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CONJUGACY CLASSES AND WEYL GROUP REPRESENTATIONS 

Hanspeter Kraft 

In the celebrated paper [14] T.A.Springer gives an interesting 

relation between nilpotent conjugacy classes in semisimple Lie 

algebras and representations of the corresponding Weyl group 

(cf.also [6], [15]). In this short note we want to describe 

another construction of Weyl group representations, again start­

ing with nilpotent conjugacy classes, which seems to be strongly 

related to Springer's construction. Up to now only a few general 

results are known about these representations; for <jj_n we have 

a series of precise conjectures which have been checked for 

n < 5.<*> 

The starting point of these considerations was a question asked 

by B. Kostant. I would like to thank him and also W. Borho, 

C. Procesi and T.A. Springer for helpful discussions. 

1. The construction 

Let £ be a complex reductive Lie algebra and G the adjoint 

group. We consider the adjoint action of G on £ , indicated 

by (g»x) k-> gx for g € G, x € £ . If X is a variety (or an 

affine scheme) we denote by $(X) the (E-algebra of global regular 

functions on X (or the coordinate ring of X) . Let h_ c £ be 

a Cartan subalgebra and W the corresponding Weyl group. 

If C is a conjugacy class in £ and C" its (Zariski - ) cl os ure , 

we denote by R^- or simply by the coordinate ring of the 

schematic intersection IT n _h (a finite scheme!): 

Rc = fr(ÏÏ n h) = fr(h)/Ic , 

Iç the image of the ideal 

Jc := {f e &(£)lf(x) = 0 for all x € Ü} 

(*) cf. remark at the end of the paper. 
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of &(g) under the canonical projection fr(£) fr(h_) . 

Clearly the ideal I c is stable under W acting in the usual 

way on . In the proposition we collect some properties of 

this construction; the proofs are easy and left to the reader. 

Proposition 1 : ( a ) Rc is a finite dimensional (E - al gebra  

on which W acts by algebra automorphism. 

(b) lf_ C is nilpotent the ideal 1^ is homogeneous and Rr)-i-

has a natural W - stable graduation: Rr = 0 (Rr)-i-
i>o L 

(c) lf_ C is semi simple ( i . e C = C ) , C = Gs for some s € h^ , 

the intersection C n h is reduced and Rc J Ind^C the 

representation induced from the trivial representation of 

Ws := {w € Wlws = s} . 

(d) 21 C' c C we have a canonical surjective W - equivariant 

map Rc ~* RC ' 9 which is homogeneous in case C nilpotent. 

Example: 1) If C = {0}(or C = {z}, z € zent £) then = I , 

the trivial representation of W . 

2) If C is the regular nilpotent class (i.e the nilpotent 

class of maximal dimension), the ideal 1^ is generated by 

the homogeneous W - invariants and R^ =: Rreg is the regular  

representsti on of W ([3] V, § 5, Theoreme 2 ( i i ) ) . 

Remark 1 : The construction above works over (Q . If the 

conjugacy class C is defined over (D then Rc is also 

defined over (J . In particular for any nilpotent class C 

the representation of W on Rc is defined over Q . 

192 



CONJUGACY CLASSES AND WEYL GROUP 

2. Macdonald representations 

Let m c= £ be a reductive subalgebra containing . Consider 

a system A+ of positive roots of m . Then the homogeneous 

fune ti on 
d (m) : = # A+ = # A+ = # A+ = 
# A+ = # A+ = # A+ = 

of degree 

d (m) : = # A+ = (dim m - rk m) 

generates an irreducible W-module 

Mm = <w-fm I w e W> c »(h), m m x—' 

the Macdonald mo<Kile associated to m (cf.[11]). Its character 

will be denoted by u(m) . 

Proposition 2 : Let Cm be the nilpotent conjugacy class in  

£ generated by the regular nilpotent class in m . Then 

mult /m\(Rr )4 = 
0 i < d(m) 

1 i = d(m) 

Proof: The anti-invanant elements of $(h) with respect to 

W, the Weyl group of m , are given by f • 0(h_) and 

the image of 
f51 

i n Dm 
KFeg 

is not zero cf. [11]). The claim 

now follows since the canonical map v # A+ = # A+ = i s 

W1-equi vari ant and surjective. 

In case £ = gl n the nilpotent conjugacy classes are in 

one-to-one correspondence with the partitions of n . If 

x = ( *0> xi»*-»xs ^ is a Partlt",on °f n , i.e. 

$ù$$ù e IN, xQ > x± > . . . > x$ and z = n , the corresponding 

class Cx is the conjugacy class of a nilpotent element 

x e gl n in Jordan normal form with Jordan blocks of sizes 

xQ9xl9..9X$. Clearly each class Cx is of the form Cm : 

choose e = ax := £ixo e alx ® • • • ® alXs - iin • 
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Furthaermore it is know that the associated Macdonald module 

M := Mm is the Specht module £ = ( £Q 9$ ±, . . ) the 

dual partition to x , i.e. ^ = #{jlXj > i } ( c f . [ l l ] ) . 

In addition we have 

d(x) := d(mx) = 2 ( ^) = z i.*. 

Proposition 3 : Let C cz gj_n be a nilpotent conjugacy class  

with partition x . Therr (R (0 i = 0 f or i > d(x) and the 

Specht module S has multiplicity one in and it occurs 

in the top degree d(x). 

Proof: It remains to prove the first assertion, i.e to show 

that the ideal Ic contains all monomials of degree > d(x). 

We have rk xk < n. := z ^. for x e C" and all k € IN , 
K i>k 1 

hence the (nk +l)x(nk+l)- minors of the matrix x vanish. 

Restricting these functions to h^ we obtain some elements in 

1^ and one easily checks that each monomial of degree > d(x) 

occurs in the ideal generated by these elements. 

Conjecture 1 : (RC )d(A) « # A+ = 

This holds for n < 5 (cf. tables) and some other classes 

(e.g. for partitions of type (xn , 1 ,1, . . , 1) or 

(2,2,2, . . , 1 , 1 , . . ! ) ) . 

Remark 2 : The conjecture above implies that the irreducible 

representations of Sn are defined over Q (cf.remark 1). 

Remark 3 : For £ = s_p_2n each nilpotent conjugacy class C 

is of the form Cm for some suitable reductive subalgebra 

H 13 il » but there~~can be different choices for m giving 

different Macdonald modules in different degrees. E.g. in 

sp^ the class 2) 1S obtained from m^ ̂  gl g and 

m_2 s£2 ® 1£2 ' Mm is tlie natural representation of W (in 

degree 1) and Mm ~~1 is a one dimensional representation (in 

degree 2). ~2 
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3. Associated cones and induced representations 

Let £ E £ be a parabolic subalgebra with h. c £ and 

n_ cz £ the ni 1 radi cal . Since G£ = {gxlg € G, x € £> is an 

irreducible subset of nilpotent elements it contains a dense 

conjugacy class , the Richardson class associated to £ . 

This class depends only on the Levi part m of £ . Further­

more the connected component G° of the stabilizer of an 

element x 6 n n is contained in the parabolic subgroup P 

with Lie P = £ . Let us denote by Wp the subgroup of W 

corresponding to £ (i.e the Weyl grouTp of the Levi part 

m => h of £) . 

Proposition 4 : With the notations above assume that 

( i ) (Tp is a normal variety and 

;ii) Gx cz P for x € Cp n £ . 

Then Rc contains the induced representation Ind5£ (C of 

the trivial representation of Wp. 

Proof: Consider the Levi decomposition £ = m©£ with 

h^ c= m and the center z_ of m . For a generic element h G hi 

we have Wh = W^, hence RQ , = &(h)/IQ% ~ Indjj I for the 

conjugacy class C' of h (Proposition 1(c)).^ Let 

J ' cz be the ideal of functions vanishing on C' and 

denote by grJ 1 the ideal generated by the terms of maximal 

degree of the elements of J'. Then it follows from [2] 

(Zusatz 3.8 and Theorem Al) that under the assumptions (i) 

and (ii) gr J' is the ideal J of functions vanishing on 

Cp . Now 1» := Ic is the image of J = grJ1. This clearly 

implies that I <= grl' (where grl' is defined in a similar 

way as g r J ' ) , hence we have a surjective W-equivariant map 

$(h)/I = Rr —* &(h)/grl'. Now 3(h)/grl' is the associated 

graded algebra with respect to the ascending filtration i n ­

duced by the degree, hence as W-modules R^, and $(hj/grl" 

are isomorphic. 
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Remark 4 : In [5] Hesselink describes the Richardson classes 

in classical Lie algebras and the numbers [Gx : Pxl. The papers 

[8],[13] and [9] are concerned with the normality problem of 

closures of conjugacy classes in classical Lie algebras. The 

result for £ = gl is the following (cf.[7]): 

(a) For any element x e fli„ the stabilizer Stabri x is 
GL — 

connected and the conjugacy class C of x has a normal 

closure C . 

( b ) lf_ £ c gj_n is a parabolic with Levi part 

E ~ JSLlx ©-Slx © • • • © a±x ' A = (Ao >Ài > * • ^s) a partition 

of n , then C = Ca and W = S, := 

S. * S A x..xS, cz S 
x0 x1 xs - n 

From this we get the following corollary. 

Corol 1 ary: Let c c 9j.n be a nilpotent conjugacy class with 

partition x . Then Rr contains the induced representation 

IndQn 
Sa 

Œ . 

Conjecture 2 : 
# A+ = 

indçn a 

Again this holds for n < 5 and some other classes. 

On the other hand the class C^3 3^ of sp^ is the Richardson 

class associated to the parabolic £ with Levi part isomorphic 

to 9j_2 ® ££2 anc' sa"tisfies the assumptions of proposition 4 , 

but Rr is strictly bigger than the induced representation 
w c(3,3) 

Ind., C (see tables) . 

Remark 5 : For two nilpotent conjugacy classes C. and C 
A y 

in gln one has CA=>C if and only if x > \i i.e 

k k 
# A+ = # A+ = 
# A+ = # A+ = 

for all k (cf. [5]Theorem 3.10). 

The conjecture above would imply one implication of the following 

know result (sometimes called Snapper conjecture) : 
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Ind" Œ is contained in Indsn Œ if and only if  
# A+ = 

Remark 6 : In the paper [10] G. Lusztig and N. Spaltenstein 

introduce the concept of inducing conjugacy classes(cf.[13): 

Starting from a Levi subalgebra m E £ they associate to 

any conjugacy class C in m a class C= Indjjj-C in £ ; 

£ is the dense class in G(C + nJ, where r± is" the nilradical 

of a parabolic £ in £ with Levi part m .Generalizing 

proposition 4 one can prove that under similar conditions 

(e.g. C has a normal closure and the stabilizer of any 

x € £ is connected)R^- contains the induced representation 

IndJJ, R^ , W the Weyl group of m . 

4. Relation with the theory of Springer([6],[14],[15]) 

Let CB be the variety of Bore! subgroups of G and x € £ 

a nilpotent element. Springer's construction yields a 

representation of W on the cohomology H (C3X» £)» where 

Qx := {B e Q ILie B 3 x} 

There is a canonical isomorphism 

r! -
reg 

H*(<3 , Œ) 

of graded (E-algebras, hence by restriction a (C-algebra 

homomorphi sm 

# A+ = # A+ = # A+ = # A+ = # A+ = # A+ 

It turns out that after twisting Springer's representation 

with the sign representation e this map becomes W-equiva-

riant ( c f . [ 6 J ) . The twisted representation will be denoted 

by H*(Gx,(E)e . 

In case £ = £l_n the map tpx is always surjective and, 

as remarked by Macdonald, H (®x»^)e 1S an induced repre-

sentati o n . 
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Conjecture 3 : If x e cQ_ is nilpotent with partition x , 

the two quotient maps 

^x Kreg 
Kreg 

- H*(<3X.I) and 
lin 

# A+ = 
Rreg 

# A+ = 
# A+ = are the same. 

Remark 7 : There is some duality between the Springer repre-

sentation px on H (£j5x»(D) and the representations considered 

here. E.g. px © e is the trivial representations for a 

regular nilpotent element x and px® e is the regular re­

presentation. The conjecture above states that for £ = g 1 

this duality comes from the duality on the nilpotent conjugacy 

classes given by Cx h Cj . It is not clear to me what happens 

for the other simple Lie algebras, since there is no such 

duality on the nilpotent classes. 

5 . Some tables 

In the following tables we list the irreducible representa­

tions of W and give the decomposition of the representa­

tions R. = Rr , x a partition, in the various degrees 

A Lx 

(Rx)i for gln (n<5) and sP2m (m^3)- A reductive subalgebra 

m c £ of the same rank as £ is given by its type X 

(e.g. X = A^xAg or C^xA£) and u(X) denotes the character 

of the (irreducible) Macdonald representation M (cf. 

section 2 ) . The character of the sign representation is 

indicated by e . 

The tables have been calculated using the decomposition of 

Rreg ^for £-Ln9 n " 6' 9iven in [12] p . 126-127) and the 

results of section 2 and 3 . 
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Type A1 = Cx (£i2 and sp2) 

Kr 
deg 

(2) 

(1.1) 

0 1 

1 

1 

Kr 

Type A2 
(ai3) 

x = n(A,) natural representation, dim x = 2 

Kr 

deg 

(3) 

(2,1) 

(l3) 

0 1 2 3 

1 

1 

1 

x 

X 

X Kr 

Type A3 (£l4) 

x± = y(Aj) natural representation, dim x = 3 

X2 = y(A1xA1) = ex2» àim x2 = 2 

X3 = y(A2^ = GXl 9 dim x3 = 3 
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Kra 

deg 

(4) 

(3,1) 

(2,2) 

(2.1,1) 

d4) 

O l 2 3 4 5 6 

1 

1 

1 

1 

1 

xl 

xl 

xl 

xl 

Xl + X2 

Xl + X2 

x2 

xl + x3 

X3 

X2+X3 X3 e 

Type A4 (£l5) 

x x = y(A1) natural representation, dim X l = 4 

x 2 = n(A x x A 1 ) , dim x 2

 = 5 

x 3 = y(A2) = ex3 » dim x 3 = 6 

x 4 = m(A1xA2) = ex2 » dim X i + = 5 

x 5 = y ( A 3 ) = e x l 9 d i m x 5 = 4 
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Type C2 (S£4) 

x1 = y(C1)= y(A1)= ex1 natural representation, dim xx = 2 
X2 = yfCjxCj), dim x2 = 1 

x3 = ex9> ^1 m x3 = * (no-t a Macdonald representation) 

1 2 deg 

(4) 

(2,2) 

(2,1,1) 

d4) 

0 1 2 3 1 2 3 44 

1 

1 

1 

1 

xl 

xl 

xl 

X2+X3 

x2 

Xl 1 2 3 4 

Type C3 (S£6) 

x1 = y(A1)= m(C^) natural representation, dim x2 = 3 
x2 = yfAjxC^ , dim x2 = 3 
x3 = u(A2)= ex2 » dim x3 = 3 
X4 = u(C2)= eXl , dim x4 = 3 
p = y(C2xC2), dim p = 2 
ep natural representation of W/Z2 = SQ, dim ep = 2 
T = y(C^xC^xC^), dim t = 1 
ex sgn representation of W/22 = 1 2 1 2 3 3 

One has: xp = ep ,xx1=x2 ; 
ep, ex not Macdonald representations 

Diagram of inclusions 
of closures of 
nilpotent conjugacy 
classes: (3,3) 

(6) 

(4,2) 

(4,1,1) 

(2,2,2) 

(2,2,1,1) 

(2,14) 

(I6) 
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After the preparations of this manuscript I was informed 

by C. De Concini and C. Procesi that they have proved all the 

conjectures stated in this paper. 

De Concini, C., Procesi ,C.: Symmetric functions, conjugacy 

classes and the flag variety, inventiones 6^(1981) 203-220 

Hanspeter Kraft 
Mathematisches Seminar 
der Universität Hamburg 
Bundesstraße 55 

D - 2000 Hamburg 13 

(Westgermany) 

205 


