 
of a number M. The problem of the case in which G is finite has 
already been solved by E. Noether, [10], [17], who proved that 
one can take M = |G| (and hence dim I /1 < |G|+n 

n ). The problem 
is by no means so satisfactorily solved when G is a connected 
group. Of course, there are a lot of such concrete groups G 

G 
when a minimal system of homogeneous generators of k[V] is 
explicitly described. Nevertheless, it seems that in its general 
setting the problem was considered only by Hilbert in [H] and 
(following HilbertT s idea) in [2] (in this paper G is an image 
of SL under a homogeneous polynomial homomorphism). Hilbert gives two similar approaches to the problem. The first 
one reduces it to "a solution of an elementary problem from the 
arithmetic theory of algebraic functions"; more precisely, to 
the Kronecker method for the constructing of a basis of the 
ingegral closure of a finitely generated domain in its field of 
fractions. The second one is a modification of the first which 
makes it possible to avoid a direct reference to the Kronecker 
method because of some specific properties of the algebras and 
fields under consideration. Hilbert tried to avoid a reference 
to the Kronecker method because he apparently understood that 
it gives only the general strategy (reducing the problem of 
finding of the estimates of the degrees of the certain equations, 
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CONSTRUCTIVE INVARIANT THEORY 

calculating of its discriminants etc.), but leaves the question 
of an explicit calculation of M somewhat vague. As a matter of 
fact the same is related to his second approach and, as a result, 
a constant M was not in fact explicitly calculated (Hilbert 
refers, but only in passing, to his second approach when he 
remarks that "a closer examination also provides an upper bound 
for the weights of the invariants in a complete system which 
depends only on n"). All these circumstances were, I believe, 
the reason why the authors of [2] preserving Hilbert1s main idea 
tried to change the final part of his general strategy, replacing 
the appeal to a method to describe the integral quantities (in 
such a form or another) by a reference to the Nullstellensatz 
(but again the constant M was not explicitly calculated in [2]). 

Several aims will be pursued in this lecture. First, it will 
be shown how "the vagueness" related to the Kronecker method and 
its modifications by means of the recent achievements of the 
invariant theory (the theorem of Hochster and Roberts) can be 
avoided. Second, it will be shown how to generalize the main idea 
of Hilbertfs paper [4] for the case of an arbitrary connected 
semisimple group G. It is to be hoped that this generalization will 
clarify to a certain extent the somewhat unexpected (and at a 
first glance accidental) role which the function (a^j) det(a^O 
plays in Hilbert!s theory. In the case under consideration an 
explicit estimate M can be obtained. This estimate is fantastically 
large and its radical improvement is apparently connected with 
the principal change in the approach itself. To be more precise, 
it will be shown that the degrees of a minimal system of homogeneous 

Q 
generators of k[V] are not greater than the number 
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(3) M = m 

'minimal positive integer divisible 
by each a £ 7L , 

0 < a < 2r+SnS+1(n-l)S-rtr(s+l)I 

3SI s-r 
2 

2 

where s = dim G, r = rk G, m is the transcendence degree over k 
G 

of k[V] and t is the maximum of | | taken over all 1 < £ < r 
ml mr 

and aZ-Z- t/ze monomials t^ . . .t^ that occur in the polynomials 

f ̂ .. (11, . . . ,tr) , 1 < i,j < n, of (1). For instance, if G is the 
image of SL^ under its natural representation in a space of forms 
of degree p in m variables, one can take t = p. The reader will 
see that (3) can be slightly improved by means of more thorougness 
in a number of places, but this was not attempted because it does 
not provide a principal improvement. Third, an approach will be discussed, as suggested in [2], and 
it will be shown that in reality it does not provide a solution 
to the problem (unfortunately in the abstract of the present lecture 
[1] it was pointed out that Hilbert1s approach is the same as in [2], 
but as a matter of fact this is not the case and it would not be 
correct to say that Hilbert1s general strategy does not lead to 
the solution, although it however flawed by a certain vagueness). 
Interestingly, the error in [2] is connected with the certain 

G 
ingenious properties of k[V] . Several intriguing problems arise 
in this context. 
These and other questions are discussed in nn. 7,8. 

The following notations are fixed throughout: 

k[X] the algebra of regular functions of an algebraic 

k* 
variety X, 
multiplicative group of k, 
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]N additive semigroup of nonnegative integers, 

k[b1,...,bd], resp. kCb^j.-.jb^) the algebra, resp. 

the field, generated by b^,...,b^ over k, 

G a connected semisimple algebraic group (if it 

is not otherwise stated). 

Q 

2. As it was proved by Hochster and Roberts, [6], k[VJ is 

a Cohen-Macaulay algebra. This is equivalent to saying that 

if 6^,...,6 ^s a homogeneous system of parameters, i.e. k[V] 

is integral over 

(4) P = k[01,...,em], 

Q 

then k[V] is a free module over P. Let n^,...,^ be a homogeneous 

system of generators of this module, 

(5) k[V]G = Pr^ <B . . . e P n £ . 

We assume that 

(6) 
deg 6. - d . , d. < ... < d , 

deg n• = e. , 0 = e1 < . . . < e£. 

It follows from (*+), (5) and (6) that the Poincaré series of 

k[V]G is 

(7) F(k[V]G,x) = 
CO 
2 

d=0 
dim k[V] G d 

dx 
i=l 

x 
e . 
l 

m 
X 

5 = 1 
(1-x 3) 

A classical formula of Molien-Weyl makes it possible to 

calculate this rational function when k = (E. More precisely, let 

K be a maximal compact subgroup of G such that K n T is a maximal 
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torus of K. Let a.,...,a be the set of the roots of K with 1 s-r 

respect to K n T (we consider a root as a function on K n T) 

and W is the Weyl group of K. Then, [18], 

(8) F(k[V]G,x) 1 

I w I K n T 
f 

(l-a1(g))...(l-as_r(g)) 

det(l-xg) 
dy(g), (|x| < 1), 

where du(g) is the normalized Haar-measure. The integral on the 

right side of (8) reduces to integrals over the unit circumference 

in C and can be calculated in principle by means of residues. In 

the special cases (say, when G is the image of SL^ under an 

irreducible representation) other formulas are also known to 

calculate the Poincaré series, cf. [11], [12]). 
Q 

G being a connected semisimple, it follows that k[V] is 

Gorenstein, see [6]. This means (and in fact is equivalent because 

of Stanley's theorem, [15]) that F(k[V]G,x) satisfies the 

following functional equation 

(9) F(k[V]G,x 1) = (-l)mxqF(k[V]G,x), 

where q ^ 7L . 

Using (7) we see that '(9) is equivalent to 

(10) x 1 
£ 
X 

j = l 

e . 

x 3 
j = i 

e . 

x 3 

and it follows from (6) that (10) is equivalent to 

Cll) V - + d m " e £ - i + l = q+ei' i=1--->*-

Specifically it follows from (11) that 

(12) ez = dx + ... + dm - q 

and 

(13) ei + e£-i+l ~* ̂ £5 = i?«*,3^'# 
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G 
In as much as we can in principle effectively find F(k[V] ,x) , 

the number q is known. We need in reality to know only q, but 
G 

not F(k[V] ,x) itself. Several facts are known a priori- about q 
(for instance, always q > 0, [8]). We shall discuss this question 
in n.7. It follows from (2) and (3) that 0 ^ , . . . , 0 ^ , , . . . , i s a 

G 
homogeneous system of generators of the algebra k[V] . 
We conclude now from (6) and (12) that one can take M in (2) to 
be equal to 
(14) max(d.+...+d -q,d ) 

1 m m 
But it is not generally the case that d^, 1 < i < m, are 

known. One can not derive an upper boundary for these numbers 
G s1 sm directly from F(k[V] ,x) (for example, one can take 0^ ,...,0^ 

instead of 0^,...,0m for arbitrary s^ £ 2Z , s ^ > 0 , 1 < i < m, 
and this set is again a homogeneous system of parameters of 

Q 
k[V] ). So the problem arises to find an a priori upper estimate 
of numbers d.,...,d . 

1 m 
If it is known for instance that 

(15) d < D 
m 

then one can take M in (2) to be equal to 

(16) max(mD-<l,D) < mD 

(It should be noted here that m is equal to the order of the 
Q 

pole of F(k[V] ,x) at x = 1, hence one can in principle effectively 
find m. Another way to calculate m follows from the equality 
m = n-dim Gv = n-s+dim{X ^ Lie G|Xv = 0}, where v is a point of V 
in general position). 
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Our concern now will be to find an upper estimate of the 

degrees of some homogeneous systems of parameters of k [V] 

As a matter of fact this problem was solved by Hilbert in [4], 

when G is an image of SL^ under a homogeneous polynomial 

representation. 

3. We shall now show how to find D in general, by developing 

Hilbert1s idea. 

The general plan is the following. 

Our starting point will be the following important theorem (for 

the first time proved by Hilbert in [4] ) : 

Let Q be any finitely generated graded k-subalgebra of 

c c 
k [V] . Then k [V] n is integral over Q if and only if 

{v e V |f (v) =0 for every fe J^k [V] ̂ } = { v e V | h (v) =0 for 

every h e dS Qd } . 

Denote by N the variety of zeros in V of the homogeneous 
(2 

elements of k [V] " of strictly positive degree. 

It is known that 

(17) N = { v e V | O e Gv} 

(we use bar to denote the closure in V ) . The points from V-N 

are called 6zmZ-^tabtd. 

Let us assume for a moment that we can find such an integer 
C > O that 

(18) 

ioK evciy &e,mZ-6tabZe. potent ve V , thdKd ¿6 a 

komoge,ne,ou6 poZynomZaZ f e k [V] dzgiee. 4; C 

6uch that fv(v) ^ O . 
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Q 
Let A be the k-subalgebra of k[V] generated by the subspace 
C Q 
& k[V] The variety of zeros in V of the homogeneous elements 
d=0 a 
of A of strictly positive degree is exactly N. Let h^,...,h 
be a minimal homogeneous system of generators of A. We can in 
principle effectively find such a system by means of the procedure 
described in n.l. Clearly, deg lu < C, 1 < i < q. Let C be the 
minimal positive integer divisible by each deg h^, 1 < i < q. 
We have 

(19) C < 

f 
minimal positive integer 
divisible by each a ^ ZZ, , 

0 < a < C 

We have also N = {v e V|h±(v) = 0, 1 < i < q} = 
= {v € V|h9/deg hi(v) = 0, 1 < i < q}. Hence k[V]G is integral 
over B = k[hG/deg hl, . . . ,hG/deg h<l] . It follows from the equality 

deg hG//deg hi = C, l < i < q , and from the homogeneous variant 
of E. Noether's normalization lemma, [19], that there exists a 
homogeneous system of parameters of B which are k-linear 
combinations of j19/'deg hi, 1 < i < q. Clearly this will 
automatically be a homogeneous system of parameters of k[V] . 
This proves that one can take D in (15) to be equal to C or| 
(more roughly but withoug finding of h^, 1 < i < q) to the right 
side of (19). 

Therefore we now have the problem of finding C with the 
property (18). 

M-. We proceed to the solution of this problem. 
Further we shall identify k* with the subgroup of the scalar 
matrices in GLn. Let us consider the subgroup H = k * G . T k i s i s a n 
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(s + 1)-dimensional connected reductive group with a onedimensional 
center. Let us consider also its closure H in Mat^. The group 
H acts on Mat by means of left multiplication and H and H are 
invariant under this action. Specifically, H and H are invariant 
under k* and hence are cones. H acts also on V being a subgroup 
of GL . 

n 
Let x^j be the restriction of x^j to H. The algebra k[H] is 

generated by x-j_j 3 1 ^ i»j ^ n, 
(20) k[H] = k[...,Xij,...]. 

and is ]N -graded (deg x^j = 1, 1 < i,j < n ) . 
For a point v V we shall consider its orbit Hv and the 

closure Hv of this orbit in V. Both Hv and Hv are cones, i.e. 
invariant under k* . Let x^, 1 < i < n, be the restriction of x^ 
on Hv. The algebra k[Hv] is generated by x., 1 < i < n, 

(21) k[Hv] = k[x±,...,xR] 

and is U -graded (deg x^ = 1, 1 < i < n ) . It should be noted 
here that the structure of ]N -graded algebras in these cases 
is defined by weight decompositions of the underlying algebras 
with respect to the action of torus k* , i.e. a function f is 
homogeneous of the weight d ^ ~№ iff f(tx) = t^f(x) for each 
t ^ k* and x. 

Proposition 1. A point v ^ V is semi-stable if and only if 

k[Hv"]G k. 
Proof. Let v be a semi-stable point. Then 0 £ Gv, see (17). 

Hence, 0 and Gv are disjointed closed G-invariant sets in Hv. 
But such sets are separated by G-invariants, [9], and therefore 
k[Hv"]G # k. 
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Q Q 
On the contrary, let k[Hv] = k. Clearly k[Hv] is a graded 

Q 
subalgebra of k[Hv]. Let f G k[Hv] be an element of strictly 
positive degree. Being homogeneous f has the properties f(0) = 0 
and f(tgv) = tdeg ff(gv) = tdeg ff(v). Therefore, f(v) 0 because Hv is dense in Hv. We see now that Gv lies in the closed 
set {u G Hv|f(u) = f(v)} $ 0. The proposition is proved. 

Let us consider the morphism 

(22) a: H -> Hv 

defined by formula 

a(h) = hv (multiplication of a matrix by a column) 

This morphism commutes with the action of H. Clearly the 
corresponding comorphism of the UN -graded algebras 

a*: k[Hv] k[H] 

is a degree-preserving monomorphism. If x^(v) = a^, 1 < i < n, 
then 

a*(x.) = a.x.„ + ... + a x. . 
i l il n in 

It follows now from (21) that 

(23) 
|a*(k[HvJ) is an H-invariant graded subalgebra of 

k[H] generated by n homogeneous elements 

alxil+"*"+anxin5 1 ^ i ^ n, of degree 1 

We derive from Proposition 1 the following 
Proposition 2. A point v ^ V is semi-stable if and only if 

(24) a*(k[Hv]) n k[H]G * k. 
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The advantage of this formulation is that one can say 
a lot about the structure and properties of k[H] . 

More precisely, let f be a rational character of H, i.e. 
a homomorphism H -* k*. We consider f as a regular function 
on H and a rational function on H. This function is G-invariant 
because G is semisimple. The set of all such characters of H 
that are regular on H is a semigroup S (with an unity) in 
the (multiplicative) character group of H. Its elements are 
homogeneous elements of k[H] . 

Proposition 3. One has: 
Q 

1) k[H] is the vector space spanned by S over k, 
2) dim k[H]G < 1 for each d e u , 
3) k[H]G # k, 
4) S is a finitely generated semigroup and f deg f 

is an isomorphism of S with a certain subsemigroup of 3N . 
Q 

Proof. 1) Let f be a nonzero homogeneous element of k[H] , 
deg f = d. We have f(tg) = tdf(g) = tdf(lR) for every t G k*, 
g G G (here 1 is the unity of the group G). Therefore f(ln) ^ 6 
because H = k*G is dense in H. Multiplying f by a suitable 
constant we can assume = !• Hence f(tg) = td, i.e. f ^ S. 

2) Let f and h be nonzero homogeneous elements of 
k[H] and deg f = deg h. These elements are the semi-invariants 
of the torus k* of the same weight. Hence, the rational function 
f/h is an H-invariant. Therefore, f/h £ k. 

3) Clearly, the function det: (a^j) detCa^-) is 
Q 

a nonconstant homogeneous element of k[H] of the degree n. 
4) k[H] is finitely generated because G is reductive. 

It follows from 1) and 2) that S is finitely generated. 
The algebra k[H] is 3N -graded and the elements of S are homogeneous. 316 
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Hence we have deg f €E Tï , f ^ S, and 4 ) follows. 

The proposition is proved. 

It should be noted here that if H is known to be normal, then 

We can describe semigroup S more precisely. 

Proposition 4. If H is normal then S is a semigroup with one 

generator. This generator in its turn is a generator of the 

character group of H. 

Proof. The character group of H is isomorphic to 2Z because 

the center of H is onedimensional. Let us take one of the (two 

possible) generators of this group, say $, that is uniquely defined 

by the property: det = $^ for a certain d > o. But det ^ k[H] 

and therefore $ is integral over k[H]. Hence, $ ^ S because of 

normality. We see now that G S, h = 0,1,2,... . 

We have $(0) = 0 hence $h £ S for h < 0. 

The proposition is proved. 

Remark. It is easy to understand that $ is given by the 

formula <Ktg) = t 'k* °G ' , t € k* , g e G. Therefore deg $ = | k* n G | 

Specifically, if the centre of G is trivial, then $(tg) = t. 

In general, we know nothing about the normality of H. 

Therefore, we have to use in our effective constructions only 

the elements that we definitely know to lie in S and these 

elements are det^, d £ I . But they are sufficient for our 

purposes. 

The condition (24) is equivalent to the condition 

(25) <x*(k[Hv]) n S 1. 

How can one know when (25) is fulfilled? The answer is given 

by 

Proposition 5. Let F be a graded ^.-invariant k-subalgebra of 

k[H], k C F. Then the following properties are equivalent : 
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1) F H S # 1, 
2) there exists f ^ S, f # 1, that is integral over F, 
3) every h & S is integral over F, 
4) k[H] £s integral over F. 
Proof. 2) *> 3). It follows from 4) of Proposition 3 that 

(jgg Yi des; f • • des h f & = h & Function f being integral over F, hence f & 
• de s. f is also integral over F. Therefore, h & is integral over F 

and it follows from deg f > 0 that h itself is also. 
3 ) 4 ) follows from 4) of Proposition 3. 
1) ~ 2) Let 

(26) fd + fd"1b. + . . . + f b , A + b , = 0, b. e F, 1 < i < d, 
1 d-1 a i 

be an equation of integral dependence. We can assume that 
b^, 1 < i < n, are homogeneous because f is homogeneous. 
Now, we apply Reynolds operator of averaging over G to the 
both sides of (26), [9]. It follows from the G-invariant of 
f that we shall obtain 

(27) fd + fd"1b5 + ... + fha-l + bd = °5 

h — G i 
where b. ^ k [ H ] , 1 < i < d. Clearly F is invariant under a, 

1 M - G therefore bV e F n k[H] , 1 < i < d. We have also 

(28) deg b|? = i deg f < d deg f, 1 < i < d. 

It follows from (27), (28) and from the condition f 1 that 
there exists at least one i such that bv is a nonconstant 
homogeneous G-invariant. According to 1) and 2) of Proposition 3 
this element multiplied by a suitable constant from k lies in S. 
Hence F H s ^ 1. 
The proposition is proved. 
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Corollary 1. F O k[H] TÉ k and only if det is integral  

over F. 

From (28) and the proof of Proposition 5 may be drawn the  

following 

Corollary 2. If f G f ^ 1, -¿5 integral over F t/zen there 

exists a nonoonstant homogeneous G-invariant element in F of  

degree < d deg f., where d is t/ze minimal degree of the equations  

of integral dependence satisfied by f over F. 

Applying to the case F =. a*(k[Hv]) and using (25), (23) and  

Proposition 2 we obtain 

Proposition 6. A point v = t 1 

a 
i n 

€E V is semi-stable if and 

only if the function det €E k[H] is integral over the graded 

subalgebra Av of k[H] that is generated by the elements 

a„x.. + . . . + a x . , 1 < i < n, of degree 1» If d~ is the minimal  1 1 1 n m ' > j y 0 

degree of the equations of integral dependence satisfied by det 

over A , then there exists a nonconstant homogeneous polynomial 

G 
of degree < dnn in k[V] which do not vanish at v. 

Therefore we shall be able to find C satisfying (18) if a  

number will be explicitly known that is not less than the  

minimal degree of the equations of integral dependence satisfied  

by det over Av for every semi-stable point v. We shall now show  

how to find such a number. 

50 Let v G V be a semi-stable point. There exists a homogeneous  

system of parameters of A , say b^,...,bjl9 such that deg = 1,  

1 < i < h (because Av is generated by a system of homogeneous  

elements of degree 1). Function det is integral over Av, hence  

also over = k[b^,...,b^]. Therefore the minimal degree of the  

equations of integral dependence satisfied by det over Av is not 
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greater than the same for det over B^. But B^ is integraly 
closed because of the algebraical independence of b^,e.. ,b^. 
Therefore, the minimal equation of det over k(b^ , ...,b^) has 
its coefficients in Bv. Complete the sequence b^,..a,b^ with 
s + l-h elements b, .....,b . , taken from among the x. . , n+1 s + 1 ° i j 
1 ^ i,j ^ n such that b^,..»,bs+^ are algebraically independent 
over k (it is possible because of (20)). It is easy to see 
that the minimal polynomial of det over k(b^ , . . .,b^) is 
the same as over k(b^,..•,b ^ ) . Therefore, it will be sufficient 
for our purposes to find an upper boundary (that does not depend 
on v) of the degree of the minimal polynomial of det over 
k(b^,.. . ,bg + ̂ ) . One can do it as follows. 

Let us consider for each p ^ XI the set of all monomials in 
b1, .. . ,bg + 1, det of degree p 

(29) bl1-"bs + l1 det±> *1 + ••• + S + l + in = P-

If it happens that for a certain p = Pg these monomials are 
linearly dependent over k then one can say that the degree of 
the minimal polynomial of det over k(b^,...,bg+^) is not greater 
than Pg/n. Indeed, if for p = pg a nontrivial linear combination 

(30) 2. . 4 i b^-.-b S t 1 det1, i1+...+is + 1+m=p 1 s + l 

where a. . . 6 k, is equal to zero, then there exists at 
11- * ̂ s + l1 

least one nonzero a. . • with i 0 (because b1 , . . . ,b >. are 
11' " ̂ s + l1 ^ S 

algebraically independent). It follows from (29) that i < Pg/n 
for every a. • Therefore it follows from (30) that det is 

^'••^s + l1 
a root of an equation of degree < Pg/n with its coefficients in 
k(bl5...,bs+1). 

So we now have the problem of finding pQ. Technically it will 
be more conveniet for us to consider only those of (29) for which 
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(31) p = nc and i1 = njl3 . . . , i s + 1=r njs+1 

where c , j ^ , . . . a r e integers. We shall find such c = CQ that 
-the monomials (29) with property (31) are l inearly dependent 
over k. Hence the degree of the minimal polynomial of det over 
k (b^ , . . . , b ^) will not be greater than c^. 

6. Let N+ and N be the pair of "opposite" maximal nilpotent 
subalgebras of Lie G that correspond to a choice of positive 
and negative roots with respect to T. Let , . . . ,Y^ and 
Z^, . . . ,Z^ be the bases of the linear spaces N+ and N , d = ( s - r ) / 2 , 
and y^5...5yd and z^, . . . the coordinate functions on these 
spaces with respect to these bases. 

+ r — 
Let us consider the variety N x k* x N . One can identify 

in a natural way the functions y ^ , . . . ^ ^ , z ^ , . . . , z ^ , t^, -1 -1 . . t^ , . . . , t ^ , t with the regular functions on this variety. 
Clearly k[N+ x k*r x N"] is generated by these functions. 

For an arbitrary nilpotent matrix X ^ Matn its exponential 

exp X is the matrix 

(32) 1 
n 

+ 1 
l : x + l 

2 1 X2 + . . . + 1 
(n-1)1 

n-1 

Decause = 0 when p > n. 

I t is well known, [7] , that the morphism 

3 : N+ x k*r x N" H 

given by the formula (cf. (1)) 

3(X+,(al5. . . ,ar) ,X 1) = exp X+(f^Ca± , . . . ,ap))exp X" 

is an isomorphism of N+ x k*r x N with an open set of G ("big cell"). 
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Consider now the following matrices (with its coefficients 
in k [ N + x k*r x N ] ) 

(33) Y 
d 
2 y .Y. 

i = l 1 1 
and 

d 
Z = 2 z.Z. 

i = l 1 1 
Let exp Y and exp Z be the results of the substitution of Y 
and resp. Z instead of X in (32). Then 

(34) 
3*(x^j) is the coefficient of the matrix 

exp Y (fpq(t15...,tr)) exp Z 
situated in its i-th row and j-th column 

It follows now from (34), (33), (32) and the definition of 
the number t (cf. (1) and (3)) that 

(35) 

3*(x^O is a ^-linear combination of the monomials 

y± ...yd Z± ...zd t± ...tr 

where r. ,q. ^ IN , 1 < i < d, m. ^ Z , 1 < j < r, and 

0 < r1+...+rd < n-1, 
0 < q1+...+qd < n-1, 

max I m. I < t 
K i < r 1 

Now we note that the function (30) is homogeneous and hence 
is equal to zero if and only if its restriction to G vanishes. 
In its turn it happens if and only if the image of this 
restriction under the comorphism $*, i.e. the function 

(36) S a. • , 3*(b^.. - b ^ 1 det1), 
. .+ig + 1+ni = p 1l---1s + l:L 1 S + "L 

vanishes. 
The function b ^ . - . b ^ ^ 1 det*, i^+. . . +ig+1+ni = p, is 

homogeneous of degree p ,therefore it follows form (35) that 
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(37) 

I the function (36) is a linear combination of the 

monomials 

v 1 v dz 1 z dt 1 t r 

where ^ ^ q ^ ^ 3N , l < i < d , m. G Z , 1 < j < r, and 

0 < r1+...+rd < p(n-l), 
0 < q1-H. . .+qd < p(n-l) , 

max | m. | < pi: 
1< i < r 1 

and the coefficients of this linear combination are the 

^-linear combinations of the element a. .. • , 
11* • s + 1 

il+---+is+l+ni = 

We need to remember here that if 6^,...,6^ are the variables 
then 

(38) 

Sl Sh 
the total number of the monomials 6^ . . . 6^ , s^ € 3N , 

1 < i < h, is equal to ^ if s^+- • *+sh = k ana* 

equal to (^^^ si+**,+sh ^ ^ * 
It easily follows from (38) that the total number of the 

monomials in y^9...,y^, z^,,.,,z^, t^,...,^ that are described 
in (37) is not greater than 

d+p(n-l) 
d 

i 2 
(2pt+l)r. 

On the other hand assume now that the conditions (31) are 
fulfilled. It follows then from (38) that for a given c the total 
number of the coefficients a. . . in (30) is equal to 

±1" ^ s + l1 
s+c+1 

c 
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In view of (37) we see that if for a certain c one has an 
inequality 

(39) 
d+cn(n-l)J 

d 

2 
(2cnt+l)r < s+c+1 

c 

then the monomials (29) (with the conditions (31) to be 
fulfilled) are linearly dependent over k. Let us show that (39) 
is fulfilled for 

(40) c = r2s+rns(n-i)s-rtr(s+i):l 
3Si s-r 

2 

Indeed, we have d = (s-r)/2 < n(n-l)/2 and 

d+cn(n-l) 
d 

2 
(2cnt + i r (cn(n-l)+d)2d 

(d! )2 
(2cnt+l)r = 

(c + d 
n(n-l) 

)S-rns-r(n_1)S-r 

2 

(c + 1 
2nt r(2nt)r < 

< (c + i)s nS(n-l)S^r2rt1? 
s-r 
2 

, 2 

Also ,s+c+l 
c ) > 

s + 1 
c (s+T )! Hence (39) is definitely fulfilled if 

(c+i)s ns(n-l)s^2rtr 
/ s-r 

2 t 
< 

s + 1 
c 
(s+i): 

or equivalently if 

nS(n-l)S r2rtr(s+l)! 
's-r^ 
2 

t 2 
< c 1 

^1 + 1 2c 

s 

Phis ineaualitv in its turn is fulfilled if c is given by the 
formula (M-0) because (1 + 1 

2c' > 
3_ 
9 
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Summing up all the results of nn. 1-6 we obtain the 
following 

Theorem. Let G C GLn(V) be a connected semisimple algebraic 

group, s = dim G, r = rk G. Let m be the transcendence degree of 
Q 

k[V] over k and t be a constant defined in (3). Then the degrees 
of the elements of a minimal homogeneous system of generators 

G 
of the algebra k[V] are not greater than the number 

m 

minimal positive integer divisible 

by each a ^ 7L , 

0 < a < 2^snS + 1(n-l)S-rtr(s + l)l 
3s s-r 

2 

7. This section contains several remarks about the number q in 
(9) . 

G 
We know that F(k[V] ,x) has a pole of order m at x = 1. 

Therefore the Laurent expansion about x = 1 begins 

(41) F(k[V]G,x) Y 
(l-x)m + 

x 
(l-x)m_1 

+ . . . . 

It follows from (7) and (41) that 

(42) Y = lim (l-x)m 
x+1 

2 
e. 

x 1 
i = l 
m 
n 

3=1 

d. 
(1-x 3) 

m 
n d. 

3 
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(43) T = - lim 
x-*l 

d 
dx 

£ e. 
2 x 1 
i=l 
m 
•II 
j = l 

d. 
(1-x 3) 

(l-xm) lim 
x+1 

d 
dx 

£ e. 
2 x 1 
i=l 

m 
n 
j = l 

(l+x+...+x 
d.-l 
3 ) 

£ 
- S e 
i=l 

m 
. n d. 
^3 = 1 3 

+ 
m 
2 
i = l 

d (d -1) 

2 
ïï 

i*3 
d. 

m 
n 

j = l 

d? 
3 

m 
£ 2 
i = l 

(d.-l) 
£ 

2 2 
i=l 

e . 
î 

2 
m 
n 
3 = 1 

d. 
3 

Therefore 

(44) 2T 

Y 

m 
2 
3 = 1 

(dj-1) 2 
£ 

£ 
2 
i=l 

e . . 
î 

Adding up the equalities (11) over all i=!,...,£ we shall obtain 

(45) 
m 
2 
3 = 1 

q 
2 
£ 

£ 
2 
i=l 

e . . 
l 

Now it follows from (45) and (44) that 

2x 
Y 

= q-m 

or in another form 

(46) 2T 
Y 

+ dim V - (dim Gv, v £ V is a point in general 

position) . 

So we have 

1) 
2T 

Y 
is always an integer, 

2) q = dim V 2T 
Y 

= (dim Gv, v ^ V is a point in general position). 
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As a matter of fact to derive the conclusions we used only 
Q 

that k[V] is Gorenstein (but not that G is a connected 
semisimple group). Specifically, these conclusions are also 

Q 
valid for those finite G with a property that k[V] is 
Gorenstein (e.g. if 6 C SLn> cf* [13]). It is remarkable 
that one can describe y and T for an arbitrary finite group G 
completely in terms of the internal properties of G itself, 
[13]: 
(47) 

Y 1 

T = the number of pseudo-reflections in G 
2|GT 

Therefore in this case 

(48) 2T 
Y the number of pseudo-reflections in G. 

G 
If G is finite and k[V] is Gorenstein then it follows 

from (46) that 

q = dim V + (the number of pseudo-reflections in G) . 

If for instance G C SL then q = dim V (it should be noted 
n 

Q 
also conversely that if k[V] is Gorenstein and q = dim V then 
G C SLn, cf. [13]). 

It seems to me to be very interesting to establish whether 
2T 

there exists an interpretation of the numbers y,T and — 
completely in terms of the internal properties of G itself, 
that is analogous to (47), (48), when G is a connected semisimple 
group. 

It is proved in [14] that if G is a connected semisimple and 
the trivial character of T is "critial" then 

(47) q = dim V, hence 2x Y (dim Gv, v e V is a point in 
general position). 

327 



V. L. POPOV 

If for instance G is an image of SL^ under its natural 
representation in the space of binary forms of degree n-1, 
then the trivial character is critical and (47) is fulfilled 
when n > 4, [14] (and (47) is not fulfilled when n = 2,3). 

8. We shall discuss in this last section an approach to the 
solution of the problem of constructive invariant theory suggested 
in [2]. 

The general strategy in [2] is the same as in n.3 - it provides 
an effective way to calculate the constant C satisfying the 
property (18). (It should be incidentally noted that the 
reasoning on page 67 in [2] is not correct. That is to say, the 
ring Bf depends on the point XQ, therefore the minimal equations 
of det(Y^j) over the fields of fractions of the rings Br 
constructed for the rings B! constructed for XQ and s.XQ are 
a priori different. Hence, the equality Q^( (_. ) . ( s . xQ ) ) = 
= Q, ((Y..).xn) remains unsubstantiated. As a matter of fact, 
the assertion itself is correct but one has to change the proof 
using Reynolds operator t] as it was done above, n. 4, formula (27)). 
After finding the constant C, the authors consider an ideal J 
in k[V] generated by all polynomials f , v € V-N, see (18), and 
then notice: "the Nullstellensatz shows that some power of every 
invariant is in J. As we may (at least theoretically) pick a 
finite system of generators of J of degree < Mf (= C) we are then 
reduced to forming a system of generators of the "root" of J; 
Hilbertfs own proof of his Nulstellensatz shows how this (again 
theoretically) may be done explicitly". But in reality this 
assertion leads to the solution only if /J coincides with the ideal 
I in k[V] generated by all G-invariant polynomials of strictly 
positive degree (it is easy to understand that a set of invariants, 
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that is a homogeneous system of generators of I, is also a 
system of generators of k[V] ). However, in general we have only 
the equality 

/J = /1. 

Therefore /J = I if and only if I is the radical ideal, i.e. 
/X = I. There seems to be an impression that in [2] the equality 
/X = I is considered to be self-evident. However, in general this 
equality does not take place. Examples are given below, but here 
we say only that when /1 I we can say nothing in general about 
the basis of I, knowing the basis of /X (hence the approach 
suggested in [2] does not lead to the solution). 

Now , for the examples. Firstly, it is evident that if G is 
finite then /1 always coincides with the ideal in k[x^,...,xn] 
generated by x^,...,xn- Hence /1 ^ I if 6 is not trivial. It is 
more interesting (and more difficult) to construct such an 
example when G is a connected semisimple group. One can find in 
[3], pp. 15 9-16 0, an example when G is isomorphic to S0(2k+1). 
But it is only the classical case of homogeneous polynomial 
representations of SL^ under consideration in [2]. Therefore it 
will be more instructive to have an example valid for this case. 
We shall show now that if G is an image of SI^ under its natural 
representation in the space of binary forms of degree 6, then 
/X * I. 

Denote by the unique (up to isomorphism) irreducible 
SL^-module of degree d+1. It is known that the multiplicity 
c(d,e) of R^ in k[V]e is equal to the dimension of the space of 
covariants of binary form of degree e that are homogeneous of degree 
6 in the coefficients and order d in the variables (i.e. 
c(d,e) = m(e,6,d) in the notations of [11]). Calculating these 
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numbers by means of one known method or another (I used 

Sylvester 1 s tables of Poincare series for the covariants, [16] ) 

one obtains the following table 

e 1 2 3 4 5 6 8 10 

d 2 4 2 4 2 4 4 4 

c(d,e) 0 1 1 2 2 4 7 11 

It is known that k[V] has a minimal homogeneous system of 

generators f 2 , f ^ , f g , f 1 Q , f 1 5 , deg f ± = i, with f 2 , f ^ , f g , f 1 Q 

2 
algebraically independent and f̂ <- G k [ f 2 , f ^ , f g , f ] , see [11]. 

Clearly I 5 = k [ V ] 3 f 2 © k[V] 1f l +. It follows from the table 

above that the multiplicity of in 1^ is equal to 1. We can 

conclude now from c(2,5) = 2 that there exists a submodule 

R 0 in k [ V ] r that does not lie in I,-. We also have 
Z D O 

I 1 0 = k [ V ] g f 2 + k [ V ] 6 f 4 + k [ V ] 4 f 6 + k [ V ] Q f 1 0 . The polynomials 

f 2,f l +,fg clearly are irreducible, hence 

k [ v ] 8 f 2 n k [ v ] 6 f 4 n k [ v ] 4 f 6 = 0. 
But k [ V ] g f 2 + k [ V ] 6 f 4 s ( k [ V ] g f 2 ® k[V] 6f 4)/(k[V] 8f 2 n kCVlgf^) 

and it is easy to understand that k [ V ] g f 2 n k[V]gf 4 = k [ V ] 4 f 2 f 4 . 

It follows from here and from the table above that the multiplicity 

of R^ in I Q is equal to c(4,8) + c(4,6) - c(4,4) + c(4,4) = 7+4 = 

= 11 = c(4,10). Therefore, every irreducible submodule R^ in 

k [ V ] 1 Q lies in fact in I ^ Q - Let us now take a submodule R 2 in 

k [ V ] 5 that does not lie in I G and let f be an element of this 

submodule that is a highest vector (with respect to some fixed 

maximal torus and Borel subgroup B of SL 2>. So f is a B-semi-
2 

invariant of the weight 2. But f ^ k [ V ] 1 Q is evidently a 
2 

B-semi-invariant of the weight 4. Therefore f is a highest vector 
2 

of a module R^ C k [ V ] 1 Q . It follows from the above that f G I ^ Q . 

We now see that f e k[V] , f £ I, but f 2 € I, i.e. / 1 ^ 1 . 
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It will be interesting to clarify whether or not I is 

radical for the other irreducible representations of Sh^ (it is 

easy to see that I is radical for the representations of 

dimensions 2,3,4,5; apparently it is not the case for the 

dimensions ^ 8 ) . The property for I to be radical seems to be 

very ingenious and to reflect important properties of G-module 

k[V] (for example one can prove that if /T = I and there exists 
G 

a dense orbit in N, then k[V] is a free k[V] -module). It would 

also be interesting to classify the connected semisimple groups 

for those /X - I. 

The fact that /X I leads in general to a number of questions 

about the structure of I itself. There is as yet little known in 

this direction. We want to conclude by formulation a conjecture 

about the structure of the reduced primary decomposition of I. 

Let X(T) be the character group of T (written additively). 

We consider X(T) as a lattice in X(T) ® s Q• Let A be the set of 

the weights of T in V. Denote by the weight space in V of 

the weight A £ A. Consider all the maximal subsets A ^ ^ of A 

that lie in an open halfspace of X(T) Q (depending on A ^ ^ ) 

and for each A ^ ^ consider the following subspace in V 
N < " > 

xeA ( y ) 

T 
Let k[V] be the subalgebra of T-invariants in k [ V ] , 1̂ , the ideal 

T 

in k[V] generated by all homogeneous elements of k[V] of strictly 

positive degree and the variety of zeros of 1,̂  in V. It follows 

from the Hilbert-Mumford theorem, [9], that 
N T = U N ^ y ) , 

N = G N T = U G N ^ y ) . 
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It may happen in general that G N ^ y ) CI GN^, V ). 

Conjectures (Vinberg). 

1 ) . There is no imbedded primes belonging to a reduced primary 

decomposition of 1^, 

2 ) . The varieties defined by imbedded, primes belonging to 

a reduced primary decompostion of I are exactly those G N ^ ^ 

for which there exists such v that G N ^ ^ C GN,£ V^. 
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