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FREE RESOLUTIONS OF TENSOR FORMS 

H. Andréas Nielsen 

Introduction 

Let fTij} be a mxn matrix of indeterminates. For ail t 

we construct bounded free resolutions of the ideals generated by 

t-minors of { T ^ } in the polynomial ring ZZ[{T±^}]. If m = n 

and T.. = T.. (resp. T.. = - T . . ) , we construct, by the same 

procédure, bounded free resolutions of the ideals generated by 

t-minors (reps. 2t-pfaffians). Also Plûcker and Veronese embed-

dings are treated. 

The constructions are global in the sensé that they are car-

ried out for a graded symmetric algebra of a locally free module 

over a noetherian scheme. A base change along a given cosection 

provide us with locally free resolutions in the perfect, depth 

generic cases. If the base scheme is defined over the field of 

rational numbers, a homotopy construction gives rise to minimal 

resolutions similar to those previously obtained by Jôzefiak and 

Pragacz [6], Lascoux [10,11] and Nielsen [12]. 

In section 1 we give the gênerai graded construction which 

is of interest in itself. Sections 2 and 3 contain the applica­

tions and examples mentioned above. 
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1. Graded complexes 

Objects M, N are graded by the integers 7Z with [M]n 

the n'th homogeneous component. Graded maps f : M -* N have 

degree 0 and n1 th. homogeneous component: [f]n: [M]n -* [Nln. 

M(m) and f(m) dénote the same object and map with shifted 

grading [M(m) ]n = [M]m+n, f (m) : M ( m ) - N(m) with [f(m)Jn = 

[f]m+n. Graded modules M over a graded ring A satisfy 

[A]m[M]n 5 [M]m+n. 

For a module V, SV (AV) dénote the symmetric (exter-

ior) algebra with [SV]n = SnV ([AV]n =AnV) being n«th symmet­

ric (exterior) product of V for n > 0 and the zéro module 

for n < 0. 

Définition 1 , 1 , Let V be a module on a scheme (X,Ox) 

and let M be a graded SV-module. For ail p,q£ffi, we define 

graded SV-modules 

( 1 . 2 ) Eoq = [M]q®_ A p qV®n SV(p) 
UX X 

and graded SV-linear maps 

(1.3) ao ' Eo Eo 
dpq: Epq _ EP+1q 

satisfying: 
[M]q®_ A p qV®n SV(p) 

UX X 
dp1+qdpq _ o, [M]q®_ A p qV®n SV(p) 

UX X 

in non-trivial cases given by 

[dPq]n(mq ® v1 A ... A v_p_q ® w 1 ® ®wp+nJ 

= r . , r. -, (-1) v.mq® V. A V. A V ®wi ® ® w . _ 

i€[1,-p-q]x i 1 i ~p-q 1 pH-n 

[dPq]n(mq 0 vn A ... A v ® w 1 9 . . . ®wp+n) 

= Zi€[1,-p-q3 (-1)l"1niq® V1 A...V±... AV •vi«w1«...«WPTA. 
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Altogether we have a double complex 

(1.4) (Epq dpq dpq} 
KShQ 'aQ 'a1 ' P,qtZ 

with total complex 

(1.5) (E£,d£) rEZZ,"9 
DF IL 

p+q=r 

Epq DF 11 
F^q=r 

dpq + dpq 
ao 1 • 

Définition 1.6. A (double) complex is called bounded if only 

finitely many chain objects are + 0 . A complex ( K r , d r ) i s 

called a resolution (of M) if, Kr = 0 for r > 0 , Hr(K") = 0 for 

r 4 0 (and H° (K' ) ~ M) . 

Theorem 1.7. Let V be a cohérent locally free module on a 

noetherian scheme (X,Ox) and assume M to be a graded cohérent 

SV-module with ail [M]q locally free (Démodules. 

The complex (1.5) is a bounded resolution of M with locally 

free graded SV-modules. 

Put d = sup{p £ 2Z | [Tor.SV (M,SV/VSV]P * 0} and dénote by 

(1.8) (Epq dpq dpq) 
Ktl 'a0 'Q1 jp>-d 

the bounded double complex having the same chains and differen-

tials as (1.4) for p > -d and 0 else. 

The total complex of (1.8) 

(1.9) (Er,dr); Er = IL [M]r~P®n A r V ® n SV(p) 
p>-d UX UX 

is a bounded resolution of M with E cohérent locally free 

graded SV-modules. 
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Proof. For fixed n€ffi the graded component ([Epq]n, 

[d^q]nf [d^q]n)p^q€zz of (1.4) is a bounded double complex with 

column cohomology Hq ( [ Ej? * ]n, [ dj? * ] n) ~ [TorfV_ (M,SV/VSV)]~P® S**"^ 
p g 

and rows ( [Epq]n, [dPq]n) p€ZZ exact for q * n with cohomology 

H n ( [EQ11]11, [d^jn]n) ~ [M]n and zéro else. The conclusions fol-

low easily now. 

Proposition 1.10. Given homotopy équivalences (E^/dn*3)^™ ~ 

• • .. .= U qtffi — 

(Hq (Ep /do*))q€^; of each column in the double complex (1.8) to 

its own cohomology, we may construct a bounded complex with co­ 

hérent locally free graded chains 

(1.11) E ^ = IL €a[Torf^(M,SV/VSV) ]q 0O SV(r-q) 
X 

and dif ferentials d^ : E^ -* E^ satisfying d^ ®gv idgv^vsv = 0 

r r 

together with a homotopy équivalence between the complex (Ev^h^r€E 

and the resolution (1.9) . 

Proof. Since (1.11) is column cohomology, we only need the 

induction step after column index p. Given a diagram of maps 

of complexes 

pi 

D1 

C 

1h 

fF 

PO 

Do 

CO 

IO 

and homotopies dksk + skdk = pkik - id; dkfck+fckdk = ikpk ~ id' 

k = 0,1. Then (napping cone Cn(f) = D^+1 9 D n , d n = - d £ + 1 + d", +fIïf1) 
p 1 0 

there are maps C* (f ) ^ZZlT C" (pQf i1 ) and homotopies ds + s d = p i - i d ; 

dt + td = ip - id, given by p = P1 + p 0 + p Q f t 1 and i, s and t 
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are determined by chase in the following commutative diagram 

coming from the long exact homotopy séquences ([,] dénotes 

homotopy classes of maps of complexes, [ ] shift, cf.[14]) 

[c0[i] ,c-(f) l -> [c^n^c-Cf)] - [c-(p0fi1) ,c-(f)]-»[c0,c-(f)] - [ c v c - ( f ) ] 

-op0[1] -oPl[1] -•Dp -op0 -op^! 

[DQ[1]#C-(f)] - [D ^ U ^ ' C f ) ] - [C-(f),C"(f)] - [D0,C-(f)] -* [DlfC-(f)] 

Unfortunately, this provides us with complicated looking formu­

las, e.g. one gets an i with 11 terms. 

Sorollary 1.12. Let s: V -> Ox be a cosection of V and 

dénote Ox regarded as (nongraded) SV-module through s by gOx. 

If T o r f (M,sOx) = 0 for i * 0, then the complex 

(1 .13) (sEr,sdr) = (Er0sv O x , d r 0 s v i d ) 
S X 

Er = 1 [M]q0o A"p-qV 
S p+q=r °X 

is a bounded resolution of M ®gv gOx with cohérent locally free 

O^-modules. 

If moreover the assumptions of Proposition 1.10 are satis-

fied, then the complex 

(1.14) (8E^sdf) = ( E ^ s v s O x / d f ® s v i d ) 
s x 

Er = TorSY(M,SV/VSV) s 1 -r 

is a bounded cohérent Ox-locally free resolution homotopy équival­

ent to (1.13). 

293 



H. A. NIELSEN 

Lemma 1,15. If for each maximal x € Supp M ® O 

depth 
°x,x^P< W«0xOXf/«Vx,x' 

then T o r f (M,sOx) = 0 for 

i * 0. 

Proof. Lemme d1acyclicite. 

2. Minors of a gênerai matrix 

Partitions X l~ n of a natural number n€ UN are functions 

X : -> 3N0 such that x ( i ) £ X(i+1) a^d ^ i ç ^ X t i ) = n. We 

introduce u)n h n, ^n^i) = 1 for i l n / the Young dual of x h , 

X~ = 2içnN (i) ' the rank ô ̂ X) = sup{ i € U | x(i) ̂  il, and the 

length 1 (x) = sup{i € 3N | x ^ w ^ , where x ^ X 1 X (i) ̂  X(i1) 

for ail i € 3N. The Ferrers-Sylvester graph of x i s r^ = 

{ (i, j) € IN x]N | j < x(i) } . 

Let E, F dénote cohérent locally free modules on a noether-

ian scheme (X,Oy). Set V = E ® F and for X n/ let xv E sv 
X X 

be the SV-ideal generated locally by éléments n j çigdet ̂  ei j ® fkj ̂ i k 

for all indexing Tx-> Ejo,(i,j) e±j and Tx Fjuf(k,j) »̂  fk_., 

(1^ idéal generated locally by t-minors). 

Theorem 2.1. Suppose E, F have constant rkE = m, rk F n 

on X. Set = S m ^ s n and d = s u p { p e E | [Torf^ (SV^/I^ ,S)]PfO}. 

In case V = E ® F, M = SV/I defined above, the bounded 
X wt 

double complex (1.8), (Epq,dpq,dpq)p>_d, has total complex with 
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chains the cohérent locally free graded SV-modules 

(2.2) Er = IL [ S E 0 F / I ]r~P®n A""rE®F® S E ® F (p) 
p^-d wt UX UX 

and (Er,dr) is a bounded resolution of S E ® . F / 1 
t 

Proof. Follows from Theorem 1.7 once we note that [M3q 

are locally free and defined functorial with respect to base 

change, [1]. 

Remark 2.3. Unfortunately no calculation of the d in 

Theorem 2.1 is available. From Proposition 2.8 below, treating 

the case G cz 0X, we get the lower bound d > mn - sup{m,n} (t-1 ) . 

It would be of great interest to know if Tor. (SV„,/I ,7L) 

are free ffi-modules,in which case we would have equality above, 

or not. 

Corollary 2.4. The complex (Er,dr) of Theorem 2.1 is a 

complex of functors on the category of pairs of quasi-ooherent 

Ox~modules, giving a resolution of S E ® F / I ^ in case E, F 

are cohérent locally free of constant rk E = m, rk F = n. 

If we delete the summation restriction p >-d, then we get 

a functorial complex giving a resolution for ail cohérent locally 

free E, F. 

Proposition 2.5. Let E -» Fv be an Ox-linear map and let 

s: E ® F -* 0X dénote the induced cosection. Under the assumptions 

of theorem 2.1 we set °x/^t = SV/X^ ®sv s°X and suPP°se that for 
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ail maximal x € Supp Ox/It, depth Ox x > (m-t+1 ) (n-t+1 ) , 

then = holds and the complex ( Er, dr) 
s s 

(2.6) Er = IL [ S E ® F / I ]r P®n A ~ r E ® F 
p>-d "t °X 

is a bounded resolution of Ox/I^_ with cohérent locally free 

Ox-modules. 

Proof. Follows directly from corollary 1.12 and lemma 1.15 

using strongly generically perfectness of SVffi/I^ , [4]. 

Remark 2.7. 1( E , d ) = sup{-r € 2Z | E * 0}< inf {d,mn} 
= s s s — 

as one easily sees. 

Let us also remark that the graded components [SEfcF/I^ ]q 
t 

have canonical bases. If E, F are free with bases {e1#...em>, 

{f1,...,fn> then the éléments n. £ 1 â è t * e i | j ® fk I j^i,k 

for X H q l (x) ^ t and ail {e1 , . . . , em>, (i, j) *-> ei j j 

and ail 1^ -» {f1,...,fn>, <k,j) ^ fk|j both satisfying 

i - 1 I j < i I j < il j + 1, constitutes a basis for [ S E ® F / I 3q. 
t 

Cf. [ 1 ] for détails. 

In case Q c Ox a complète description of the chains in the mini­

mal resolution has been given by A. Lascoux. Cf. [10] and [12]. 

We restate the results here for completness and to give an im­

pression of what "is needed" in the characteristic free cases. 
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Tensor (or Schur) functors ([10], [ 1 2 ] , [ 1 3 ] ) are defined 

for each partition X h n , endofunctor on a module category, 

by T^E = ®i £ J N S ^ ^ E modulo submodule generated by éléments 

®i(ei1® ® e i x ( i ) } for ail rx~*E' <irj> - eij usuch that 

e i ' j = e i j for some (i ' / J ) * (i# j) . 

Proposition 2.8- Let E, F be cohérent locally free mo­

dules on a noetherian scheme (X,Ox) defined over Spec (Q. Set 

V = E ® F and M = SV/I then each column in the double complex (1,4) 
X wt 

/Epq dpq dpq^ 
(E0 ' a0 ' ai ;p,q € ZZ, 

(EPq, d § q ) q € S B = ( [ S E « F / I W ] q ® A P q E ® F ) ® S V ( p ) 

is SV-linear homotopy équivalent to its own cohomology. 

The resolution of M ( 1 . 1 1 ) (E"^, d̂ j") have chains given 

functorial 

(2.9) E ^ = ̂  _ r(E^) ® SE3F(r-(t-1)ô(x)) 

where ( E 1 } X " T(X+(t -1)a)6(x)) ~ E 0 T ( X ^ ( t - 1 ) o ) ( 5 ( x ) ) ~ F -

For rkE = m, rkF = n constant on X, 1(E^,d^) = (m-t+1)(n-t+1). 

Proof. From the description in [2] we see that in the ca­

tegory of endofunctors of ÇQ-modules it is effectively possible 

(may give an algorithm) to split mono- and and epimorhisms, so 

the first part follows from Proposition 1.10 using base change. 

For (2.9) there are calculations in [10], [12] or one may use 

Bott's theorem on cohomology of line bundles together with the 

Weyl character formula. 
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Corollarv 2.10. The functorial complex (2.9) is unxque up 

to unique natural isomorphism. 

Proof. From the proof of (1.7) follows that the chains in 

(2.9) are unique up to isomorphism. Since everything is SV-linear 

it suffices to see for each xl r that the multiplie!ty of (Ei^Y 
* A. 

in E"!j regarded as functors is 1 . This is obvious from the 

Littlewood-Richardson formula, [ 1 2 3 . 

Corollarv 2.11. If under the assumptions of Proposition 2.5 

r r 

(XfOx) is defined over Spec Q then (sE-j ' S^1^ with chains 

(2 .12 ) 
sE1 = T(X+(t-1)a)(S(x)) ~E®T(x~+(t-1)toô(x))~F-

is a bounded locally free resolution of Ov/I. of 1 ( WZ , d j = 

X t S I S 1 

(m-t+1)(n-t+1) being minimal in the fibre at x € Supp Ox/l1 . 

3. A list of other cases 

The constructions follow the gênerai approach of section 1 

using metholds similar to those of section 2. 

Throughout this section E will dénote a locally free module 

of constant r k E = m on a noetherian scheme (X,Ox). 

Partitions and tensorfunctors introduced in section 2 will 

be used. 
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(3,1) Symmetric matrix ([1], [8] [11]) 
2 

a) Set V = S E and let I0 be the idéal in SV gene-
wt 

rated locally by éléments det ^eii®eii2^i i» for a11 indexing 

r2o>t"* Eju, (i'3> e±j, (t-minors). 
b) For M = SV/I9 the complex (1.5) is a bounded resolu-

t 

tion of M with locally free graded SV-modules. M has canonical 

local bases, [1]. 2) Put d = sup {p€Z2 |[Tor.SS ffim(SS2ffim/I2a) f S ) ] P * 0 } 

then the complex (1.9) is a bounded resolution of M with 

cohérent locally free graded SV-modules. 

d) Given E -> Ev locally symmetric, i.e. indueing a cosec-

tion s:V = S2E->Ov, then if depthOv „=h (m-t+2) (m-t+1 ) foi 
X A , X 

ail maximal x € Supp M ® sv S°X' we get locally free resolu­
tions of M ®OT7 Ov = Ov/ (idéal locally generated by t-minori 

i> V S X A 
of E -* Ev ), as in 1 .1 2 - 1.15. e) Suppose moreover Q c O x , then we get locally free (gra­
ded) resolutions (1.11), (1.14) of 1 (E*) = % ( m - t + 2 ) ( m - t + 1 ) , 

and the functorial chains are computed by Lascoux, [11]. 

(3.2) Alternating matrix ([1], [6], [9]) 
2 

a) Set V = A E and let I be the idéal in SV generated 
2t t 2 locally by the Pfaffians (of diagonal 2t-submatrices) in S A E. 

b) For M =SV/I the complex (1.5) gives a bounded réso­u t 
lution of M with locally free graded SV-modules. M has 
canonical local bases, [1]. 

c) If we put d = sup{p € 2Z | [Tor .Sh2?Z m(SA2ZS m/T ffi)]P*0} , 
2t' 

the complex (1.9) gives a bounded resolution with cohérent lo­

cally free graded SV-modules. 

d) Given E-»EV locally alternating, i.e. induces a cosec-

tion s:A2E-*Ox, then if depth Ox ^ > \ (m-2t+2) (m-2t+1 ) for 

ail maximal x €Supp M ® gv g.Ox* we get locally free resolutions 

of M ® S V s°X ~ Ox/G-deal generated locally by Pfaffians of 

diagonal 2t-submatrices), as in 1.12 - 1.15. 
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e) Suppose moreover (D^ Ox then we get resolutions 

(1.11), (1.14), of l(E*,d*) =h(m-2t+2)(m-2t+1) and the 

functorial chains are computed by Jôzefiak and Pragacz, 

[6], in terms of tensor functors. 

(3.3) Plûcker embedding 

a) Set V = AfcE and let It be the idéal in SV genera-

2 

ted locally by the Plucker relations in S V, [5]. 

b) For M =SV/It the associated complex of (1.5) on 

3P (A*"E) gives a locally free resolution of the Plucker em­

bedding GrassfcE -* 3P(AtE), [4]. 

c) In case c no calculation of the functorial chains 

for gênerai t are known to me. 

(3.4) Veronese embedding 

a) Set V = StE and let It be the idéal in SV generated 

by l£ = Ker (S2V -» S2tE) . 

b) For M =SV/It the associated complex of (1.5) on 

^ ( S ^ ) gives a locally free resolution of the t-uple Veronese 

embedding 3PE 3P S^E . 

c) In case O no calculation of the functorial chains 
x 

are known to me, but the computations do not look very compli-

cated. Indeed a calculation of the last non-vanishing chain module shows 

that the embedding is Gorenstein if and only if t divides rk E. 

300 



FREE RESOLUTIONS OF TENSOR FORMS 

4. Completing remarks 

Ad. 1. Using a "réduction to diagonal" argument, e.g. 

as in the proof of "Tor rigidity" M. Auslander & D. Buchsbaum, 

Codimension and multiplicity, Ann. of Math. 2nd. ser. 68 

(1958), p. 632, the double complex (1.4) could have been de-

f ined 

(EPq,d^q,dPq) = M ® S V A - ( V ® Q S V ® Q SV(-1)) 
X X 

the latter being the bigraded Koszul complex on the augmenta­

tion V ® S V ® S V ( - 1 ) - * S V ® S V , v - > v ® 1 - 1 ® v . 

Ad. 2. During this conférence L. L. Avramov pointed 

out that in case of a perfect module the highest grading of 

Tor appears at the last Tor. Since in case of determinantal 

ideals the type is independent of characteristic we have in 

(2.3) d = mn - sup{m,n} (t-1) . 

Ad. 3. In (3.2) c) d = ^m(m-2t+1) by the same rea-

soning as above. Moreover in characteristic 0 T. JÔzefiak 

has proved uniqueness of the minimal functorial complex (3.2)c). 
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