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The Molecular Characterization of Certain Hardy Spaces 

by 

Mitchell H. Taibleson1 and Guido Weiss1 

§ 1. Introduction. This paper continues a line of study initiated in [8], where 

the atomic characterization of certain classical H P spaces was extended to very 

general settings. If 1/2 < p < 1 the space HP(IR) can be characterized in terms 

of "atoms" that are measurable functions a(x) , x € IR , having support in an 

interval I , ||a||8 < 1/|I|1/p < a n d are of mean value zero. The elements of H P(R) 

are distributions of the form 
«30 

(1.1) f = E X .a. , 
j = l J J 

where the a.'s are atoms and Z IX. I P < 0 0 (in fact, these f's are continuous 
J j=i J 

linear functionals on an appropriate space of smooth functions). The "HP-norm" 

of f is equivalent to N
p(f) = inf (Z| X.. | P ) ̂ P > the infimum being taken over all 

decompositions (1. 1). 

These notions are very simple and have obvious extensions to measure spaces 

endowed with a "distance" that is sufficiently regular with respect to the measure. 

In [8] the fundamental properties of these "atomic" H P spaces were developed and 

applied in the setting of spaces of homogeneous type. 

In many situations, atoms having only mean zero suffice for the development 

of a useful theory. When 0 < p < 1/2 , however, the atomic characterization of 

the classical H P(R) spaces requires atoms having higher moments that vanish and 

satisfy the above properties. Specifically, we must have 

Jp a(t)tkdt = 0 

for all non-negative integers k < (1/p) - 1 (see Coifman [4]). An analogous 

AMS (MOS) subject classifications (1970). Primary 30A78, 42A18, 42A40. 

"̂ Research supported by the National Science Foundation under grant 
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68 



HARDY SPACES 

condition is required for an atomic characterization of H P(R n) (see Latter [13]). 
p 

Furthermore, atomic characterizations, involving higher moments, of weighted H 

spaces on TR have been obtained by Garcia-Cuerva [11]. 

One of the principal purposes of [8] was to show that many of the properties 

of general H P spaces, and operators acting on them, can be obtained by focusing 

one's attention on individual atoms. For example, the continuity of an operator 

can often be proved by estimating Ta when a is an atom. While it is generally 

not true that atoms are mapped into atoms, it was observed in [8] that for many 

convolution (or multiplier) operators Ta is a function enjoying many of the pro­

perties of atoms. Such functions were called molecules and their "atom-like" 

properties are that their local and global size conditions are combined in a single 

"norm" relationship and their mean value is 0 . Moreover, H P spaces have mole­

cular characterizations that are completely analogous to their atomic characteriza­

tions (we simply introduce molecules in the role played above by atoms). Each 

atom is a molecule and each molecule has an atomic decomposition of the form (1. 1) 

with s|Xj| P < C , where C depends only on the "molecular norm" (which will be 

defined later). From this we see that a linear map T is bounded if Ta is a 

molecule of bounded molecular norm whenever a is an atom. 

In this paper we will give appropriate definitions of molecules belonging to H P 

spaces associated with R n and the unit disk D=jz£C: |z|<l| (taking Into account the 

necessity of having a certain number of moments that vanish). We shall show that each 

such molecule has an atomic decomposition. From this, the molecular characterization of 

H P will be evident. We will show how this molecular characterization can be used to obtain 

multiplier theorems. Moreover, we shall also consider certain "weighted" H P spaces. 

While it is not always easy to see whether a given function has an atomic 

representation, molecules do occur naturally and the fact that they do satisfy the 

conditions defining a molecule can be established by direct arguments. Let us 

describe an example of such a situation. Coifman and Rochberg [7] give a charac­

terization of the functions belonging to certain H P spaces on D that turns out 

to be a molecular decomposition. Perhaps the simplest example of their result 
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concerns the "solid unweighted" Bergman space A 1(D) of all holomorphic functions 

f on D satisfying 

A(f) = JJ |f (x y y)|dx dy < °= . 
D 

They show that there exists a (fixed) sequence of points \Q \ in D such that 

f € A 1(D) if and only if 

( i - l c J 2 ) 2 

f ( z ) = K + S \ . Z 1 7 -

with S | X | < 0 0 Moreover., the functions z{l - |j.|^)2/(l - £.z)^are 
j=0 J J J 

molecules for the atomic Hardy space H"̂  (D , dx dy) that we shall define in §3) 

and E|yj| gives us a norm that is equivalent to A(f) . It follows that A (D) 

is the holomorphic part of H^(D , dx dy) . 

We want to extend our special thanks to our colleague R.R. Coifman. Many 

ideas presented here grew out of discussions with him. We are also grateful to 

R. Rochberg for his many helpful suggestions. 

§2. The Molecular Structure of H P(R n) . Let us begin by introducing the elemen­

tary building block of H P(R n) : the (p , q , s)-atoms. Suppose 0 < p < 1 < q 

< 0 0 , p < q , and s is an integer at least [n(~" " l) 1 (the integer part of 

n(^ - 1)) . A (p , q , s)-atorn centered at Xp £ ]Rn is a function a 6 L q(R n) , 

supported on a ball Q c R n with center Xo and satisfying: 

(i) U r J |a(x)|« d x ! 1 7 " ! | Q|-
1 / P  

(2.1) L Q J 

(ii) P a(x) x a dx = 0 . where 0 < I a| = a, + a. + . . . + a < s , 
0 n _ i i 1 z n — 

1R 
a a a 

ce 1 2 n 
x = x. x 0 .. . x 

1 2 n 

(We follow the usual conventions so that (2.l)(i) is interpreted as: 

supx£q |a(x)| < |Q| if q = œ and a = (â  , ... > c O in (2.1)(ii) is a 

nulti-index of non-negative integers.) 
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The atoms described in the introduction were (p , °° , 0)-atoms on P for 

1/2< p < 1 . The atoms studied in [8] were (p , q , o)-atoms. For each p a 

class of Hardy spaces was defined. It was shown that these spaces coincided and, 

thus, that we were dealing with a single space H P . It is not surprising that by 

letting q = 2 the use of the Plancherel theorem becomes a powerful tool for the 

p 
study of H . (We shall see this to be the case when we apply our results to the 

study of multipliers). Latter [13] has considered the spaces generated by 

(p , q , [n(— - l)])-atoms on R n and has shown that these spaces are the same 

p 

as the H spaces defined by maximal functions (see Fefferman and Stein [9] for 

consequences of this fact). One of the facts that we will develop in this paper 

is that if p is fixed (as in the case s = 0) , the Hardy classes based on 

(p , q , s)-atoms all coincide. 

Let us now introduce the molecules corresponding to the atoms we have just 

defined. For p , q , s , satisfying the conditions for (p , q , s)-atoms and 
s i 1 1 

e > maxj— , — - 1 j we set a = 1 1- e , b = 1 h e . A (p , q , s , e)-(n p 1 p q 
molecule centered at Xo is a function M such that M £ L<^(1Rn) and 

M(x)|x|nb € Lq(IRn) satisfying: 
a ^ a 

(i) WlJllMlxo-xl1113!! ^ = «(M) < oo 

(2.2) 
(ii) J Rn M(x)xadx = 0 , 0 < | a| < s . 

&(M) - &(p j q } s } e > M) is called the molecular norm of M . Observe that our 

hypotheses imply the existence of the integrals in (ii) and, also, the fact that 
1 

MP is integrable (in fact, it is easy to see that J|M¡| < 2^(M) . 

Proposition (2.3). If a is a (p , q , s)-atorn then a is a (p , q , s , e)-

molecule for all e > 0 and £(a) < C; , where C is independent of the atom. 

Proof. Clearly, j|a|lq < |q|
a" b and ||a|x - ^ | n b | l < C | Q|

bj|a|| < C | Q|
3 , where 

f(a-b) a ^ 1-5. 
C is a geometric constant. Thus, Sb(a) < |Q| ( CIQ| ) = C . This 
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proves (2. 3). 

As indicated in the introduction we shall show (directly) that each molecule 

has an atomic decomposition. In order to do this we need to give a precise defini­

tion of the atomic Hardy space H P(R n) . If s is a non-negative integer,, 

0 < [n|3] < s , 1 < q ' < °° we define the space L((3 , q1 , s) as follows: 

If g is locally integrable on R n and Q is a ball, let P̂ g be the 

unique polynomial of degree at most s such that 

f (g - P g)x a dx = 0 
Q 

for 0 < |<x| < s . Suppose g satisfies 

J_ 

(2.4) ||g|| = sup | Q | - P U j |g - P 0g| q'dxH' < ~ ; 
L(p,q',s) QcR" "q Q j 

then^ clearly, if g - g is a polynomial of degree at most s , g also satisfies 

(2.4) and ||g|| f , . = IJg'J , . If this is the case we say that g and iApj>cl y s ) L'KpyQ ?Q) 

g are equivalent. The space of all such equivalence classes [g] will be denoted 

by L(P , q' , s) and (2.4) defines its norm (similar spaces were studied by 

Morrey in [14] and Campaneto in [2]). 

The spaces L(0 , q' , 0) , for 1 < q' < °° , are known to be equivalent 

Banach spaces; in fact, they are various descriptions of the space BMO (see [12]). 

We shall see below that L(0 , q' , s) , 1 < q' < °° , s > 0 ; is also equivalent 

to BMO (see [1] for a related result). When (3 > 0 it is not hard to show that 

if [g] € L((B , q' , s) then g satisfies 

| A ^ + 1 g(x)| < A|h| n p , 

where, in the usual notation, A J ^ 1 g = A^CA™ g) , m > 1 ; A^ g(x) = g(x) - g(x - h) 

= g(x) - (Thg)(x) ; A°h g = g . It follows from this that if 3 > 0 and 

[g] = L, , , v then g satisfies: i) g is continuous and ii) g(x) 
(3>q > LnH J) 

= 0(|x|n^) as |x| -» » if np is not an integer and g(x) = 0(|x|n^ log |x|) 

as |x| -•ao if np is an integer. These facts will be established in Appendix D. 

For 0 < p < 1 the atomic space generated by (p , q , s)-atoms will be a 

subspace of the space of continuous linear functionals on 
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L(— - 1 , oo , [n(— - 1)]) . For p = 1 each space will be a closed subspace of 
P P 

L^(R n) . More precisely: 

Definition. The Hardy space H P j C^ S(1R n) is the collection of all continuous 

linear functionals f on L(— - 1 , 0 0 , [n(— - 1)]) of the form  — p p 

CD 

(2. 5) f = E X .a. , 
j - 1 J J 

00 
where each a. is a (p , q , s)-a torn and Z | X . | < 00 • 

J j = l J 

For such f , we define its "norm", J|f|| , to be 
U P J 0.) s 

inf |/ £ I x . l ^ ^ : over all such representations (2.5)j. 

|\j=i J / i 
The following remarks show that these Hardy spaces are well defined: First 

observe that L(— - 1 , m, [n(— - 1)]) is continuously embedded in L(— - 1 , q' , s ) ; 
P P P 

that is, if [g] € L ( i - 1 , oo , [ n ( i - 1)]) then [g] € L(:p , 8- 1 , » , s) and 

||g|| 1 < ||g|l 1 1 . (See Lemma (8.2) in Appendix D. ) Note 
L ( ^ - l,q',s) L(±- l,oo, [n(-- 1)]) 

that s > [n(^-- 1)] . Lemma (8.2) shows that the norm of L((3 , q' , s) is 

equivalent to one using a certain infimum, and the inclusion follows. Next observe 

that if a is a (p , q , s)-atom then 

(2.6) | J a g dx| = | f a(g - P g)dx| 
R Q ^ 

l|g!l ! <l!s!l ! ! 
L(-- l,q',s) L(±- l,oo, [ 

<l|g!l ! <l!s!l ! ! 
L ( - - l , q',s) L ( ± - l ,oo , [ n ( ± - 1)]) 

JL 

This estimate and the ine quality < [Z|X.| P] P implythat expressions (2.5) are 

continuous linear functionals on L ( p , q ' , s ) , p = - ^ - l , s = [n(3] . Observe 

that if a is a (1 , q , s)-atom then |'a|]^ < 1 so that (2.5) converges in L^ 

and it follows that K^}^}S is a closed subspace of L 1 , and that if f £ H ^ ^ S 

73 



M. H. TAIBLESON - G. WEISS 

then |]f]] , < |]f|| . We also note that for 0 < p < 1 , the "norm" 
L H ^' S 

11 '| induces a Fr^chet metric on HPJ,C^S T 
11 ''HP^q^s 

The following is an extension of Theorem B in [8]: 

Theorem (2. 7 ). The dual of HP,C^S is naturally isomorphic to L(^ - 1 , q* , s). 

Apart from obvious modifications, the proof of this theorem is the same as 

that of Theorem B in [8] . The estimate (2.6) is the point of departure. 

From Theorem (2.7) we obtain the particular result that the dual of 

HP>*> [n(- - 1)] i g L(I . i ^ i ^ [n(I - 1)]) . we use this in Appendix D to 

obtain the results following (2.4) on the local and global behaviour of representa­

tive functions in L(p , °° , [np]) if (3 > 0 . In the proof of the following 

theorem these reults are used to establish that the implied atomic-decomposition 

of an (p , q^ , s^)-atom into (p , q^ , s^-atoms induces the same linear 

functional °n L(-̂ - - 1 , °o , [n(i - 1)] as that given by the original atom. This 

next theorem is an extension of Theorem A in [ 8 ] . 

Theorem (2.8). Let p , q and s be related as they were in the definition of a 

(p , q , s)-a torn. Then 
l|g!l ! <l!s!l ! ! 
(-- l,q',s) L(±- l,oo, [l|g!l ! <l!s!l ! ! 

Moreover, the "norms" associated with the two spaces are equivalent. 

For s fixed the proof that H P ' ^ S = H P' * S is almost an exact copy of the 

induction argument given in [8] (instead of subtracting constants one must subtract 

appropriate polynomials as in the proof of Theorem (2.9) below). For varying s 

a different argument is required; it will be presented following our discussion of 

(2.9). 

Remark. It follows directly from (2.7) and (2.8) that if p , q and s are 

related as they were in the definition of a (p , q , s)-atom then 
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L(— - 1 , q' , s) = L(— -1,1, [n(— - 1)]) . This formal identification extends P P P 
to an identification of representative functions in the two spaces in the following 

sense: Let (p , q^ , s^) and (p , q̂  , s^) be admissible indices for p-atoms. 

Let L(j3 , q^ , s^) , (3 = 1/p- 1 , represent the collection of functions in the 

various equivalence classes, then 

L( P , q : , S l ) - L( P , q 2 , s 2) mod ( 9 ^ ^ ^ ) 

where Ps is the space of polynomials of degree at most s . We also note that 

L(0 , q1 , s) = BMO mod(£>g) if l < q ' < « o , s > 0 . We omit the details. The 

necessary tools can be found in Appendix D. 

Theorem (2 .9 ) . If M is a (p , q , s , e)-molecule (p , q , s and e related  

as in (2 .2 ) ) then M £ H
P ' q ' S and 

||M|| < C'K(M) , 11 "HP.q.s -

where C' is independent of the molecule M . 

There is no loss in generality if we assume that M is centered at the origin. 

For simplicity we shall present here the proof of this theorem when q = 2 . At 

the end of this section we shall indicate what changes are needed for the general 

case. Briefly, our argument is as follows: Let 

> 2l|g!l ! <l!s!l !! 
[> - IM!j • 

Then we put E D = j x £ R n : | x | < a \ , E k = (x £ lRn : 2 k" 1a < |x|< 2% j for 

k = 1 , 2 , 3 , . . . ;Xk denotes the characteristic function of Ek and 

= Mx^ For each k there exists a unique p o l y n o m i a l , Q k of degree at most 

s , such that if P, = Q, v, then k k k 

(2. 10) J n (Mĵ  - P k ) X
a dx = 0 , 0 < |a | < s . 

We then show that Mk- Pk is a multiple of a (p , 2 } s)-atorn and that the 

coefficients sum appropriately, and (using a summation-by-parts argument analogous 
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to that presented in [8], page 595) we also show that £Pk can be written as a 

sum of (p , co y s)-atoms and that the coefficients sum appropriately. Since a 

(p , co } s)-atom is also a (p , 2 , s)-atom the result will follow. 

There is no loss of generality if we assume N(M) = 1 . From the definition 

of a , therefore, we have 
/1 

(2.ii) ||M|X| 2 ! ! 2 = a n a 

For each k = 0 , 1 , 2 , ... let f^ij^^g denote the Gram-Schmidt 

orthonormalization of the monomials ix^!|^|<s (taken in some fixed order) on the 
l l k set E^ with respect to the weight 1/jE^| . We consider the functions cfy to be 

defined on R n , having the value 0 outside Ek If 

k 1 P k 
a l = ] i j J \ \ d x  

1 k1 

then, clearly, the restricted polynomial satisfying (2.10) must be 

k k 
P. = £ a cp • 

k kl<s 1 1 

Mk-Pk is supported o n = jx € R N : | x | < 2̂ CT j . Moreover, 

(2. 12) |m|{mk-pk | 2dxj 2 

1 
=C{|E|{|mk - pk | 2 dx 

1 
< C [ |€| mk 2 dx ]2 

.12 

(Here, C is a geometric constant. Throughout this paper the letter C will 

denote (possibly different) constants that are independent of the essential varia­

bles in the argument. This independence will be clear from the context. ) 

In particluar, using the definition of a , we have 

' 1 
1 o 1 I K - p

0 l 2 4 

1 

< c !!M|!2 a 
n 
"2 = Co 

n 
"p 

22 

If k > 1 , on the other hand, from (2.12) we obtain the estimate 
1 1 

1 p i„ n |2 j \2 ^ „ f 1 r . |2. .n(l+2e),i i-n(l+2e) ,A M 
K ' P J d x ' * C I f i J J ! \ l l x l <W X k)dx; 

< C (2 ka)" 7 ( 2 k . ) " n ( ^ ) | | M | x r ( ^ ) l | 2 < C ( 2 k a ) - n ( 1 + 2 e ) a n a , 
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the last inequality being a consequence of (2.11). 

Since - P k is supported in B k and | | = C(2kcr)n , then ^ " p
k 

= X^a^ where a^ is a (p , 2 } s)-atorn and ^ = C 2 n a k . Thus, 

S | U P < c P S 2- n a kP = 
k=0 ~ k=0 

c 
l - 2 " n a p ' 

since a = 1 - —• + e > 0 P 
Let \^\|l|<s be the dual basis of the monomials fx̂ l|l|<s (taken in the 

same fixed order) on E with respect to the weight 1 /1E| . If 

k k v k k k CP, = T, p. x . then \|r. = S 13 „ CD We also have 
IvI<s IvI<s 

p k ,k L k 1 r £ 
k = |J<s ^ 1 where ^ = ] i j J \ X dx ' 

From considerations of homogeneity and the uniqueness of the Gram-Schmidt 

orthogonalization process,|cp^(x)| < C f o r x <E E^and I P^pJ S. C (2̂ 6") ^ 

(here C depends only on s). Consequently, for x 6 E^ , 

|* k(x)| < C (2 ka ) - W ; 

we consider ty, to be defined overywhere but supported on E . 
k 

Observe that 

S IE, |mk = S f M x l dx = f n M(x) xl dx = 0 , 
k=0 k ^ k = 0 J E k V 

k °° 
0 < \l\ < s . We let N. = S |E. | , k = 0 , 1 , 2 , . . . , and note that 

1=k 
N^ = 0 . For k > 1 we have 

1 

|NJ|< S J | M . | |x|l^dx<c z j * J | M | 2 d x ^ V a ) ^ 
j=k J j=k ' k1 J 

< C Z ( 2 J a ) - n ( 1 + e ) a n a ( 2 J a ) l ^ + n = c o J " l + n ( 1 " p )
Z

k < l ^ - n e ) 

since |̂ | < s < en . Thus, 
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| N J • { I E J " 1 ! < C a l " ' + n ( 1 " P )
2

k ( l ^ - n e ) ( 2 k a ) - | t l ( 2 k a ) - n 

Hence, letting 

n 
C G P 2" n k^" l~ e^ ~* ̂  a s k ~~* °° * 

k+l(k+li .-I ki ,-1) 

and summing by parts we obtain 

CO 00 W 00 
T. P, = S S (mk|E, IXTTTT-) = S £ f,, . 

k=0 k \l\<s k=0 1 K TE^T | ^ | < S K = 0
 L K 

Since it^} is tne dual basis of jx^j on (E^ , dx/|Ek|) we have that 

•jij I * t x ' d x = \i' °<\t\ > K I < s • 

Therefore^ J f^. x t dx = 0 for 0 < |t| < s . Moreover, 
n I 

| f J < C a ' P 2 - n k ( 1 + e ) = C 2 - n k a | B k + i r P . 

Since f^ is supported on B
k_|_̂  these estimates show that 

hk = hik > 

where b^_ is a (p , °° , s)-atorn and l^jj = C 2 . It follows that 

where C = C (p , e , s) . 

2 K J P < k=0 № 

c 
l- 2- n a p 

CO CO 
We have shown that M = £ X., a. + £ £ LL 8 1 b 9 1 , where a, is a 

k=0 k k \l\<s k=0 l k l k k 

CO CO 
(p , 2 , s)-atorn, b is a (p , « , s)-atom and £ |> | P + £ £ |p, | P 

^ k k=0 k |^|<s k=0 ^ 

< C = C(p , e , s) . 

We observe that the sum representing M converges pointwise (in fact, for 

each x € P only finitely many terms are not zero). This fact^ though interesting, 

does not imply that M and this series represent the same element of H^ <^> S as 
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linear functionals on L(~1/p - 1 , 0 0 , [n(1/p" 1)1) • The following observations will 

make it clear that this is, indeed, true. The above estimates show that 

S |U ka.|L < C a n ( a " b ) I 2"" k b , and 
k=0 K k 1 k=0 

CO CO 

^ II . || / „ n(a-b) -nkb 
k=0 ^ k ^ k 2 k=0 

Thus, the series representing M converges in L^(lRn) . It follows from this (and 

the fact that supp c B^) that the series 

0 0 nb1 °° nb1 

£ K a | x| and £ (j, b | x | 

k=0 k k k=0 ^ k ^ k 

converge in L2(1Rn) whenever 0 < b' < b . Now recall that if 0 < p < 1 and 
[g] € L(~ - 1 , Q O , [n( i - 1)]) then g is locally bounded and 

g(x) = 0(|x| P log |x|) as | x | - co . choose e' , - - 1 < e' < e and let 

b» = j + e* . Note that g(l + | x | n ) " b ' £ j} , M(l + | x | n ) b ' 6 L 2 and from the 
2 
L convergence of the series, 

S ||X ka k|(l + | x | n ) b ' + I | ^ k b t t | ( l + | x| n) b'} , 
k=0 l̂ l£.s 

we see that both 

J |Mg|dx and Ji£ i|Xkakg| + S | ̂  b g|}}dx 
k 111 < s 

are finite. Thus all we need to show is that 

|x [ <A Mg dx = |x[ <A € k=0 {y k ak + |l | € µ lk b lk dx 

for all A > 0 . But this is evident since for each A > 0 the sum on the right 

is finite and is equal to M . 

For p = 1 the argument is much easier. Note that L(0 , w , 0) = L^mod^Q) 

and that if M is a (1 , q , s , e)-molecule then M € L1.Note also that 

||ak||1 , llb^H^ S1 since afc , b are (1 , q , s)-atoms and 

79 



M. H. TAIBLESON - G. WEISS 

K l I I . „ -nak -ne k . 1 
jX̂ I j l̂ k̂' — = C 2 so the series converges in L to M . 

This completes the proof of (2.9) for the special case q = 2 . 

We remark that a small modification of the last argument shows that the series 

representing M converges in the topology induced by the (p , 2 , s , e')-norm 
when — - 1 < e' < e . 

P 

We now turn to the proof of (2. 8). If q < q then 

^Jojl |a(x)|t!2 dx. 4/«1 
^ J o j l | a ( x ) | t ! 2 d x . 

a/q2 
; 

Thus, any (p , q̂  , s)-atorn is a (p , q^ , s)-atorn and it follows that 

P;q?jS P^q^s 
H (TR ) c H (K ) and || || < I; || . It was pointed out 

^ P ; q-̂ j S ' ' JJPJ Q2,S S 

earlier that the proof that these two spaces are the same is a slight modification 

of the argument given in [8]. In order to establish theorem (2.3), therefore, it 

suffices to show that we can vary s . Suppose that s^ > s > [ n - 1)] . It is 

trivial that a (p , q , s^)-atom is a (p , q , s)-atorn so we need to show that a 

(P } q 3 s)-atom has a decomposition in terms of (p , q , s^)-and (p , co } s^)-

atoms. We shall use an argument that is similar to the one we used for (2. 9). 

More precisely, we shall again restrict our attention to the special case q = 2 

CO 
and show that if a(x) is a (p , 2 , s)-atom then a(x) = b (x) 4- £ L b (x) , 

k=l k k 

where b Q is a (p , 2 , s^)-atom, b^ , for k > 1 , is a (p , oo } s^)-atom and 

CO 
^ l̂ i I S ̂  (we shall indicate later the changes required for the general case) 
k=l k 

Suppose a is centered at 0 and its support lies in a ball Q for which 

(2.1)(i) holds. Let Q k be the dilation of Q by 2 k , k = 0 , 1 , 2 , ... ; 

j\(fkj the dual basis of the monomials jxtj restricted to QK(taken in some 

fixed order), 0 < |>C,| , |t| < , 0 < k (with respect to the weight 

| Q J 1 = 2 " N K | Q | " 1 ) . it is easy to check that ^(y) = 2 " k ^ ^ ( y / 2 k ) and it 
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follows that|^(x)| < C (2 |Q|1/N-L) for x € Q K . Moreover we consider 

k n 
\Jf̂  to be defined on R but to be supported on Qk . 

Let, 

m ^ = ToT J a ( x ) * l d x ' 

and P(x) E tn \|r?(x) . We then put b = a - P , which gives us a 
s<KI<s 1

 1 1 ° 

function supported in Q satisfying 

-rV J bQ(x)x^ dx = ml - mt = 0 if 0 < \l\ < S;L 

(of course, m^ = 0 when 0 < \t\ < s) . Clearly, P is the partial sum, of terms 

up to order s^ , of the expansion of a in terms of the Gram-Schmidt orthonormal-

ization of the monomials restricted to Q ; thus, 

(2.13) ( 1 
(ToT J Kf** 

[ I 
2 

= I T ^ J I . - P I ^ Ì 

=1 

< 

{1|q| { |a|2dx 1_ 
2 

< IQI 

I 
P 

It follows that b Q is a (p , 2 , s^)-atom. 

Now let 

k 1 r . . I , -nk 

Thus, 

1^1 <2-nk 1|a(x)||x|ltldx< C 2" n k| Q|
 N U . J - | a |

2

d x 

1 M I 
2 < C2" n k| Q|

 n P . 

Consequently, |m^ \jfk| < : c 2 - n k i Q | ' n 
- 1 k 1 - W 

P(2 k| Q|
n) = C 2 - K ( K I + N ) | Q | 

__1 
P = o(l) 

as k -» <= . It is also convenient to write this in the form 

(2. 14) |mk tj| < C2 
-„k(liJ.+ 1 _ i ) 

> n p lQkl 

_1 
P 

If we now write 

P(x) = E 
s<\l\<sl 

m^^(x) 
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£ £ (m^"1 wk-1l(x) - m k ^(x)) 
s<|^|<s^ k=l 

CO 
£ £ f,.(x) 

s<\l\<Sl k=l k ^ 

we see that f ̂  's are supported in and by (2.14) 

| f U ( x ) | < C 2 n - n k | l | n + 1 - 1 / p P | Q k | P . 

Finally, if 0 < |t| < s^ , we have 

J f^(x)x t dx = m k 1 J \|fk 1(x)x t dx - m k J \(fk(x)xt dx 

_ ( 2 " n ( k - 1 ) m j Q k . 1 | - 2 - n \ | Q k l = 0 , if t = t . 

(o - 0 = 0 , if t ̂  £ 

This shows that f ^ = ^ ^ k ^ J where b ^ is a (p , » ,s^-atom and 

IX,J<C2Vn-nk(|l|/n+1-1/p) P /Fromk|>s>[n(--1)]we have > - - 1 ; 1 \aV — 1 1 — p n p 

consequently, 

£ £ | \ k J p < c , 
s<U|< S l k=l ^ 

where C depends only on n , p and s^ . 

We have, therefore, the desired atomic decomposition: 

(2.15) a = ( a - P ) + P = b o + £ M u \ r 

s< 111 < s ̂  k= 1 
k k 

The estimate for m p \Jr. immediately preceding (2. 14) shows that the last series 

converges pointwise for all x . (The atomic decomposition of a molecule involved 

a series with only a finite number of non-zero terms for each x . This is not the 
1 1 . ,1 1, 1 1 - - - -nk(- - -) - - -

case here.) Moreover, ||t>k̂ j|2 < \Q^\ P = 2 P |Q| P since b ^ is a 

(P ) 2 j s^)-atom. We can then argue as we did for molecules that the series 

(2.15) represents the same element as a(x) , as a linear functional on 
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L(~ - 1 , « , [n(— - 1 ) ] ) . For 0 < p < 1 we use the estimate on X, „ to show 
p p k£ 

ß H 

that b (x)(l + |x|n) 4- I Z L , b. .(x)(l 4- |x|n) converges in L (PR) 
° s<|t|<s k=l U k l 

if 3 < + ^ . We find that if [g] € L(- - 1 , « , [n(- - 1 ) ] ) that 
n 2 p p 

g(x)(l 4- |x|n) ^ e L 2(R n) if 3 > ± - \ . Since |̂ | > s> [n(± - 1 ) ] , 

U| 1 ' — > (— - 1 ) and so there is such a B and the proof proceeds as before. For 
n p 

p = 1 we use the fact that z | X ^ l < m to see that the series converges in . 

Thus the series and a(x) represent the same linear functional. 

These arguments complete the proof of ( 2 . 8 ) and ( 2 . 9 ) in the case q = 2 . 

n(~- -) | _ 1 

If q ^ 2 3 apart from obvious changes (such as setting o = ||M|| and the 

use of Holder's inequality instead of Schwartz's inequality) one needs to obtain 

the analog of the inequality in ( 2 . 1 2 ) and ( 2 . 1 3 ) . (The inequality in ( 2 . 1 3 ) is 

the case k = 0 of ( 2 . 1 2 ) with s = s^ . We recall that the Gram-Schmidt 

polynomials {cp̂ ^ j v j<s sat^-s^ tne inequality |cp^(x)| < C (s , n) and that the 

polynomials P^ have the form 

where 

Pk(x) = E|v| akv cp k kv 

Thus, 

K 1 p ™ k , a = -r-—r M, CD dx . v E, J k 1 k1 

sup |Pk(x)| < T ^ J J | M J dx 
x€E_. 1 k1 

K 

From this we obtain the desired result: 

1 
|Ek| 

{|Mk-Pk|qdx 
_1 

q 
< 

1 { |Mk|qdx 
|Ek| 

I 

q 
4- sup 

x€E. 
k 

|Pk'x) 
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<1 |k||€k| 

I 
q 

+ K T I l\l d x 

< c 
|€|1 { |k| q dx 

i 
q 

. 

This establishes theorems (2.8) and (2.9). We see, therefore, that the spaces 

JJP; q̂  s are^ for p fixed, all the same as long as p and q are related as 

indicated at the beginning of this section. Moreover, any two (p , q , s)-"norms" 

(p fixed) are equivalent. In the same way, spaces determined by (p , q , s , e)~ 

molecules (p fixed) are all the same and any two norms are equivalent. 

We shall often use the symbol H P and \\ \\ to denote any of these admis-
H P 

sible atomic HP^ ̂  S spaces (or molecular ^P^q^s^ 6 spaces) and associated norms. 

Similarly a "p-atom" or a "p-molecule" will be names for (p , q , s)-atoms and 

(p , q , s , e)-molecules when we are not necessarily interested in their dependence 

on the parameters q , s and e . 

§3. A Family of Hardy Spaces Associated with the Disk. Let D = (z 6 C : |z| < lj 

be the unit disk in the complex plane. For each a > 0 put UJ(z) = tu (z) 

2 a " 1 

= -̂(1 - |z| ) for z 6 D . The "weight" function ty gives rise to measure on 
D , which we also denote by & , defined for each Borel set E C D by 

yy(E) = J W(z)d(i(z) , 
E 

where |i is two-dimensional Lebesgue measure (the choice of ^ is made so that 

tt)(D) = 1 . ) 

Proposition (3.1). D endowed with the measure m and Euclidean distance as a  

metric is a space of homogeneous type (as defined in [8]). 

In order to show this we must prove that there exists a constant C = C 
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such that 

(3.2) oKB (2e)) < C m(B (e)) 
z0 z0 

whenever z~ € D and e > 0 , where B (6) = f z € D : z - z r k < 6 l 
U ZQ 1 1 U' 1 

= jz € C : | z - ZQJ < 6j fl D is the ball centered at ZQ of radius 6 . This 

inequality is an easy consequence of the estimate 

(3.3) UKB (e)) ~ 
Z0 

i 

( 

(1 - I z J f V , 0 < e < 1 - |z 0| 

S
a + 1 , 1 - U 0I < « < ! + |z 0| 

whenever z Q € 5 and 0 < e < 1 + |z Q| (the symbol "~" denotes the fact that 

the ratios of the quantities on the left to the quantities on the right are bounded 

below and above by positive constants). The estimate (3.3) will be proved in 

Appendix A. 

Since (D , uO is a space of homogeneous type one can develop an atomic H P 

space theory as is done in [8]. As in the case in R n , however, there are 

"natural reasons for considering atoms and molecules having vanishing higher order 

moments,,the number of vanishing moments increasing with 1/p . In many ways the 

theory of these atomic spaces on D is similar to the one we considered on R n . 

For example^ the fact that molecules have an atomic decomposition can be proved by 

using the same ideas that were exploited for the proof of Theorem (2.9). There 

are, however, differences creating some technical difficulties, due to the fact 

that the underlying domain is compact: the "balls" we introduced are either disks 

or intersections of disks with D . This fact creates some difficulties in the 

Gram-Schmidt estimates on the analogs of the "rings"Ek. In addition to the 

regular atoms having an appropriate number,s , of moments vanishing (s depends 

on both p and a) , we must consider atoms that are polynomials of degree not 

exceeding s . Moreover, ome difficulties arise from the fact that certain 

integral estimates involve the measure ty In fact, care must be taken since the 

"moment condition" involves only Lebesgue measure, while the "size condition" is 
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given in terms of ty . The reason why these two different measures occur naturally, 

in this manner, will be made clearer at the end of this section. 

It is useful to keep in mind that the atomic spaces we shall study now are 

related to the Bergman spaces A P of those holomorphic functions F(z) , z 6 D , 

satisfying 

(3.4) j ^ J |F(z)|P(l - |z|2) 
CC-1 

Dµ (z) 

1 
P 
=|F|p,a M < » -

When a = 1 we are dealing with the space A P which is sometimes referred to as 

"solid" H P ( D , dx dy) ; in this case w = (l/iOp, • Letting a -» 0 (3.4) reduces 

to the finiteness of 

2JT . . p 
J |F(e l 9)| d 9 . 

Thus the family of spaces A P > a > 0 , can be considered to be a parametrized 

family of spaces containing the classical Hardy spaces and the solid spaces 

H P ( D , dx dy) . 

Let us now pass to the definition of the atoms associated with the domain 

(D , uO . Suppose 0 < p < 1 , q > max jl , a] (if a = l , 0 < p < l we allow 

1 1-Hx 

q = 1) and s > max j[2(— - 1)] , —jj— - 2 ] j then a function a(z) , z 6 D is a 

(regular) (p , q , s)-atom centered at ZQ € D if it is supported in a ball 

B C D and satisfies: 

(3.5) 

(i) i ^ h h |a(z)|^(z)d,(z ) N < [ W ( B )] P 

( 20 z 0 ) 0 

( Ì Ì ) JB a(z)zVdn(z) = 0 . 
z0 

where v is any ordered pair of non-negative integers (v^ , v^) such that 

v Vl V2 
O ^ v ^ + v ^ = |V| < s and z = ( x + i y ) = x y . Any polynomial of degree 

not exceeding s (in x and y) that is bounded by 1 will be called an 
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exceptional (p , q , s)-atorn. These exceptional atoms obviously span a finite 

dimensional space and are needed to represent the entire space H P (D , uy) . 

Before introducing the notion of a molecule, let us make a general observation 

about spaces of homogeneous type. When working with such spaces it is convenient 

to introduce a "quasi-distance" which produces the same spheres that were obtained 

from the original distance and, furthermore, satisfies the homogeneity property 

that a ball of radius y > 0 has measure on the order of y . (Recall that in the 

definition of a molecule for H P(R n) we used the quasi-distance 6(x^ , x) 

= |x„ - x| n). By letting 

j |z - g 2 u - iz0i) , h - z 0 i < i - | z j 
6 ( z 0 ' z ) = J 

( | z - z 0 | a + 1 . I " | z 0 | < | z - z 0 | < 1 + | z 0 | 

we obtain a function that is equivalent to such a quasi-distance. More pre­

cisely, 
a+1 

(3.6) U)(|z : 6(z Q , z) < r| H D) ~ r for 0 < r < (1 + |z |) 

The proof of (3.6) is given in Appendix A; in fact, the "homogeneous type" proper­

ties of (D , uO that we shall need are presented in this appendix. An advantage 

of using 6 is that the ball {z : 6(z^ , z) < r| 0 D has a boundary that is made 

up of Euclidean circular arcs. This fact facilitates certain computations. 

We can now give the definition of a (regular) molecule: A function 

M € Lq (D , w) is a (p , q , s , e)-molecule centered at ZQ € 5 provided p , q , 

s satisfy the conditions given immediately preceeding (3.5), 

e > max — - 1 , — , —— and 
' p 2 1-kx 1 

- 1--
(i) HMJ^ ||M(6(z. , z))b|| b = K(M) < co ; 

(3.7) q U 

(ii) J M(z)zVdu(z) = 0 , 
D 

where v is as in (3.5)(ii), and, as was the case for (2.2), a = 1 - — + e , 
P 

b = 1 - - + e . 
q 
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It follows immediately from the definition of 6 and (3.3) that if 

B = B (e ) then 

(3.8) sup 6(z 0 , z) ̂ wbb.z£B 

We use (3.8) and an argument completely analogous to the one given in the proof of 

(2.3) to obtain the fact that any (regular) (p , q , s)-atorn a(z) is such a 

(P } q > s y e)-molecule with <S(a) < C , where C is independent of the atom. 

We shall show that each molecule has an atomic decomposition. As we observed 

in the IRn-case; in order to do this we must define the atomic Hardy spaces 

H^(D ,wa) Again this forces us to introduce spaces L. , . associated with 
{p, q , s) 

(D ,W> ). We assume 1 < q ' < a0/a0-1 , where a0 = max jl , a| , a n d 0 < [2ß] < s . 

(If a = 1 l < q ' < ° o is permitted when 0 < p < 1 .) A function g is said to 

belong to L(f3 , q' j> s) is and only if 

(3.9) sup ta (B) 
BCD a (B) I 

a B 

g(z)-Pfz) 

V (z) 
04 (z)d(̂ (z) 
a 

1 J_ 
t 

q 
koo 

where P is the unique polynomial (in x and y) of degree at most x such 
B 

that g - P is orthogonal to z on B , when |v| < s . The norm jg, 
L(ß,q',s) 

is the sum of the expression (3.9) and 

sup I J g(z)z^dMj(z) I . 
|v|<s 

Observe that on (D , m) the space L(3 > q' 3 s) is an actual function 

space (not a space of equivalence classes,, as was the situation for the unbounded 

case on (lRn , dx). ) 

We are not in a position to define the Hardy spaces associated with (D , yy) , 

characterize their duals and study their molecular structure. 

The atomic space generated by (1 , q , s)-atoms is the subspace of L^(D , uy) 

of those functions having the form 
00 

(3. 10) f = Z \ . a. , 
j = l J J 

00 
where each a is a (1 , q , s)-atorn and S < 0 0 

J j = i J 

The atomic space 
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generaged by (p , q , s)-atoms is the collection of all continuous linear func-

tionals of the form (3. 10), acting on L (~ - 1 , °° , [2(^- - 1 ) ] ) , where each a^ 
00 

is a (p , q , s)-atom and E | K . \P < 0 0 . If a is a (p , q , s)-atom its 
J - I J 

action as a linear functional on L(— - 1 , °o , [2(— - 1 ) ] ) is given by 
P P 

J D g(z)a(z)d|j>(z) 

An argument similar to the one used in establishing (2.6) shows that the linear 

functionals of the form (3.10) are well defined. Two ingredients are missing: 

1) The proof that the integral is well defined is more technical (see the argument 

before (3 .21)) . 2) The embedding of L ( ^ - 1 , « , [ 2 ( ^ - 1)1) into 

L(~ - 1 , q' , s) is not as easy as it was without weights. The analog of (8.2) 

of Appendix D can be found in Cuerva [11]. The "norm" of f is the 
1 

00 — 

inf( E |X.| P ) P over all representations (3.10); this definition applies to all 
J-I J 

cases, 0 < p < 1 (of course, even in the case p = 1 we could have defined the 

Hardy space as a space of linear functionals on L(0 , } 0 ) ) . As we did in §2 

we denote the spaces }f>,cl,s = H P^ q' S(D , &) and the norms, \\ jj 
JjPj Q> s 

The results corresponding to theorems (2.7) and (2.8) are valid for (D , yj) : 

Theorem (3.11). The dual of H^ ̂ S ( D , $) is naturally isomorphic to 

L ( ^ - 1 , q' , s) . 

Theorem (3.12 ). If p , q and s are admissible indices for a (p , q , s)-atom  

then 

P q s P ^ [ 2 ( i - D ] 
H P j C b S ( D , tu) = H P (D , T») . 

Moreover, the norms associated with these two spaces are equivalent. 

The proof of (3.11) follows the line of the argument given for Theorem B in 

89 



M. H. TAIBLESON - G. WEISS 

[8]; the technical changes forced on us by the weight uy are the same as those 

encountered by Cuerva in [11]. Again, for s fixed, the equivalence of HP^ ^ S 

and Hp,8s9 S can be established by reasoning that is similar to that in the proof 

of Theorem A in [8] (see the comments following (2.8)). We shall discuss the 

situation occurring when s varies toward the end of this section. It will be 

apparent there that the exceptional atoms are, indeed, necessary. 

a 0 1 
Corollary (3. 13). If 1 < q' < r and s > [2( 1)] then the spaces 

a 0 P 

L(1/p-1" * y q' > s ) and L (~ - 1 , 1 , [2(— - I)]) are equivalent. 

Theorem (3. 14). If M is a (p , q , s , e)-mo lecule then M € H P' q' S and 

IIM'I < c K(M) , 

where C is independent of the molecule M . 

We shall now prove (3.14). The basic ideas used in the proof of (2. 9) to 

obtain the atomic decomposition of the molecule M on R N are applicable to 

(D , uO . The boundedness of D and the weight ta , however, create certain 

differences and, for this reason, we shall present some of the details of the 

argument. 

Let us fix a > 0 and suppose that M is a (p , q , s , e)-molecule centered 

at zQ £ D with N(M) = 1 . Let a = | | M | | ^ a ~ b ) where a = 1 - ̂  + e , 

b = 1 - i + e . Thus, by (3.7)(i) we have 
q 

(3. 15) j,
1M(z)[6(z0 , z)] b ,

1| q = a a . 

1 _ 1 
If a > y then, clearly, M(z) = 2 P qa(z) , where a(z) is a (p , q , s)-atorn. 

Thus, we can assume 0 < a < ^ . We construct a dequence of balls JB, |f n , 
2 ( k 'k=0 

1 k n = [log —] > 1 , such that B, = B ( . satisfies tu(B. ) - 2 a for 0 < k < n 
2 o k. z 0 k 

and yy(B ) = 1 • (Observe that this implies that B = D and, also, < 2Qa < 1 . n n 2 — 
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The fact that tu(B n ) < T follows from this.) 

n-1 — Z j 

It follows easuly from (3.3) that p f e ~ i2k

CT(l - |z ( )|
1" a| 2 if p k < 1 - |z | , 

1 
while p, ~ (2 ko-) 1 + C C if 1 - | Z J < p, < 1 + |zJ . We thus have p i /p1 ^ 1 . rk 1 0' — k — '0' k-1 k 

Observe that p = 1 + IzJ . 

We now put E = B and E = B - B for 1 < k < n . Let R = My 
U U K . K K - - L K lli. 

k 

and denote by Qk the unique polynomial in x and y (of degree at most s) 

satisfying 

J E

 ( \ - V z V d ^ ( z ) = 0 

k 
for |v| < s , where Pk = Q^Xg 

k 

Let fcp̂ i be the Gram-Schmidt orthonormaliza tion,, with respect to the 

measure dp, (Z)/|JL (E^) , of the functions j((z - Z Q)e ~ ^ ) V j , |v| < s , where the 

ordered pairs \) are taken in some fixed order , 9 = arg z^ and all these func­

tions are defined on D but are supported on E^ . 

Let i^v5|v|<s denote the unique set of polynomials in z° , |v| < s , 

restricted to E^ satisfying 

1 
H<E k) 

f ^(z)((z - z )e'Ìfì) du(z) = 6, . 
•J E, A, O K, LL 
k 

In Appendix B we shall obtain the following estimates: 

Lemma (3. 16) sup |cpk(z)| < C , sup |\J/k(z)| < C p.-|v|, where C depends only  
Z6E k

 V " z€Ek " 

on a and s . 

Corollary (3. 17). If q > max j 1 , CL\ then 

— 7 — r I p. (z) q m (z)dM)(z) 
4} (B. ) «J B. 1 k a ^ 
a k k -I 

I 

q < c 
[1/wa (Bk) [ |Mk(z)|qwa (z)dµ(z) 

I 

q 

where C depends only on a , q and s (the inequality also holds for q = 1 

when a = 1). 
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Proof. Clearly 

r k j k l p k ( 2 ) l q V z ) d ^ ( z ) 

a k k 

I 
q 
< sup I P (z ) I 

z€E, k 

k k 
It is easy to see that P. (z) = £ m è (z) where 

V <s 

V ^ T l E k

M ( 2 ) ( ( z - z o ) e " i 9 ) V d ^ ( z ) • 

Thus, by Lemma (3.16) and the fact that |((z - zQ)e
 L ^ ) V | < C pj/^ on we 

have 

sup |P (z) I < C 
zGE R 

k 

1/(Ek){Bk |M(z)| dµ (z) 
. 

From (5. 9) in Appendix A we obtain that there is a B < 1 ? independent of ry , 

such that p^ j/P^ £ B

a for k = 0 ; l , . . . , n . It follows that the last 

expression is dominated by 

j ^ - y L |Mk(Z)|d,(Z) . 

Finally, it follows from (5.7) and (5.8), in Appendix A that this last quantity 

does not exceed 

1/ wa(Bk [Bk |Mk(z) qwa 

q 

and Corollary (3.17) is proved. 

We now proceed, as in the proof of Theorem (2.9), to show that M = E K 
k=0 k 

Y, (M, - P ) 4- E P v has an appropriate atomic decomposi tion. First we shall show 
k=0 k k k=0 k 

that 

(3. 18) 
\ ' Pk = C 2 \ 

where a^ is a (p , q , s)-atom. In order to do this (in view of (3.17)) we 

prove 

(3. 19) 
1/w(bk) |[bk |mk(z) q w (z) dµ (z) 

i 

q 
< C 2" k ( 1 + e )a" P . 2-ka[t,(Bk)] 

_1 
P 
. 
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If k = 0 then 

[ 
^T)L |M0(z)|1tB(z)dp(z) 

] 
I 
q 

- H M!!q [ W ( B0 ) ] 

_1 
q 

1_I 
q " p q p 

= [U)(B0)] [(D(B0)] = [W(B0)] 

If k > 1 we make use of (3.8) and (3.15), 

[ 1 
w(bk) J |ï^(z)|q Uî(z)dMl(z) 

k 

1 
q 

< 
[ î 
U)(Ek) 

{€k |Mk(z)|
q[6(z0 , z)] b q ( x (z)[6(z , z)]'bq)u)(z)dn(z) 

] 

l 

q 

< c 
_1 

( 2 V 

H ( z 0 , . ) \ 

( min 6(z , z)) b 

k 

< 
„ ci Ca 
1 

(2 a)4(2 a ) 

! 

i 
T"p2-k(l+e) 

№(B )] P -ka 

This proves (3. 19) and (3. 18) follows immediately. Thus, 

n n 
M = E \ a + E P, , 

k=0 k k k=0 k 

where the a 's are (p , q , s)-atoms and |yk| < C 2" k a 

As we did in §2 we shall show that 
n 
E 

k=0 
P can be represented as a sum of 

(p , » , s)-atoms. We have 
n 

k=0 
Pk = 

v 
E 
<s 

n 
E 

k=0 
k k m w , where 

k m V = [Ek M(z)((z - z )e io,v du,(z) 
n(E K) * 

From (3.7)(ii) we know that 

n 
E 

k=0 
m k |i(E ) = 0 , I v I < s . 

Let k N 
n 
E 
j=k 

mv j µ(€)j (Note that № = 0 , |v| < s) . Thus, 
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n n k K K 

k=0 k |v|<8 k=l V ( ^ ( E k ) ^ ( Ek-l)^ 

3 • s s f v k 

IvI<s k=l 

Using Lemma (3.16), (3.19), (5.7), (5.8) and the defining properties of , E 

and o~ we obtain the estimates 

sup 
z€E k 

1< 
u ( E K ) 

< c 
0(|v|+2) > 
Hk 

and 

mkv| < q|v 

E 
1 

p,(Ek) 
[bk |Mk(z)dM,(z) 

1 
q 

< c q|vk { 1 
*(B k) 

{Bk 1 ^ ( 2 ) ^ u)(z)d|i(z) 
} 
q 

< C p M 2- k( 1 + £> o 
I 
p 

It follows from the second of these inequalities and Proposition (7.1) of 

Appendix C that 

1 v i _ 
c 

q1/p 

n 
j=k 

q|v|+ 2 

?j(l+e) < 
C 

a 1 ^ 

^k 
2k(l+e) 

. 

Thus, 
0 (N1+2) 

If ( \\ < c -JS 1 = C -ka 
' v k U ; | - 1/p 9k(l+e) (|v|+2) k ,1/p 

a 2 ^k ' CT' 

< c 2~ k a[uKB k)] P . 

Observe that f^k is supported on B k and using the defining property of the 

,k 
functions w , we have v 

J D f v k(z) dp,(z) = 0 , \l\ , |v| < s . 

This shows that f^k = p, k̂ b^ k where b^ k is a (p , » , s)-atorn and IM^JJ <CKA 
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Thus, 

n n 
(3.20) M = Z X a + Z 2 n k b . 

k=0 k k |v|<s k=l V k V k 

We have shown that M is a finite linear combination of (p , q , s)-atoms (since 

(p , «3 } s)-atoms are ; clearly (p , q , s)-atoms) and since a = 1 + e - > 0 

we see that 

k=0|vl<sk=lk=0|vl<sk=lk=0|vl<sk=l 

where C depends only on p , e and s . It only remains to show that both sides 

of (3.20) generate the same linear functionals on g € L (-̂  - 1 , no , [2(-ĵ  - 1)]) . 

Since M , j b ^ € L q (D , m) and the sum in (3.20) is finite it suffices to 

show that (g/ui) 6 L q (D , m) . Thus, if f (; L q (D , tu) we obtain 

J |f(z )g(z ) |dn(z) = J |f(z)(g(z)/ttj(z))(w(z)dM,(z) < W ! !|(g/^)|| , • 
D D q q 

From the definition of L(— - 1 , » , [2(— - 1)]) we have that there is a constant 
P P 

A > 0 and a polynomial P such that - ^ D 

s u p |*izi - ! D L | < A . 
z 6 £ 'uKz) U>(z) 1 -

Thus, [g(z) /w(z)| < A + |P (z)/u)(z)| . There are two cases to consider. If a = 1 

then q 1 = co j ttKz) = 1 /it and we see, easily, that g is bounded since P^ is 

bounded. If a 4 1 then from (5.8) we can use (5.6) if q > max) 1 , aj and 

(5.6) applied to B = D asserts that 

(3.21) J m(z)l~q' dp.Cz) < C 

D 

since ( l - q ) ( l - q ' ) = l . Since P^ is bounded and yy € (D , \i) we see that 

g/m € L q (D , yy) . This completes the proof of (3. 14) 

Let us now turn to a sketch of the proof of Theorem (3.12): we must show that 

a (p , q 2 , s^-atom decomposes into (p , q^ , s^)-atoms. If = s^ > but 

q l ^ q 2 We Can USG the fact taat € L (D , m) (as we just did) in order to 

make the obvious adaptations (subtract polynomials, not constants) of the argument 
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found in [8]. Certain special cases are obvious if q^ = q2 3 but s1 = s4 : if 

s, < s^ and q, = q„ = q then an exceptional s -atom is an exceptional s -atom 1 2 1 2 1 2 

and a regular s^'^tom is a regular s^-atom. 

Suppose now that a is an exceptional s^-atom. We write a = b^ + b^ •> 

where b^ consists of the terms of a of order not exceeding s^ . Clearly 

bi = poa ' so' as before^ 

sup |b (z)| < C J |a(z)| dp.Cz) < C ; 
z€D ' D 

thus, sup |b (z)| < 1 + C . If follows that b = C a 1 where a is an excep-
zG) 

tional s^-atom and b^ =a - = (I + C)a^ where a^ is a regular (p , « , s^)-

atom. 

Finally, suppose a is a regular (p , q , s^)-atom supported in the ball B 

centered at z Q . Let a = uy(B) . If cr > 1/2 , then a = (a - P^a) + P ^ is 

the required decomposition (here, P^a is the unique polynomial of degree at most 

such that 

ID ( a " V ) z V d [ i ( z ) = ° 3 

for |\;| < s^)* If o < 1/2 we construct, as in the proof of (3.14), a sequence 

of balls f B k | £ = 0 such that uj(Bk) = 2 k
a , 0 < k < n , u ) ( B N ) = 1 , 1/4 < W ( B 

< 1/2 , B k = B z (p^) . Observe that B Q = B and B^ = D . Now let j ̂ } , 

- i 9 v 

jv| < s^ , be the "dual basis" of j ((z - Z Q ) 6 ) j , |v| < s^ , on B^ with 

respect to the measure |i/|j , (B K ) • With this setup one can reproduce the argument 

that gave us the decomposition (2.15). The only differences are that the excep­

tional atoms appear naturally in the decomposition of a on D as ultimate terms 

in the finite sum and that the estimates on the coefficients involve the radii 

. More precisely, we need to check that if s^ < |v| < s^ 

(3.22) S ( P n / p , ) P ( | V , + 2 ) 2 k < C , 
k=l 

where C depends on a , p and s2 but does not depend on z^ nor a . This 

inequality is established in Appendix C . 
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We mentioned in the introduction that there is a connection between the 

Bergman spaces associated with D and the atomic spaces we have just studied. We 

will discuss this connection in the light of a similar connection for the Bergman 
2 

spaces and the atomic Hardy spaces on the upper half-plane lR +=jz = x + i y £ C : 
2 

y > 0) . In many ways the Hardy spaces with R + are easier to study than the ones 
we have just studied and certain notions are more natural in this unbounded case. 

2 

The unit disk D and the upper half-plane R + are particular examples of 

Siegel domains of type II. For such spaces there is a Bergman kernel BQ(Z , £ ) 

that is analytic in z , anti-analytic in Q , conjugate symmetric in the arguments 
2 

(z , £) and is a reproducing kernel for holomorphic functions in L (D , dp,) , or 

respectively L 2 (R2 , dp,) . For D , BQ(z , Q = C(l - z£)~ 2 ; for R 2 , BQ(z , Q) 
= c(z - o - 2 • ^ 

2 
Let us note that, if we let ^ a( z) = ^q^z > z^ , a > 0 , we have 

04^(z) = C(l - |z|2) for D and w
a ( z ) = " Z f C y a ^ for ^ • Tne corresponding 

1 2 2 Bergman kernel for the weighted space L1(D ,wa, du) dp,) (respectively L (]R^ , tu dp,) 

r+1 
is Br(z , O = [B (z , £)] where r = (a - l)/2 . 

2 
We will now describe in sone detail the (technically) easiest case: R + with 

a = 1 (this is the unweighted case). Suppose p < 1 < q , p < q , e > ̂  - 1 , 

r > e > s/2 , where s is a non-negative integer such that s > [ 2 (-ĵ  - 1) ] . If 
2 

£ £ R + then, as a function of z , ^ 
[B0(G,C)1p 

V z ) = B r( C ?C) B r ( z - o 
2 

is a (p , q , s , e)-molecule on R+centered at Q with a molecular norm that is 
2 2 uniformly bounded in £ £ R + . What is meant by a "molecule on R +" is of 

course, that it meets the size and moment condition (2.2) with n = 2 , except 
2 

that Ml is supported on R_̂  . What is meant by "uniformly bounded molecular norm" 
2 

is that K(M^)is uniformly bounded in £ £ R + . 

Coifman and Rochberg [7] consider the space G , 0 < p , of holomorphic 
2 

functions F on R_^ such that 
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G p(F) = 
{ 

f , |F(z)|P dn(z) 

1 
P 

I < 00 . 

2 
They show that there exists a fixed sequence of JCk! c ^ + such that F 6 G^ if 

and only if there is a sequence jc^j of complex numbers for which 
CO 

F(z) = E c M (z) 
k=l K Qk 

(the convergence can be taken in the space of continuous linear functionals on an 

appropriate space of smooth functions - or, equivalently, uniform convergence on 

compact sets) and G^(F) is equivalent to the infimum of all expressions S |c k| P' 
k=l k ^ corresponding to the representations (2.23) of F . 

This shows that G consists of holomorphic functions contained in atomic 
P 

HP(R^) where the atomic-H^ space is defined in a manner that is completely analo­

gous to the one we gave for Hp(D , dp,) in this section (0<p<l).Consequently, 
2 

for F 6 G , F has an atomic decomposition in terms of p-atoms, supported on R, , P + 
2 

which, a fortiori are p-atoms on R . An interesting consequence of this fact is 

that the function F defined by 
F(z) = 

{ F(z) for z € R 

0 for z 6 C - R^ 

belongs to the atomic space H P(R Z) which (as follows from Latter [13]) is also the 

maximal H P space. 

An interesting consequence of this last observation is that a locally integra­

ble function, f , in atomic H P is in L^(R^) (i.e., G^(f) < ») . It follows that 

G consists, precisely, of the holomorphic functions in Hp. P 
The Bergman theory for D is quite similar. The main difference is that the 

functions M r(z) no longer satisfy the moment condition and we need to introduce an 

exceptional term which is a polynomial in z . For p , q , s , e and y related 

as above, Coifman and Rochberg show that there is a fixed sequence Í C k ! ° f complex 

numbers in D such that F is a holomorphic function with 

(i.e., F 6 Gp(D)) iff 

G (F) = ^ |F(z)|P dn(z) 
1 

IP < 00 
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F(z) = c P(z) + S c z S M (z) , 
U k=l k Ck 

where P(z) is a polynomial in z (of degree at most s) that is bounded by 1 

on D and 
1l 

I | c k | P P < » . 
k=0 k 

It turns out that the Ml are (p , q , s , e)-

molecules for Hp (D , dp,) and it can be concluded that G^ is, exactly, the 

holomorphic part of Hp. 

When a ^ 1 (a > 0) then there is an entirely analogous theory of weighted 

Bergman spaces on H2 and D , and corresponding atomic Hardy spaces 

H^(R^ , 03̂  dp,) and H^ (D , ̂  do,) , together with molecular characterizations of 

the atomic spaces. In this section we developed the theory for the atomic spaces 

on D . In generaly, the situation for R2+ is much simpler than it is for D . 

One never has to deal with exceptional atoms and the "balls" can be taken to be 

rectangles (squares if the center is far enough from the boundary, y = 0) with their 

sides parallel to the coordinate axes, so the geometry is almost trivial and the 

weighted measure, (JD̂ (z)dpi(z) = aya-1 dx dy , is easily computed on such "balls." 

Thus, the results analogous to those in appendices A, B and C are, relatively 

speaking, obtained with ease. 

This connection between the Bergman spaces and the Hardy spaces explains the 

moment condition that we imposed, where the moments were taken with respect to 

Lebesgue measure djj, . Thus we require that if X = D or TR2+ that 

(3.24) J x M(z) xV1 yV? 1 dp,(z) = 0 , v 1 + v 2 < s . 

The molecules M^(z) that occur in the Bergman theory satisfy this condition. But 

one could just as well have required that, alternatively, 

(3.25) J x M(z) x v1 y v2 cjua(z)d^(z) = 0 , V]_ + v 2 < s , 

for if M is holomorphic (3.24) and (3.25) are equivalent. With this moment 

condition for atoms and molecules we could develop another collection of atomic and 

molecular Hardy spaces and the corresponding weighted Bergman space is in the inter­

section of both. 

In terms of technical details of the proofs: in this second version, with the 
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weight "inside" (as in (3.25)) there is no need to establish the weighted norm 

inequalities and many of the technical calculations are simplified. For example, 

we can dispense with (5.9). On the other hand, the Gram-Schmidt estimates in 

Appendix B are now more delicate since we must account for a changing measure 

associated with each domain; one that changes continuously with the domain. Given 
2 

the choices: D or TR+ , weight "inside" the moment integral or no weight ((3.24) 

vs.(3.25)) the example we develop in this section is the technically most difficult. 

Details for the other cases can be left to the reader. 

If the reader does carry out the details he will note that the condition on s 
(for atoms and molecules) is: s > maxj[2(^ - 1)] , [ (1 + cc) (~~ - 1) ] } ; and on e 

(for molecules) is: e > maxj—- - 1 , 77 , _S \ . 
1 p 2 1+cc1 

Perhaps even more interesting than this theory for holomorphic functions is 

the fact that Coifman and Rochberg have developed an analogous theory for harmonic 

functions on the (n + 1)-dimensional spaceRn+1= \ (x , y) (E pa+^ : x G R n , 

y > Oj . This theory is based on two facts: the first is the reproducing property 
(k) 5^ 

of the derivatives P (x , y) = — r p ( x > y) of the Poisson kernel, P(x , y) 
nil 

= (l/Cti)(y/(|x|2 + y 2) 2 ) • That is, 

h(x , y) = £^J- J* n J h<i; , T))p(k)(x - e , y + TD-r f " 1 dT] ac 

]R 0 
for appropriate harmonic functions on ]R^+^ (this is just the usual Poisson 

integral representation modified by integration -by-parts). The second fact is 
(k) 

that a multiple of P is a molecule; namely, 
k-1 

(3.26) M £ } . (% , T)) = C 1 ; \ P(x - f , y + 7)) is a 
{ X , Y ) k (n+l)(--l) dyR 

y P 
(p , s , q , e)-molecule on TR̂ "4"1 centered at (x , y) (or (x , 0)) of uniformly 

n+1 

bounded molecular norm, where (p , q , s , e) are related as before (for R I) 

provided k - 1 > (n + l)e . Coifman and Rochberg show that if a harmonic function 

satisfies 
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J n+l|h(x,y)|*>|P 

{Rn+1 
dx dy > co 

it then has a molecular representation similar to (3.23) in terms of a fixed 

sequence of such molecules (3.26). 

§4. Convolution and Multiplier Transforms. It is a consequence of the molecular 

characterization of Hp that if T is a linear map, then to show that T is 

atom then Ta is a p^-molecule and K(Ta) < C for some constant C . Even in 

those cases where Ta is always a multiple of an atom (say, Ta = k * a , k 

bounded with compact support) one cannot expect to gain much information from this 

fact since the support of a is "smeared about". It was such observations that 

led Coifman and Weiss [8] to consider molecules. (See their theorems (1.29) and 

We will illustrate this approach to the estimation of operators on H P spaces 

with several results. On the one hand we will exploit the smoothness of the 

kernels of the fractional integration operators and obtain a rather elementary 

proof that these operators "act the way they should" on the Hardy spaces. (See [8] 

Theorem (1.35) for a model of this argument in the "atomic theory".) On the other 

hand we will exploit the Planchere 1 relations to show that if a is a (p , 2 , s)-

atom for s large enough and m satisfies the expected Hormander condition then 

m a is the Fourier transform of a (p , 2 , [n(1/p-1)) e)-molecule for a suitable 

e > 0 , with a bound on K((m a) v) . An elementary version of this argument is 

found in Theorem 1.2 9 if [8]. 

In both of these situations the results are not new in any essential way 

(although there are certain technical improvements in the formulations); but are 
p 

meant as a vehicle to introduce an approach to the study of operators on H spaces. 

(See Stein and Weiss [17] for the first result and A.P. Calderon and Torchinsky [3] 

for the second.) It is an approach that is conceptually quite simple and straight­

forward and will be applicable whenever there is a corresponding atomic and 

Pn Pl 
bounded from H to H it is sufficient to show that whenever a is a p n-

(1.30). ) 

101 



M. H. TAIBLESON - G. WEISS 

molecular structure available. To keep the exposition simple, all results in this 

section will be for lRn . 

Sobolev Theorems. Let us define the Riesz potential operators in the usual way. 

Thus, (i af)* = |x| a f and equivalently, for 0 < a < n and f "nice enough"; 

Iaf(x) = V P £ ( y ) dy , a J I in-a J 3  

|x-y| 

where Y a is an appropriate constant. For 1 < p < œ let H P(R n) = L P(R n) 

Theorem (4. 1). Suppose 0 < p ^ < ° ° , 0 < a < n / p ^ , - ^ = -^--^, then i a maps 

P P 2 1 
H (Rn) continuously into H (Rn) . If we replace H°°(]Rn) with BMO the result 

holds for a = — .  
P2 

Proof. The result will follow from the repeated application four cases below: 

I. 1 < p^ < p^ < 0 0 . Well known result of Sobolev. 

II. pl < 1 < p 2 , 0 < a < n . Choose s + 1 > n(~- - 1) and 1 < q-ĵ  < q 2 <
 0 0 

so that — - — = — - — = — . If a is a (p. , q, , s)-atom we show that 
P x

 p2 ql q2 n 1 1 

l|iaal| < C 
" U P 2 - cc, P 1^P 2 

I I I . P 1 < P2 ^ 1 ̂  0 < a < 1 . Choose s , q^ and q 2 as in II. If a is a 

(p1 , q1 , s)-atom we show that i a is a (p0 , q o , [n(— - 1)] , e)-1 1 a 2 2 p 2 

molecule for 0 < e - - < (1 - a)/n and K(i a) < C 
n a - a,p x,p 2 

n 
IV. p > 1 , a = — . We need to show that 1^ : L P -» BMO continuously. But 

P n 

BMO = (H 1)" and from I and II we have that I P : H 1 - L P (-\ + - = 1) , so 
P P 

the result follows by duality. 

We give the details for II and III. 

Case II. Let Q be the support of a (Q is a ball), Q* its double and we 

assume that Q is centered at the origin. 
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K a"p 2 

< 
{ 

ieo* 
|lŒa(x)| 

P2 
dx 

] P2 
+ 

[ 

x£o* 
|laa(x)| 

P2 
] P2 

= *1 + I2 . 

From 
P2 q2 P l q i 

w e h a v e in < c||i "ali 
q2 

IQI 

pl " «1 
— a." 11 

qi 
IQI 

p i " q i 
< c . 
— a. 

h- IvJ 
[ 

[x€o* 
{ 
I 

y£Q 

a(y) 
I in-a 
x-y 

dy j dx 
J 

] P2 

< C — a 

[ 

i 
xgn* 

[ 
{y€ U(v)l lvl

s + 1 

I In-a+s+1 
lxl 

dy 
] P2 

dx 

] _L_ 
P2 

< C a W |Q| 

s+1 
n 

+ 1 - 1 
ql 

[ 
{1 dx 

(n-a+s+1 )p 
|x| 

] P2 

< C ||a|| - a" IQI 

s+l 
n 

+1 -
1 

ql 
IQI 

-i + a 
n 

s+l 
n + 

1 
p 2 

J_ 
P2 

1_ X 
n pl 

J_ 
ql 

= C a ||a|| | Q| = C MI a » " q i 
IQI < c 

— a 

Case III. This is where the molecular theory is used. We need to check the size 

and the moments of I a . 
^ K 2 

< Ca,q1,q2||a||q1 from Case I. Now let 

b = l _ — + e , for 0 < e < ( s + l- a)/n . 
q2 1 

[ 
f |iaa(x)|x|nb| 2 dx 

] 
1 

q2 
< 

[ 

I |laa(x)|x|nb| 2 dx 

] 
_1_ 
Q 2 

+C 
a 

[ 

xÉQ* 

] 

y€Q 
|a(y)| |y| S + 1 dx 

[ q2 
|x|nbq 

(n-a+s+l)q2 

! x l 

dx 

] 
q2 

=I1+I2 . 

I1< üiaa|| |Q|b < Ca,p1^p2 !|a|l |Q|b . 

I, < c ||a!| |Q| 

s+l 
n 

+ 1 -
1 

ql 
[ 

xgQ* 

dx 
(n-a+s+l-nb)q„ 

Ixl 2 

] q2 
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s+l ^ _1_ s+l +^ + 1 
<cJ|aH IQI n " q i l Q l " n " n q 2 = ca!!a!! | Q| b . 

u, q^ u, q^ 
Thus ||iaa|x|nb|| < C Hall \q\h . Let a = 1 - — + e , and we see that 

q2 " a;Pi'P 2
 ql p2 

1 1 1 1 
a_ ^ a_ 

(llall )b(!|a!!q | Q| b) " b = !la|l M ^ W I h i ' 2 ' ^ W L I Q | P i q i < i . 
ql ql ql ql ql 

Thus, the size condition is met 

q q 
From the fact that iaa € L and I^a | x | n 6 L we get that iaa |x|V £ L 1 

if |v| < [n(— - 1)] . (The necessary estimate is e > — - 1 > — - 1 
P 2 P x P 2 

> — [n(— - 1)] . Note that b = 1 - — + e . ) Consequently D V(i aa) A is a contin-
n P2 ql 

uous function and we only need to check that DV(iaa)^(0) = 0 if | \> | < [n(—- 1)]. 
P2 

Since a is a (p^ , q^ , s)-atorn , a(x) = 0(|x|S+'1") as |x| -» 0 ((9. l)(i)) and 

so (iaa)^(x) = |x| aa(x) = 0(|x| S +^ a ) as |x| -* 0 . Since s + l - a > ne 

> [n(— - 1)] it follows that D V(i aa) A(0) = 0 and we have established that I°a 
P2 

is a (p0 , q_ , - 1)] , e)-molecule if — < € < — + ̂ -^ and ^(I°°a) z 2 p 0 n n n 

< C 
- a,p 1,p 2 

It is possible to generalize this result and give conditions on kernels k 
Pl P 2 such that the map f -» k * f sends H continuously into H As a single 

example in this direction note that if tc is bounded and 

J J |k(x + y) - k(x)| 2 dy | x | n ( 1 + 2 S ) dx< C R n ( 1 + 2 e ) 

|x|>2R 1y1<R 

for all R > 0 and some e > 0 then a -» k * a maps (1 , 2 , 0)-atoms to 

(1 , 2 , 0 , e )-molecules, boundedly, and so f -» p. v. Jk(x - y)f(y)dy wil map 

K~ continuously into Ĥ " . For any Riesz kernel, k , we know that 

|k(x + y) - k(x)| < C |y|/|x| ( n + 1 ) if |y| < |x|/2 
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and the condition is satisfied for 0 < e < 1/n . Details are left for the reader. 

Multipliers. Let f £ H P(R n) , 0 < p < 1 . It is a direct consequence of the 

atomic characterization of H P that f is continuous on R n and that there is a 

constant C > 0 , independent of f £ H P such that |f(x)| < C||f||Hp|x|n(1/p-1)^ 

H P 

(see Proposition (9. 14) in Appendix E. ) Thus, we may define a multiplier on H P 

as a function m(x) that is measurable and such that whenever f £ H P , m f is a 

function that is the Fourier transform of an element of H P and for which there is 

a constant M > 0 , independent of f , such that ||(mf)v|| <M]|f|| . There is 

H P H P 

no need to take recourse to a "nice dense subset" of H P . Furthermore, if we vary 

f appropriately, we can show that if m is a multiplier on H P then m is 

continuous and bounded on R n - JOJ and that there is a constant C , independent 

of m , such that |m(x)| < C M (see Proposition (9.21)). 
Consequently, if m is a multiplier on some H P , 0 < p < 1 , then m is 

2 
also a multiplier on L , and by any of several interpolation arguments it is also r r bounded on H , p < r < 1 ; on L J> 1 < r < 2 , and then by duality it is also a 

TC 

multiplier on L , 2 < r < » ; and on BMO . (For an interpolation theorem one 

can use Theorem 3.5 in [3], or using the atomic and molecular theory one can obtain 

the interpolation result by elementary calculations for the class of multipliers we 

describe below, using only the fact that they are linear maps that send p-atoms, 

boundedly, to p-molecules. Details will be provided elsewhere.) 

Let us now state the multiplier theorem that we prove in Appendix D (Theorem 

9.26)). 

Theorem (4.2). Suppose t is a positive integer and 

(4.3) R 2 M " n J |D P(x)| 2 dx< A 2 , 0 < |p| < t , R > 0 . 
R<|x|<2R m 

Then if 0 < p < 1 and jjj- > ^ - j , m is a multiplier on H P(R n) and there is a 

C > 0 , independent of m and f such that 
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¡1 (m f)v|| < C A||f|| , for all f € H P . 
H P H P 

We note first that the fact that m is bounded follows from (4.3) (see (9.22)). 

We will illustrate the proof with a sketch of the one-dimensional case. The proof 

for n > 1 is much more technical. 

We have a function m , a positive integer t , a number p , 0 < p < 1 with 

t > - . For all R > 0 , and integers s such that 0 < s < t we have 

R 2 5' 1 f |D S(x)| 2 dx < A 2 . 
R<|xJ|<2R m 

We know that m is bounded on 1R - j 0 j and set |m(x)| < C A . 

Let a be a (p , 2 , t - l)-atom centered at the origin. We will show that 

(m a ) V is a (p , 2 , - 1 ] , t - |-)-molecule and that K((m a) V) < C A . 

For a (p , 2 , t - l)-atom, a , and a bounded function, m , we only need to 

establish the estimate 

ì Ì 1 _ ì i 
(4.4) i||ma||2"p + t ||D

t (m a) ',|P " 2 | t < AC . 

To see this we note that from the Plancherel relations (4.4) is the same as 

l - ! + t Ì . Ì Ì 
illCma)! 2 P ]|(mà)v I x ^ 2} ' < C A , 

which is the size condition for a (p , 2 , - 1] , t - 1/2)-molecule. To see 

1 v 2 
that moments up to order [— - 1] are zero we first note that (ma) € L and 

| x) (m a ) V € implies that |x|S (m a ) v ̂  for 0 < s < t - ~ and so for 

1 1 1 s 0 < s < f— - 1] since [— - 1] < t - — . But this implies that D (m a) is 
- p p 2 

continuous and we only need to check that D (m a)(0) = 0 . From (9. l)(i) we have 

that a(x) = 0(fx| ) as |x| -+ 0 and since m is bounded, m a(x) = 0(|x| ) as 

|x| - 0 . Since a(0) = 0 we have that D S (m a)(0) = 0 . 

Let us now establish (4.4). Let a = l - - + e - - = t 4 - ^ - - — , b = + e = t , 
P 2 p 2 

b - a = — - j. We rewrite (4. 4) as 

a 1 — 

(4.5) !!mal£!|D t<ma)!| 2"
b<CA. 

Since ||ma!]0 < C A||a]|9 = CAJ|a||9 we only need to show that 
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(4.6) 

a b ^ 

HD'Onall, < C A/|!a||b-a = C A/||a'||b-a " , 

and consequently, we need to show that for k + £ = t , 0 < k , t < t , 

(4.7) !|(Dká)(/m)|L < C A/liaf"3 . 

For k = t this is trivial since 

llíD^m^ <CA||D tá||<CA/||á||^ a , 

as follows from the fact that a is a molecule and the Planchere 1 re la tions. Thus, 

we may now assume that 0 < k < t , 0 < ¿ < t . k + ¿ = t . From (9. 1) we need 

the following estimates: 

(4.8) 

t+1/2 x 

(i) |D ka(x)| < d x l ^ / ü a l l ^ " , 

(ii) |Dka(x)| < C/||a||. 

k+1/2 
b-a 

We choose K , an integer, so that Z ~ 

1 

!! J 1 b " a  

„ a l ¡ 2 * Then 

!|(Dká)(pAn)ü2 = E r |D ka(x)| 2 |/m(x)| 2 dx 
1 v€Z 2 V<|x|<2 V + 

< c 2 

[ 

K 
E 
-00 

2v(2t-2k) 

2t+l , 

M 2

b - a 

2 V< 

r 

|x|<2^ 

KJ 2 
ID m(x) I dx 

+ 
K 
E 
-co 

1 
2k+l  

l l a l l a 3 " 2 

J 

2 V<|x|<2 V + 1 

%s 2 
|D m(x)| dx 

] 

2 2 
< C A 

[ 
K 
E 
-co 

2 v(2t-2k ) 2 - v(2¿- l ) 

2t+l 
b-a - 2 

!la|| 2 

+ 
00 
E 
K 

1 

Hal! 
2 

2k+l 
b-a 2 V [21-1) 

= C A 
[ 1 

''all 

2t+l 
b-a - 2 

K 

-CO 
+ 

1 

liall 

2k+l 
b-a 

- 2 

00 
E 
K 

2 v ( l-2¿) } 
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2 2 
< C A : 

{ 

!la|| 

1 
b-a 
2 

h\\2 

2t+l 
b-a 

- 2 
+ 

|a|l2' 

l-2£ 
b-a 

!|a|l2 

2k+l 
b-a - 2 

] 

= cV/||a||2 

2 
b-a 

= C2A2/||all2 

I b-a 

This is the required estimate and the proof if complete. 

We complete this section with a description of two extensions of the 

multiplier theorem. 

The main defect in multiplier theorems such as (4.2) is the jump that occurs 

because of the requirement that t only take integer values. This is a technical 

defect that is repaired by replacing the condition on the derivative (namely, (4.3)) 

with an appropriate Lipschitz condition. The Hormander condition, (4.3), can be 

2 t 
interpreted as a requirement that m is, locally, in the potential space L 3 ; 

that is, can be represented locally as a Bessel potential of order t of a function 

2 2 2 
in L . Such spaces are the integer cases of the Lipschitz-Besov spaces A ' 

There are many ways to express this condition locally (all that we have tried have 

worked!) but the one given below is a handy version for applications. 

k+1 k 0 
Let A hf (x) = f (x - h) and A h f = ^ ( ^ f ) , f > 1 , = f . 

Theorem (4.9). Suppose m is a bounded function, m(x) < A , t is positive and 

for some integer t , t > t , 

(4.10) R2t-n J |h|" 2 t 

|h|<R/2 
r. 

R<|x|<2R 
m(x)| 2 dx 

dh 
|h|n < A 2 , R > 0 . 

Then if 0 < p < 1 , 1 > Ì - Ì 
n > p 2 3 

m is a multiplier on H P(R n) and there is a 

C > 0 , independent of m and f , such that ||mf)v 

H P 

< CA»f» 
H P 

for all f € H P . 

Details of the proof are given in Appendix D (9.45). The discussion preceding 

the statement of Lemma (9.37) expands upon the statement we made on various formu­

lations of (4. 10). 
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Fractional versions of multiplier theorems are not new. We note in particular 

a result of R.R. Coifman [5] where he shows that if m is a bounded function on P 

and |^m(x)| < C (|h|/|x| ) a , |h| < |x|/2 , where 1/2 < p < 1 , a > 1/p - 1/2 , 

then m is a multiplier on HP(1R) . (His result is more general than this, but 

this is the relevant part for our discussion.) One sees that such an m satisfies 

(4.10) for any 0 < t < a and so (4.9) is a generalization of Coifman's theorem. 

We also note that for spaces of homogeneous type that are not locally 

Euclidean the notion of a derivative defined pointwise is not available, but 

Lipschitz conditions such as (4.10) always make sense. Thus Taibleson [18], Chapt. 

VI, Theorem (1.1) gives a multiplier theorem for I? spaces on local fields using 

a Lipschitz condition. 

As a final comment we note that an essential tool in the proof of Theorem 

(4. 2) and Theorem (4. 10) for n > 1 is the use of embedding theorems for potential 

spaces and Lipschitz spaces. These are used explicitly in Lemmas (9.22) and (9.37) 

The idea behind such results is the Sobolev result which says that a function which 

is smooth in L r (Rn) is also smooth in L S(R n) , s > r , but has lost n(̂ - - —) 

degrees of smoothness. (The most elementary version states that a function with 

[y] + 1 derivatives in \} (]Rn) is continuous.) 

Using these embedding theorems we can state versions of our multiplier 

theorems for "Ho'rmander conditions" with integral exponents r ^ 2 , 1 < r < » . 

For integer values of t we have the following example: 

Theorem (4.11). Suppose t is a positive integer and 

(4. 12) 
(|ß|-7> 

R 
[ 

R<|x|<2R 
|D ßm(x)| r dx 

] 
I 
r 
< A , 

0 < ß < t , R > 0 . 

Then if 0 < p < 1 and n p = 
1 

min(2,r ) = and 1 < r < » m is a multiplier on 

H (R ) and there is a constant C > 0 , independent of m and f such that 

ll(-f)! = < C A|]f|! = , for all f € H P . 
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More details, an equivalent version for integral t and a fractional version 

is given in Theorem (9.48) and the discussion which precedes it. Note, in particu­

lar, that from the condition for r = » (usually called a Mihlin condition) down 

to the condition for r = 2 (the Hormander condition) there is no change in the 

required smoothness for a multiplier. This result should be compared to the result 

of Peral and Torchinsky [15] for parabolic spaces. 

§5. Appendix A. A family of Borel measures on the disk. Let D = j z € C : | z | < l j 

be the unit disk in the complex plane. As in §3, for each a > 0 put u^(z) 

= UtKz) = ̂ (1 - | z | 2 ) a ^ for z 6 D . The "weight function" № gives rise to a 

measure on D , which we also denote by UJ , defined for each Borel set E cz D by 

& a(E) = w(E) = J E Wa(z)dn(z) , 

where |i is two-dimensional Lebesgue measure. 

If ZQ € D (the closed unit disk) and e > 0 then 

B z (e) = jz € D : \z - z Q| < e| = (z 6 C : |z - z Q| < e} H D 

is called the ball centered at z^ of radius e . 

The main reault of this appendix is the following estimate: 

Proposition (5.1). If ZQ £ D , e > 0 then 

< (1 - I z J f V , 0 < E < 1 - |z 0| 

» a ( B (e)) ~ < e a + 1 , 1 - |z Q| < c < 1 + \ zQ\ 

\l , e > 1 + |z 0| 

(The symbol "~" denotes that the ratios of the quantities on the right and left 

are bounded above and below by positive quantities if either is non-zero, or both 

quantities are zero.) 

We will prove (5.1) later in this appendix. As defined in [8, p.587] a 

space of homogeneous type is a topological space X endowed with a Borel measure 

)l and a quasi-distance d (there exists a positive constant K such that 
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d(x , y) < K(d(x , z) + d(z , y))). The spheres : Sx(r) = {y € X : d (x , y) < r j 

form a basis of open neighborhoods of the point x G X . The basic assumption is 

that there is a positive constant A such that for all x £ X and r > 0 , 

UL(S (2r)) < A (S (r)) . ^ x — |i X 

Corollary (5.2). D endowed with the measure u) and Euclidean distance is a  

space of homogeneous type. 

Proof. The result will follow if we show that 

W(B z (2e)) 
( 5 ' 3 ) u , (B Z ° (« ) ) ~ ^ 

Z0 
for all ZQ 6 D , e > 0 . Since "> 1" is clear we need only show "< A" . 

Case 1. e > (1 + |z |)/2 . Note that if 6 > 1 + |zJ then B (6) = D and U u zQ 

hence m(B (6))=ttJ(D) = l. Thus U)(B (2e)) = 1 and we need to show that 
Z0 Z0 

&(B (e)) is bounded below. 
Z0 

Subcase A. e > 1 + I z J . ®(B (e)) = 1  - ' 0 ' z^ 

Subcase B. 1 - |z | < e < 1 + |z | . uKB (6)) ~ e a + 1 > ((1 + | z n| )/2) a + 1 > (i)^! 
Z0 U - 2 

Subcase C. 0 < e < 1 - |z Q| . 

Sub-subcase (i). a > 1 . OJ(B (e)) ~ (1 - |z J ) 0 6 " 1
 e

2 > e
a + 1 > ( i ) ^ . 

— ZQ ' 0 ' — — v2 
2 

Sub-subcase (ii). 0 < a < 1 . W(B (e)) ~ (1 - |z |) a" 1e 2 > e 2 > (h . 
z0 2 

Case 2- 1 " lz
0l < e < ^ + l z

0 l ) / 2 

w(B (2e))/u>(B OO) ~ (2 e) a + 1/e a + 1 = 2 a + 1  

z0 z0 

Case 3. 0 < e < (1 - |zJ )/2 

(l-|z 0|) a- 1(2 e )
2 

*<B (2e))/u)(B (.)) ~ ° t 2 = * • 
0 0 (l-|z0|) e 
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Case 4. (1 - | zj )/2 < e < min [1 - |z Q| , (1 + |zQ|)/2] . Then e/(l - | z Q | ) ~ 1. 

yy(B (2e))/w(B (e)) ~ e a + 1/(l - | z n | )
a " 1 e 2 - (e/(l - |z n|))

a" 1 - 1 . 
Z 0 Z 0 

This completes the proof of the corollary. 

Let 

(5.4) 6(z0,z) = 
(|z - z Q|

2 (1 - IzJ)*" 1 , |z - z Q| < 1 - |z Q| 

(l z - z

0 |
a + 1 > 1 * lzol - l z " zo' - 1 + ' zo' • 

Fix ZQ € D , then for z 6 D , à (z^ , z) is a strictly increasing function of 

|z - ZQ| J, 0 < |z - ZQ| < 1 -f I ZQ| . Our next result shows that 6 satisfies a 

basic regularity property. 

Corollary (5. 5). If zQ £ D and 0 < r < (1 + | z | ) a + 1 then (( z : 6 (zQ , z) 

< r j fl D) ~ r . 

Proof. For 0 < r < (1 - |z Q| )
a + 1 , |z € D : 6 (zQ , z) < r j 1 1 - > a 

= j z 6 D : I z - z 0|
2 (1 - | z 0 | )

a _ 1 < r| = |z € D : |z- z Q| < r
2 (1- | z Q|

 2 j 

= B z (r
2(l - |z Q|

 2 ) . Since, r 2 (1 - | Z q | ) 2 < 1 - | 2 ( )| , 

uKJz € D : 6(z 0 , z) < rj) ~ (1 - | z 0 | )
a _ 1 r(l - | Z q | )

1'°L = r . For 

(1 - | z 0 | )
a + 1 < r < (1 + | z 0 | )

a + 1 , |z e D : 6(z 0 , z) < r| = |z€D: | z - z 0 |
a + 1 < r 

1 1 

= B z (r
a + 1) . Since (1 - |zQ|) < r

a + 1 < (1 + |z 0| ) y yy(îz GD : 6 (zQ , z) < r) 

~ (r ) = r . This completes the proof. 

This last result is very suggestive and would expect that the function 

6(ZQ , z) is "almost" a homogeneous metric for the space of homogeneous type. We 

will now show that this is so. 

A "natural" homogeneous metric for our space of homogeneous type is 

d(z_ , z) = inf |UJ(B (e ) ) : z~ , z € B (e ) \ . It follows from the general theory 
0 1 w 0 w ' 

of such spaces that d is a quasi-distance and is homogeneous in the sense that 
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tu(jz € D : d(z Q , z) < rj) ~ r . We will now show that d(z Q , z) ~ 6 (zQ , z) . 

To see this note that 6 (z~ , z) ~ w(B (Iz - zA ) . Note also that z , z 
U ZQ 0' o 

€ B (|z - z | ). Thus, d(z , z) < UJ(B (|z - z I) . An easy estimats shows that 
z0 z0 U 

if z n , z 6 B (e) then B (| z - zJ ) c B (3e) . Thus there is a constant c > 0 U W Zf* u w 
~ 1 -1 such that tu(B (e)) > C UJ(B (3e)) > C $(B (Iz - z.l)) . Take the infimum over w w — ZQ U 

all such balls B (e) and we get that d(z n , z) < yy(B (|z - z |) < C d(z n , z) 

and consequently 6 (ZQ , z) ~ d(z^ , z) . 

Before preceeding to a proof of Proposition (5. 1) we will give one more easy 

and important corollary. Note that weight function UĴ (z) = 1/jt gives rise to 

normalized Euclidean measure on D . We will denote this measure in the usual way: 

yy^E) = |E| . 

We say that a non-negative function m on D is in A^ , q > 1 , if for all 

z n € D , e > 0 , B = B (e), 

(5.6) jjj- J W(z)d|i(z) 1 
B {B («Kz)) 

1 
" q-1 1 q-1 

d|jL(z) < C . 

An extensive theory of such weights on 1R has been developed and a thorough 

treatment can be found in [6]. We need only the following immediate consequences 

of (5. 6): 

Proposition (5. 7 ). If yy is in A on D , f € L q (D , w(z)du,(z)) and B = B (e ) — q — z Q 

is any ball with z^ € D then 

jK J |f<z)|dg,(z) < C J |f(z)|q U)(z)d^(z)l q 

B L B 

where C is a constant that is independent of f and 

Proof. Use Holder's inequality and (5.6). 

Corollary (5.8). is in A^ if q > max j1 , a} . 
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Proof. Let yy(B) = «>a(B) and )3 = (q - a / (q-1) > 0 . Let ffi(B) 

= f (1 - (zp) dMj(z) = f i(l - |z|Z) 1 q " X dp,(z) = fuL(B) . We need to show 
B B P 3 

that Uj(B)(m(B))q"1 < C |B|q , for B = B (e) , z <E D , e > 0 . 
z0 U 1-a 

Case 1. e < | z 0 | . t»(B) ® (B) ) q ~ l ~ (1- | z Q| ) a _ 1 e 2 ( (1 - | zQ\ f'1 ^ ) q " L ~ e 2 q - | B |, 

Case 2. 1 - | Z ( )! < e < 1 + |z Q| . tt) (B) (3(B) )q"1 ~ e a + 1 e ^ " ^ 1 = e 2 q ~ | B| q  

Case 3. e > 1 + |z Q| . u)(B) (ffi (B) ) q " 1 = 1 • | = | • |B|q . 

Summary. D endowed with UJ as a measure and Euclidean distance is a space of  

homogeneous type. The "balls" jz £ D : 6(ZQ , z) < rj form a natural family of  

closed neighborhoods about each point z^ € D with measure on the order of r , 

0 < r < (1 + | ZQ| ) a + * . The function (ZQ , z) -» 6 (z^ , z) is equivalent to a  

homogeneous metric on D . The weight is in , q > max j1 , a) . 

Our penultimate result is the 

Proof of Proposition (5. 1). If e > 1 + | zJ then B = B (e) = D and so 
z Q 

U3(B) = tw(D) = 1 so we may assume that 0 < e < 1 + |ZQ| . From the rotational 

symmetry of w(z) we may assume that z^ = x^ is real and non-negative , 0 < 

x 0 < 1 • 
Case 1. e < 1 - x . 

e 2 a-1 a 
For x Q = 0 , e < 1 , w(B) = 2a £ (1 - r ) rdr = 1 - (1 - e ) . Let 

f (y) = 1 - (1 - y)°° , 0 < y < 1 , f (0) = 0 , f (1) = 1 , f' (0) = a . For 0 < a < 1 , 

f is an increasing, convex and ay < f(y) < y . For a > 1 , f is increasing, 

concave and y < f (y) < ay . Thus, for, 0 < a < 1 , ae2 < U}(B) < e2 , and for 

a > 1 , e2 < w(B) < ae2 . If x Q > 0 , 0 < e < 1 - x Q . 

W(B) = ^ | J (1 - |x Q + p e i 9 | 2 ) a 1 depdp 
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9 e it a - 1 

= * I o ( 1 " X ° " 2 X ° P C O S * " d 9 p d p 

0 . a - 1 € 3t p ( 2 x n cos9+p) a _ 1 

- 2f a - ** ) j J a - ) depdp . 

p < € < 1 - x Q so |2 x Q cos 9 + p| < 2 x Q + 1 - x Q = 1 + x Q . Consequently, 

p ( 2 x Q c o s 9+p) p ( 2 x Q c o s 9+p) 
—2 < i ^ r a n d I ~ 2 I < T ^ : < 1 -

l-xQ 0 l-xQ 0 

Let g(y) = (1 - y ) ^ 1 , - 1 < y < 1 . 
a - 1 

For 0 < a < 1 , g is increasing and bounded below by 2 
For a > 1 , g is decreasing and bounded above by 2 a ^ . Let 

a - 1 
it p ( 2x n cos 9 +p ) 

(*) = f ( i - — 5 ) de . 
0 

a 1 D A _ 1 cc-1 
For 0 < a < 1 , JT2 < ( * ) < JT(1 - ) and for a > 1 , jt(l - 7-^—) < 

" 1 _ x o " ^ O 
< (*) < r c 2 a " 1 . Thus, for 0 < a < 1 , 

1 ? a - 1 e a - 1 
W(B) = a 2 a _ i (1 -XQ) £ 2pdp = a 2 a ' i ( 1 - X

2 ) e . 

9 a - 1 e a - 1 
«J(B) < 2a(l-x Q) J (1 - y^~) Pdp 

9 a - 1 9 1 a - 1 
= 2a(l - xZ

Q) e £ (1 - 7^-) tdt 

9 a - 1 1 a - 1 
< 2a(l - X Q ) S £ ( 1 - t) tdt 

2 n 2. a- 1 2 

= i+^ ( 1 " x o } 6 ' 

For a > 1 a similar argument yields 

2 (1-x20)a-1 E2< wB< a2a-1 (1-x20)a-1 E2. 

1+a2 
Since 1 - XQ ~ 1 - XQ this completes the proof if e < 1 - x^ . 
Case II. 1 - x Q < e < l + x 0 . Note that e < 2 . We first dispose of the case, 
1 ^ , 0 . /r.\ ̂  i - ( a + 1 ) a + 1 . na+l a + 1 ^ , 
- < e < 2 . U)(B) < tu(D) = 1 = e ye < 2 e . On the other hand, if 
e > 1 - x and e > \ then B (7) c B (e) = B so u)(B) > U)(BO(T0) = A = U ~ ^ _J ̂  x n — 3_ 4 a 

4 4 
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, -(a+1). a+1 , a+1 . „ ^ ^ 1 n ^ = (A e )e = A e . Thus, we may assume 0 < e < — , l - x „ < e < l + x„. a a — 2 0 — — 0 
Note that we also have x^ - € > 0 since x^ > 1 - e > — . Consequently the balls 

under consideration lie in the region Rez > 0 . 

Fix e , 0 < e < - i . Let I = B ( e ) , l - e < x „ < l . We need to show 
1+a X 0 X 0 " 0 " 

that tu(I ) ~ e with constants that do not depend on x„ and e . 
X 0 

Consider I- . From Case I we have tu(I-. ) ~ (1 - (1 - e) ) a ^ = e a + ^ . i-e i-e 
Now consider the other extreme case, 1^ . Let = jl - e < |z| < l | . 

1 9 a-1 
U)(D ) = 2a f (1 - r ) rdr = e a (2 - e ) a ~ e

a . 
1-e 

The angular wedge of D g of aperture 2 arcsin e , centered at 9 = 0 ; con­

tains I, . Divide D into |- 1 wedges, one of which, J , contains 
1 e [_2 arcsin ej to 

I, . Then, [- -I-U(J) = U)(D ) ~ e a . Consequently, ) < UJ(J) ~ 
1 [2 arcsin ej e •> > ^ \' — 

e a a+1 e 
~ -p - zr < C € . O n the other hand the wedge of aperture 2 arcsin •= , 

_ v 2 
[2 arcsin ej 

centered at 9 = 0 , in the annulus D / r?r is contained in I . Divide the 
s/ / z 1 

annulus D / into + 1 wedges, one of which, L , is contained in 
e / ^ 2 2 arcsin 

L /2_ 
I . Then — + 1 uj(L) = u)(D , ^ ~ 6°° . Thus, ) > tu(L) ~ 

1 2 arcsin ̂  e / / 2 

~ £ > C e00"1"1 . We conclude that &(I, ) ~ e a + 1 . Recall that 
r -,+1 " 
2 arcsin — 

f2 

. v a+1 
t w ( Il-e ) - e 

If a > 1 it is easy to see that W(I ) is a decreasing function of x n on 
X 0 u 

[1 - e , 1] , and so u)(1 ) > UJ(I ) > . We conclude that OJ(I ) ~ e a + 1 . 
i-e x Q i x Q 

We now consider the remaining case, 0 < a < 1 . Let J be the "third" of the 

ball I., , that is "closest" to the origin. That is, l-e 
J = | z = ( l - e ) + p e l 6 : 0 < p < e , |rt < | e| < TT } . 

9 e TT . ft 9 a-1 
u,(j) = ̂  £ J (1 - |(1 - c) + pe y| ) d9pdp 
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^ „ /1 /1 x 2^ 0" 1 2 a+1 > C (1 - (1 - e) ) e ~ e 

Now let J = I, - 1 + x_ , the translate of T to x . Then J., 3 J so x Q 1 0 1 o 1-e 

U)(J, ) > U)(J) . It is easy to see that U)(J ) is increasing, as a function of i-e x Q 

x , on [1 - e , 1] and I => J , so UJ(I ) > UJ(J ) > Ui(J ) > UJ(J) > 
x 0 x 0 X 0 x 0 6 

a+1 
> C6 

Finally, let K be the region swept out by the balls I , x n £ [1 - e , 1] . 
x 0 

Then I c K C jre l 6 : 1 - 2e < r < 1 , 191 < arctan -| . Thus, 
x 0 r 

n 1 arctan — _ a-1 
u.d ) < «,ao< — f f R I ae (i - r 2) r d r 

x0 " ~ * l-2e\i J 
2a 1 e 2 a " 1 

= — f (arctan —)(1 - r ) r dr 
n l-2e 
„ 1 0 a-1 0 1 _ 

= ̂  e f (1 - r 2) dr <^e f (1 - r f 1 dr 
l-2c " 11 l- 2 e 

2 /0 N a 2 ( X + 1 CC+1 
= - e(2e) = — — e 

Tt Tt 
Thus, &)(I ) ~ e a + ^ , and the proof of proposition (5. 1) is complete. 

X 0 

In addition to the estimates in (5. 1) we will need a sharpened version for 

certain limiting cases in the proof of Theorem (3. 14) and in Appendix B. 

Proposition (5.9). There is a , 0 < < 1 so that for all z , , P 2 

satisfying: z € D , 0 < P 2 < p l < 1 + | z| , ^ C C ( B

Z ( P 1 > ) = 2 A )

A ^ B

Z ^ P 2

) ) ^ 0 > W E H A V E 

P2/Pl * Ca ' 

Proof. Suppose the result is false. Then there is a sequence { (z^ , p ^ } ^k2 ̂ k-1 

° < P k 2 < " k l < 1 + | 2k' ' \ € » ' " ^ k l " = 2 U J ( B z ( P k 2 ) } ' and 1 1 \ P k l / P k 2 = 1-

We may suppose further that 0 < z^ < 1 and that li-11^ zy. = Z Q > ^k 1 = 

= lin̂ . = PQ ex^st' We proceed by considering cases. 
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Case I. pQ ̂  0 . By the dominated convergence theorem, li-11^ { i i ^ z (P ki^
 = 

k 
= uKBz ( P Q ) ) ¿ 0 , 1 = 1 , 2 . Consequently, 2 = lin^ w(Bz (P k l))/^(

B

Z < P k 2

) ) = I ' 
0 k k 

a contradiction. 

2 a-1 
Case II. pQ = 0 , ZQ ̂  1 . It is easy to see that (1 - |z| ) 

(1 - | z J 2 ) a 1 + 0(1) , z e B (p .) as k -» » . From this we get that 
zk 

u>(Bz ( p k ))s=a(l - | z 0 |
2 ) a " ( P K I )

2 • Consequently, 2 = limku>(B (Pki>)/«KB (P k 2» 
k 2 k k 

= ^•^m

k^Pk^
//Pk2 ̂

 = 1 , a contradiction. We may now assume that p^ = 0 , z^ = 1 

and l*-11^ " z

k-
)/'Pki

 = V exists, 0 < y < 0 0 • 

Case III. PQ = 0 ' z 0 = 1 ' Y = 0 0 • For k large enough, P k i < 1 ~ z

k ' and as i n t n e 

proof of (5.1) Case I, we have, 

,» , ^ 2 ^ I l 2 w ,2 / r" n tp (2|z [cos 6 + tp ) ^ 

^ V " " = T ( 1 - K l ) ( p k i } J n J n

 ( 1 - ¡ — ¡ 2 } D E T D T • 

k 0 0 l zk' 

The expression in the integrand in parentheses is bounded above and below by 

1 + (P k i/(
1" l z

k l ) ) which is uniformly 1 + 0(1) and so U J (B z (P k i)) — 

*a(l - IzJ 2)"" 1 (p k.)
2 . Thus, 2 = ^ - " ( B ( P K L ) ) / » ( B (P k 2))-lim k(P k l/p k 2)

2-
k k 

= 1 , a contradiction. 

Case IV. PQ = 0 ^ Z Q = 1 , 0 < Y < Q O . We change variables sending 

/n N / mi_ /i I 12 v<x-l , / x a-1 , xa+l , ^ki .2 , 2. .a-1 Ja_ z- (1 - z)/p k i • Then (l-|z| ) dp,(z) = z (p k i) ( t - — ( t + s ) ) dt ds . 

Thus, 

/T, / \s a r,a-l/ Na+1 r>r> . ^ki, 2 2 N Na-l 
m ( B

z

 ( p k i ) } = 7 2 ( P k i } H ( t " T ( t + s ) } d t d x • 

< ' " > « U - V / P k l 

_ a 0 a-l a+1 r>r> a-1 . , 4 a+1 
^ 7 2 Pk i JTj fc d t d s = \,a P k i ' 

where I,, w is that part of the disk of radius 1, centered at ( , 0) 
( 1 - \ ) / p k i p k i 

that is contained in the circle of radius 1/p, . centered at (1/p. . , 0) ; and 
rki ki 

is the limiting case, that part of a circle of radius 1 centered at (y , 0) 

that is contained in the right half plane. Thus, z = lin^ ̂ (B z (Pk]_))/
W(B ( P k 2 ^ 

a+1 k ^ 
= lin^ ( P k l / P k 2 ^ = 1 > a contradiction. 

This completes the proof of (5. 9). 

§6. Appendix B. The Gram Schmidt Estimates. In this appendix we sketch a proof 
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of Lemma (3.15). Let us note first that the center, z^ , of the molecules and 

atoms that occur in Theorem (3.13) can be assumed to be real and nonnegative. To 
i 8 

see this, note that for m and 6 as given, w(z) = U)(e z) , z 6 D , and 6 ( ZQ , z) 

= 5(e i^z 0 , e^z) for z Q , z € D , and finally, f(z)zVd^(z) = 0 for all 

|v| < s if and only if J* f (e^z )zVd|i (z) = 0 for all |v| < s. Thus, rotations 

leave the defining properties of atoms and molecules invariant. (Recall that 
v , A . , < V V _ V l V2 . z = (x + iy) = x y .) 

The regions that occur in the proof of Theorem (3. 13) are either 

E Q = B Q = |z e D : |z - z Q| < p o l or, for k > 1 , E f c = B R - B k_ 1 = 

(z 6 D : p k ^ < |z - ZQJ < p k| . There are constants, 0 < A < B < 1 with 

A < p k_ 1/p k < B as follows from (5.1) and (5.9). 

The Gran-Schmidt polynomials of Lemma (3. 15) can be written 

Cp̂ (z) = S|^| < s ^^ v^ z " Z 0 ^ V ' ^e w:*-"̂  snow that there is a constant C > 0 

independent of z^ , a , k , t and v such that |cfy(z)| < C , z € E K , and 

I 0^ I < CPjJ^ . When we adopt the argument of §2 we see that the dual basis to 

the monomials { (z - zo^ V!| v|< s w^tn respect to the inner product induced by the 

measure dfj, (z)/ |E^| on E K , can be written as ^(z) = £|^| < s (3^ cp̂ Cz) ' Tnus 

the estimates for the i^j follow from the estimates for the i^i an<̂  tne 
k 2 j(3̂ |̂ . (In what follows we assume that the regions E K are closed in R . ) 

We transform each E, by a translation of -z~ and a dilation of — . For 
k 0 p

k 

EQ we get one of the following: 
i ( { I (x , y) | < 1 : x < l - e \ , if - - 0 

S(e = { r

 1 
r ( || Cx , y ) | < 1 : |(x, y ) - (1-e-r, 0)|<rj if ^ > 0 , 

for A < t < B , 0 < e < l , 0 < - < • 
— r — z -e 

Note that the case — = 0 never actually occurs. It is a limiting case 

included so that the domain parametrizing the family of regions is compact. Note 

also that the dependence on the parameter a resides entirely in the selection of 

the constants A and B . 

The result we are seeking is that the Gram-Schmidt polynomials (and their 

coefficients) which are orthonormalizations of |z V||^| < g (taken in some fixed 
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order) with respect to the measure dp, (z)/| S (e , -jj) | (respectively , dp,(z)/ 

| T C t , e 9 " O | ) are uniformly bounded^ independently of e and ^ (respective ly, 

t , e and —) . Observe that the functions jz°\ are bounded in absolute value 

by 1 on each S (e , ~) and T(t , e , since each domain is contained in D . 

Since the order of each polynomial is bounded it will be enough to show that the 

coefficients of the polynomials are bounded uniformly. 

In either case (for the S 's or the T 's) the situation is the following: 
2 

There is a collection of subsets of , js(y)} where i) F is a compact 

Hausdorff space^ ii) Each S(y) has a non empty interior and there is a fixed 

compact set K so that S(y) c K for all y £ T and iii) (s(y)| ^ is a 

continuous family in the sense that |s(y) A S(y Q ) | -• 0 as y -+ y^ in T . 

The first two conditions are obvious. The proofs of iii) will be sketched at 

the end of this appendix. We will show first how the required conclusion, on the 
boundedness of the coefficients, follows from these three conditions. 

2 
For f , g € L (K) we define the family of inner products: 

and assume, for simplicity, that all functions are real-valued. 

Let if.}. , be a listing of the monomials Iz°\i i . . Let G~ = 1 
1 j > j = l, . . . , N I v l£ s 0 

and 

< f_i > f i > Y < f i > f j > Y 

G Y = det ' * , if j = 1 , . . . , N . 

< f . , f,>y <f. , f > Y 

J 1 3 3 

The j1"^1 Gram-Schmidt polynomial on S(y) is given by 

y 
CD. = d e t 

J 

< f , f ^ <f1,fj>Y 

<fj"-l> f l > Y < f . -,,f> V 

.f1 f i f
 3 

V G
Y , G Y 

where the determinant in the numerator is expanded formally in terms of cofactors 
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of the last row. (See the Bateman manuscript [10], Vol. 2, p. 155 for a discussion 

of this method. ) 

We see that, from ii), 0 < S(Y) < 0 0 so the inner product is well defined for 
V 

each Y • It follows from iii) that <f^ , ̂  ̂  ^ s a continuous function of y 

and so from i) we get that each <f^ , fj> is a bounded function on T . From 

ii) we see that the jf^) are linearly independent on each S(y) which implies 
y y Y that G. > 0 . But G. is a continuous function of the <f. , f,> and so it is 

continuous and positive on T and, hence, bounded below by a position on P . 
y 

From the definition of cp. above, we see that the coefficients of these Gram-
y 

Schmidt polynomials are polynomial functions of the <f. , f,> divided by 
1 \y 

Pv 7 
J 1 J anC* S° ôun̂ eĉ  uniformly for y € T . 

To complete the proof we need to see that the families JS (e , '~)\ ana" 

JT(t , e , ^ ) j are continuous on their parameter sets. A sketch of this fact 

completes this appendix. 

Observe first that 
|T(t1 , e , h A T(t2 , e , i)| < 2it\tl - t 2| , 

and 

|T(t , e , -1-) A T(t , e , i )| < |s(« , 7") A S (e , ± ) \ . 
1 1 r2 1 rl r2 

Thus, if we show that IS (e , —) A S(e. , —)l-»0 as (e , -) -» (en , — ) it 
r 0 rQ 1 r' 0 r^ 

follows that 

I T(t , e , i) A T(t Q , e Q , ̂ -) | - 0 as (t , e , ±) - (tQ , e Q , ̂ -) . 

To show comintuity for the family jS(e , ̂ )j we proceed in three steps: 

I. Show first that | S (e > —) A S (e , — ) | = o(l) as e n -» 0 , 0<e , e <e . 
J. r 2 i- z. \) 

From this it follows immediately that |s (e , —) A S(0 , — ) | -» 0 as 
r r 0 

(e , ̂ ) - (0 , for any r Q . 

1 2 II. We may now assume that 0 < e~ < 1 . We also assume that 0 < — < - — . A 0 - - r 2-e 
1 1 

straight forward argument shows that | S (e , —) A S (eQ , —) | -» 0 as 
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(e , 1) 
r 

(Eo,1) 
r0 

(e0 , j - Q ) • 
1 2 

III. The case which remains is 0 < e~ < 1 , — = -z . A somewhat delicate 
° " ro 2" €o 

2 
argument which takes into account the fact that — — is increasing and concave on 
(0 , 1] completes the argument. One shows that | S (e , —) A S(en , —)|-» 0 as 

r u z-eQ 

( S > 7 } " ( € 0 ' ' 

Details are omitted. 

§7. Appendix C. Some Calculations for §3. The purpose of this appendix is to 

establish two claims that occur in §3 in proof of Theorem (3. 10) and Theorem (3.13) 

respectively. 

Let a > 0 be fixed. Let a , z Q , p , q , s and |P ki k =o be §lven as ln 

either theorem. The following conditions are satisfied: 

i) 0 < a < \ x 

ii) (a) If 0 < p k < l - | z 0 | then p k ~ 2 ^ 2 • 
1 

ak- 2 ka 
1-|z0|)a-1 

1 
2 

(b) If 1 - |z Q| < p k < 1 + |z 0| then^ p k ~ ( 2 k a ) 1 + a 

( C ) Pk-1 < P k ^ Pn = 1 + ' z
0' ~ C 2 ^ ) 1 ^ ' 1 < k < n 

iii) s > max j - 2] , [2(i - 1)] ) . 

\ ^ j 1 i s s+l-a) xv) e > max \- - 1 , - , ̂ — } . 

v) 0 < p < 1 

Proposition (7.1). If 0 < I < s then 

n p f + 2 ) p f + 2 ) 

j f k 2 1 d + € ) ~ 2k(l+€) 

Proposition (7.2). If £ > s then 
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lì 2J 1 

j=0Pj (l+2)p 

1/p 
~1 / (l+2) 
p 0 

Remark. The fp^! are Euclidean radii of balls with UĴ  measure 2^<j . since 

(jû  and Euclidean measure are mutually comparable in the sense of Coifman and 

Fefferman [6] the series behave like geometric series so some such result must 

hold. The point of these two propositions is that the result holds for 0<t<s 

in the first and for t > s in the second. 

Proof of (7.1). ">" is obvious. For "<" there are two cases. 
1 

. 1+a 

Case I. > 1 - |z Q| . Then ~ (2Ja) , k < j < n . Since 

, , ^ s+2 ^ 1+2 
e + 1 > T £ ± > we have' 

1+2 
„(¿+2) . 1+a 1+2 . ,1+2. t . v 1+2 ,,1+2. „ , 

¿ ^ ( 1 - ) - ¿ 7 ^ = a A 2 ~ C T 2 

2k(l+e) 2k(l+e) ' x 

2* 

Case II. p k < 1 - | z Q | . Then pfc ~ J 2 k a / ( 1 - \zQ\f'
l\ 

For k < j < n there are two cases: ^ 

A- P 1 < 1 - |z 0| , P - |2 ja/(l - \zQ\)
a-l\2 . 

B. 1 - |z 0| < p. < 1 + \zQ\ , P. ~ (2
Ja) 

s £ 
Estimate for terms satisfying A . Note that e > — > — . 

n (1+2) 1+2 ..1+2 x x 

S J v < C ( 2 r) S 2 
p ^ H g - (i-Uoh 0 0- 1 j=k 

M k ( ^ - ( i + e ) ) p f + 2 ) 

= C (- - - r ) 2 TTÏ N 
( l - l z j f 1 2 k ^ 1 + s ) 
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Estimate for terms satisfying B . Since p. > 1 - |z | and 
1 

p ~ (2 ja) 1 + C C we get 2 j > C | (1 - | Z ( )| 1 + a/a} . Thus, 

p > i - h 0 

(l+2) 

| 2 J ( l + e ) 
< C a 

1+2 
1+a 

2j>C' 
(i-l Z q | ) 1 4 " 

u 

j2(l+2/1+2- (1+E)) 

4*2 
^ ^ 1+a < C a 

[ 

(i-hpl) 1^ 
a 

] 
1+2 /1+a - (1+e)) 

= C a 1 + S (1 - | Z o| )(^)-(l +e)(l +x) 

We need to show that this last term is dominated by 

C 
„ < « > 

? k ( l + s ) ~ C 
{ 

2ka 
(1-|zop|) a-1 

{ 1+2 
2 

2 - k ( l + e ) 

*„h r r ( 1 + e ) n U K(^2)-(l+e)(l+a) k(l+e) , , But, a (1 - I z Q| ) 2 (1 - j ZQ| 
(a-l)£+l) -(-^) 

(2 a) 

, 2 a 6 " 2 = 2 q 1 g~2 

( i - U n D a + 1 " a - | Z n D a + 1 ' a - i g > 2 

p k 2t-l 
~ (-j——p) < 1 , and the inequality follows. 

Proof of (7.2). The proof proceeds just as for (7. 1). ">" is obvious so we only 

need to show "<" . Note first that I > s + 1 so that - - > ^±2. - I > o , — — 1+a p — 1+a p 
and £ > s + l > 2 ( - - l ) . 

P J L 
1+a 

Case I. p Q > 1 - |z Q| . Then p ~ (2Jcr) , 0 < j < n . 
„ (̂ +2)p . Z+2 1 N 

S (-p) 2 J < C S 2 l M L P < C . 
j=0 Pj j=0 1 

1 2 

Case II. p Q < 1 - | Z ( )| . Then p Q ~ (a/(l - | z | ) a " ) . For 0 < j < n there 

are two cases: 
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A. p. < i - |z I , p ~ ( 2 W - \ z 0 \ r l ) l / 2 . 

B- 1 - \z

0\ < Pi <
 1 + l z

0l >
 Pi ~ ^ 

1 
1+a 

. 

Estimates for terms satisfying A . 

p / - i g 

qo 
(—) 

(1+2)p 

2 J 

< C 

00 

j=0 
2 
-JP 1 2 p ; 

< C . 

Estimates for terms satisfying B. If p. > 1 - | z | then ẑ  > C(l - | z | ) a + 1/a . ) 

Note also that 

po 
(—) 
pj 

(̂ +2)p 

2 j = ( a 

c i - h o i r 1 

( 
1 

( 2 j . I / a * * ) ) 
a + 2 ) P 

2 j 

• ! 
O" 

M I I \ a + 1 

( H * 0 I ) 

a-1 
ja+1 B 

(U2) 
2 . p 

2 
"JP ( 

U-2 
x+1 

_1 

P 
) 

. 

Thus, 
(1-|z0| 

a 
)a+1 

po 
(ù) 

(-t+2)p 

2 j 

< C I 
CT 

d - | z 0 | )
a + 1 

1 

a-1 
a+1 , 

(U2) 

fu 
> P 

2j>C 
a - h 0 l > 

a+1 

a 

2 
-JP ( 

¿+2 
a+1 = 

l 

P 
. 

< C î a 

a - i g ) a + 1 

= 
a-1 
a+1 

= U-2 
2 

° P 
i 

O" 

( H g > a + 1 

r 
o 
¿+2 
a+1 

l 
P 

) P 

= C i CT 

a - i g > a + 1 

= 
. .1+2 
• 2 = 

1 
P 

) P 

. 
Po 

H g 
! 

(1-2 l))p 

But 
Po 

Ro < 1 and l > 2 i = 
) 1) and the inequality follows. 

Corollary (7.3). If l> s then 
o 
(ù) 

¿+2 
1 
1/p < c . 

Proof. Look at the last term of the series in (7.2). 
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§8. Appendix D. Some Miscellany Regarding Atomic H P(R n) and its Dual. The aim 

of this appendix is to obtain a few facts about H^IR11) and its dual that are easy 

consequences of the atomic characterization of H P(R n) . Within the context of this 

paper, our purpose is to obtain the result on the local and global behaviour of 

representatives of the linear functionals in the dual of H P that we remark upon 

in the discussion following (2.4) and that we use at the end of the proofs of 

Theorem (2. 9). 

Recall that for x = (x.. , . . . , x ) € R n and t = ) a multi-i n i n 

index of non-negative integers, x = x^ . .. . We use the conventions: 

0 = (0 , ... , 0) , 0° = 1 , and (3 = (p^ , ... , 3 ) is also a multi-index of non-

negative integers, ( ) = ( ) . . . ( ) . Recall also that | ¿1 = I + I + . . . + I . 
P P ^ P n ^ n 

Lemma (8. 1). Suppose k is a non-negative integer and cp has the property 

Jn c P ( x ) x ' d x = j I \ 0 < < k • 

Then if CT is a point on the unit sphere in R n 

£ n A
k + 1 cp(x) x ^ d x = 0 , 0 < ^ < k . 

Proof. (x + h)^ = £ (h x ah P . Thus, if 0 < \l\ < k , [ T cp(x)dx = 

f cp(x)(x + h)^ dx = S ( h h P f cp(x)xa dx = hl . 

k+1 
„k+l xk+l _ ,k+l w 1 . s Recall that A = (1 - T ) = E ( )(-l) T 
CT CT N S SCT 

s=0 
Thus, 

r» Ak+1 £ 
A cp(x)x dx : 

k+1 

s=0 
( k + 1 ) ( - D S 

s 
f T cp(x)x^ dx 
Ln SCT ^ 

k+1 

s = 0 

,k+l, 
' s ' 

(-1) s 1 1 a . 

But this last sum if zero if 0 < |^| < k . To see this just apply 
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a 1 

(—) (V1 

^ t ;°LN 
n 

to (1 -co.t) 

k + 1 
and evaluate at t = 0 . This 

completes the proof of the lemma. 

Let 9 ^ be the collection of polynimials, with complex coefficients,, of 

degree at most s . 

This next result is known in several contexts and we include it just for 

comple teness. 

Lemma (8. 2 ). The norm 

l | g | 1L(ß,q',s) 
sup 

( T T R 

I Q I ' 3 ToT 
Q 

I g - P Qg|
q'Jdx 

q' 

is equivalent to 

sup 
QCR 

Q|- ß inf 

PCOs 
loi J 

Q 

|g - P| q' dx) 

_1_ 

q' 

Proof. The polynomial P g is the unique polynomial in & with the property 

Q s 
that J (g - P)x V dx = 0 if |v| < s and so P is the "Gram-Schmidt" polynomial 

Q Q 

for g on Q for the monomials up to order s . We discussed this in §2 where we 

showed that sup 

x£Q 

P Qg(x)| < 
C 

|Q 
Q 

!g| dx Thus, if 
s 

1 
Q 

Q 

g - P Q g |
q ' dx 

1 
Q 

< 
T Q T 

J 

Q 

|g - P| q' dxi 
q ' + à ! P -p Qg|

q 

l 
Q 

But P - P Qg = P Q(P - g) , so 

T Q T 
J 

Q 

I? - P Qg|
q' dx 

l 

q' 

T Q T 
Q 

|P Q(P - g ) |
q ' dx 

q' 

— TQT 
Q 

| P - g|dx < C 
ToT 

Q 

| P - g| q dx 
q' 

Thus, 

ToT 
Q 

I g - P g| q dx 

1 
Q 

< (1 + C ) inf 

P<-# 
s 

T Q T 
0 

Q 

|P - g| q' dx 

l_ 

q' 

The converse inequality is obvious. This completes the proof. 

Corollary (8.3). If [g ] G L ((3 , q ' , k) , (3 > 0 , k > [n|3] , 1 < q ' < » then g 
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is continuous. 

Proof. It follows trivially that g 6 L((3 , 1 , k) . From (8.2) it follows that 

the restriction of g to any finite ball, QQ , is in the Campanato space 

^k^ ^ +"^ n^ ( Q Q ) (see [2]) and this implies that g is continuous. 

Theorem (8. 4). If k > [n(- - 1)], p < 1 and h £ ]Rn then   — _ p  

^ + 1 6 € H P > " ' K (*") and I 1 A ^ X * 1 ! p j 0 0 j k < A|h|"
(P" X > , 

H 

where A is independent of h . 

Proof. It will suffice to show that A^+^6 € U^' (lRn) for some fixed point a 

in the unit sphere in LRN . Fix a function CP that satisfies the conditions of 

Lemma (8.1) with the additional requirement that cp is supported on j|x| < 1} . 

Let Cft̂ (x) = 2nVcp(2Vx) . Then 

, -. i i k+1 » i i 0 0 

(8.5) A A 6 = A c t cp0 + 2 ( - D ( , ) R T t e ( c p v - V l ) . 

<{,— U V — i 

This series clearly converges as a measure, and all terms are supported on a fixed 

compact set, j |x| < k + 2) . According to Corollary (8.3) elements in 

L(-|j - 1 , 1 , [nCj~ " 1)1) are represented by continuous functions and so (8.5) 

converges as a linear functional on L(^ - 1 , 1 , [nC~ " 1)1) • 
k+1 

From Lemma (8. 1) we conclude that A^ cpQ = X Q a Q where a Q is a (p , » , k)-

atom and < C' . A trivial calculation shows that T^ (CPV - +°v_-i_) = ̂ v a ^ 

where a ^ is a (p , « , k)-atom centered at £a and |X^vl£C'2 

k+1 

It follows that (8.5) is a decomposition of A 6 into (p , m , k)-atoms and so 
A k + 16 £ H P' œ' k (TRn) . This completes the proof. 

Corollary (8.6). If [g] € L(p , q" , k) , 3 > 0 , 1 < q' < oo , k > [n|3] , then 

there is a constant A > 0 independent of g and of h 61Rn such that 
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i r g ( x ) | < A | | g | | L ( ß ; q , ) k ) 

Proof. Write ( 3 = ^ - 1 , 0 < p < l . We see that [g] € L ( i - 1 , 1 , k) and 

||g|| -, < ||g||T ,a ? ,N . Thus, we may pair g with f (E H 1 ^ 0 0 ^ and obtain 
L(^- l,l,k) U P ' q ' k ) 

|<f , g>| < C ||fi| p ^ ^ k llg|!L(3^q»^k)
 s i n c e L(^ - 1 , 1 , k) is contained in the 

H 

dual of n P } C ° , k . Observe that A^ + 1g(x) = (g * A£ + 16)(X) and use (8.4). This 

completes the proof. 

Observation (8.7). If [g] G L(0 , q' , 0 ) , 1 < q ' < oo then g € BMO and 

^ B M 0 ^ C '^L(0,q',0) • 

Proof. We see that [g] € L(0 , 1 , 0) and ||g | l L ( 0 ± Q ) < ! U ! ! L ( 0 . 0 ) • But, 
supn lnf 77T f |g(x) - P(x)|dx < « . 
QCPn P^k

 |g| Q 

The result now follows from (8.2) and the definition of ||g|| ,„ n. . 
h (O, 1, U ) 

The following is a very limited extension of (8.7) that is useful in our 

development. It will be strengthened considerable, later in this appendix. 

Remark (8.8). If [g] 6 L(0 , q' , k) , k > 0 then the restriction of g to any  

finite ball is in BMO . 

Proof. We argue as in (8.7) and obtain that 

s u p n l n f 7 7 T f |g(x) - P(x)|dx < « . 
QCP n P ^ k

 | g | Q 

But S.J. Berman [1] has shown that this implies that the restriction of g to 

any finite ball is in BMO . 

Proposition (8. 9). If [g] e L((3 , q' , [n((3]) , (3 > 0 , l < q ' < ° ° , then g is_ 

bounded and g(x) = 0(|x|n^) a_s | x | œ _if n(3 is not an integer ; g(x) = 

= 0(|x|n^ log |x|) as |x| -»« ijE n(3 is an integer. 
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Proof. The local boundedness is immediate from (8.3). In particular, there is an 

A > 0 such that 

(8. 10) |g(x)| < A , if |x| < 1 . 

Let k = [n(3] . From Corollary (8.6) we obtain 

(8.11) |A£ + 1g(x)| < A|h|n^ , x , h € F n . 

If k = 0 then from (8. 10) and (8. 11) we have, | g(x) | < |g(0) | + |g (x) - g(0) | < 

< A + A|x|n^ = 0(|x|n^) a |x| -» » and we are done. For k > 0 we will show 

how to "pull back" to a smaller k . We need the following combinatorial identity: 

(8.12) £ - 2 k A k

 + E (-l ) * ( k ) 2 k " ' - / { £ . 
h h/2 ¿=1 1 ^ U 

To see this, observe: 

<£- - v k = <x - v k ( 1 + V k = ^ / 2 ( 2 - ( 1 - T h ) ) k 

2 2 2 

Akh/2(2-Ah/2)k=Ak E (kl)2k-l(-1)l Al 
h/2 h/2 

k N k- t N^ Ak+^ 
= V * ^/2 

If we set G k(x) = t (-1 ) t ( £ ) ^ " ^ ^ g(0) ' W6 haVS fr°m (8>12) Axg(0) = 
"{/= 1 

k k 
= G^(x) + 2 §(^) > anc* so ̂ or everY positive integer N we obtain: 

(8.13) A k g(0) = Gk(x) + 2
kG k(f) + ... + 2

N kG k(-^) + 2
( N + 1 ) k g(0) . 

2 J 

We fix |x| > 1 and choose N to be the smallest positive integer such that 

k | x l £ 2 N • We see tnat N ~ l°g | x| as |x| -• oo and from (8.11) we have 

l G

k ( x ) | - A l x | n ^ • From (8-13) we obtain: 

(8.14) |A K g(0)| < A|x| n p(I^ = 1 2 L ( K - N P } ) + A|x|
k . 

If n(3 is not an integer then k < n(3 , the series converges and we have 

130 



HARDY SPACES 

| A^g (0) | <A|x| n P+A|x| k= 0(|x|nf3) as |x|-». If n|3 is an integer then k = n[3 and 

| A kg(0)| <AN|x| n P+A|x| n p = 0 (| x | n f 3 log |x|) as | x|-»». If k=l we have |g(x)|< 

| g (0) | + ! Axg (0) | and we are done, as with the case k = 0 . If k>l we iterate the 

argument to obtain the desired result. Thus, if n(3 is not an integer we have for 

1 < k - t < k , G k (̂ j) < A(-^L) P = A2"/f/nf3|x|nf3 and if np is an integer, 

G, A) < A C - ^ ) ^ log ( M ) < A|x| n P log | x| 2 ^ n P + A|x| n P 1 2 ^ ; obtaining k-t 2t - 2 l ^ -

|A k _ tg(0)| < A|x|np(|x| > 1) in the first case and ^"^(0)1 < A|x| n P log |x| 

(|x| > 1) in the second case. The result follows. 

Remark (8. 15). If [g ] € L ((3 , q ' , k) , (3 > 0 , k > [n(3 ] , 1 < q ' < °° then g(x) = 0(|x|k) 

as | x| -* co . 

Proof. We may restrict attention to q' = 1 . Since k > [n(3] we have k > n(3 . 

We use (8.14) and we have 

|Akg(0)| < A|x|nP 2 N ( k - n p ) + A|x|k < A|x|k , |x| > 1 . 

(Recall that 2 N ~ |x| as |x| - «) . Thus from A k + 1g(0) = O(^) as |x| -*oo w e 

have obtained Akg(0) = 0(|x|k) 0 Since k = (k- 1) + 1 , we can argue as in 

(8. 9) to obtain A g(0) = 0(| x| ) as |x| -* oo and hence, g(x) = 0(|x| ) as |x| 

To obtain these results we have only used the definitions of the various 

spaces and that part of (2.7) that tells us that L(^--l, 1, k) is embedded contin­

uously in the dual of ^ P ^ 0 0 ^ # WITH (8.7) and (8.9) we have enough information on 

the growth of functions that represent members of ^ 9 0 0 3 ^ n^p~ to estab-

lish that the decompositions of atoms in (2.8) and molecules in (2.9) represent 

the atom (respectively, the molecule) not only as a function, but also as a linear 

functional on a L(l - ̂  , « , [n(^ - 1)]) space. It is the behaviour at infinity 

that is important here, since the local behaviour of [g] £ L({5 , 0 0 , k) for any 

¡3 > 0 , k > [n(3 ] is immediate from the definition. Clearly, g is bounded on any 

finite ball. 
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Once (2.8) is established we have that any two spaces L(1/p^ > ̂ [ > s ^ ancl 

L(̂ - • 1 , j s^) are isomorphic as spaces of linear functionals on atomic-HP , 

provided the indicies (p , , s^) and (p , q̂  , s^) are admissible indicies 

for atoms. If we now use the full force of (8.7), (8.8), (8.9), and (8.15) we can 

test on appropriate atoms and find that the spaces agree as spaces of functions in 

the following sense: 

16). Suppose [gx] £ L(^ - 1 , qj , s^ and [g2 ] 6 L(^ - 1 , q 2 , s ^ where 

(p , q^ , s^) and (p , q 2 , s^) are admissible sets of indicies for p-atoms. 

Then [g-̂ ] corresponds to [g2] under the isomorphism of the two spaces as linear 

functionals on H P if and only if [g, ] = [g_ ] mod 9 r -, .  * 1 z max[s^, J 

If we simply view the spaces L(j3 , q' , k) as collections of functions we 

have: 

(8. 17). If 1 < q' < ™ and k > 0 then L(0 , q' , k) = BMO mod (9 ) . I_f 

1 < q' < 0 0 , p > 0 , k > [np] then L(3 , q' , k) = L((3 , 1 , [n(3]) mod 9^ . 

We omit the proofs. Note also that these identifications are continuous in 

the obvious sense. For example: g € L(0 , 1 , k) if and only if there is a poly­

nomial P in 9 such that g - P 6 BMO and JJg - p 1|! B M 0
 i s equivalent to 

| |g| | . Details of statements and proofs can be filled in by the interested L (0, 1, k) 
reader. 

§9. Appendix E. The Multiplier Theorems. We begin with some basic estimates for 

the Fourier transforms of atoms for H P(R n) . 

Lemma (9. 1). If a is a (p , 2 , s^-atom centered at the origin and  

0 < lal 1 s i 3 then 
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S-j + l-CC 

(i) |Daa(x)| < ^ } 
1 1 1 1 

\(-T~+p/è-h\-i 
\\42

 2 p 

(Ü) !llD aä|\, < 
C 

iWl2 

,2|a|.l. 
n r ' 

1 1 
p 2 

-2 

- + \ = l , l < r < ° o 
r r — — 

Proof. Let Q be the ball on which a is supported. Let d = 1/(— - —) . The 

basic estimate that follows from the definition of an atom is 

(9.2) i Q l l l l a H " 1 -

Let P be any polynomial of degree at most s^ - |cc| in £ . Then 

Da5(x) = J Q a(?)(-2,i ? )

a e - 2 ^ 5 d| 

= J" a(?)(-2,ti5)a [e" 2 , t i x' ? - P(5)]d| . 

Choose P to be the Taylor polynomial in § of degree s^ - | a | of e ^ix-^ 

about the origin. Then 

s..+l-|a| s,+l 
|Daa(x)| < C |x| 1 J Q |a(?)||§|

 1 d5 

( 9 - 3 ) s 1 + l - | a | S-^4 
< C |x| 1 |Q| n 2 ||a||2 . 

We introduce (9.2) into (9.3) and (i) follows. 

If r = oo then r' = 1 and we have 

J > A l(x)| 2 dx = C ' J |? a| 2|a(?)| 2 ds 

2 |a | 

< C |Q| n ||a| 

If r = 1 then r ' = oo and we have 

2 
2 . 

|Daa(x)| < C (L |?| a |a(?)|d?)
2 < C | Q | n I!a||2 . 

We interpolate between (9.4) and (9.5) use (9.2) and (ii) follows. 
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It is interesting to note that the analogue of (9.l)(ii) for differences is 

also valid. 

Lemma (9.6). If a is a (p , 2 , t )-atorn centered at the origin then for 

0 < I < t 

sup n il|^a|2!| < 
h e r n r 

c l h l 2 ^ 
- + \ = l , l<r<°o 
r r — — 

- + -V = 1 , l < r < o o . 
r r — — 

Proof. This follows exactly as in (9.l)(ii) where, for k 4 0 , we use the 

identity, 
X*, r /tr\/i 2itih^N -2irix-̂  J C Aha(x) = J a(?)(l - e ^) e d£ . 

from which we obtain as before, 

(9.7: 
A^a(x) 2 

I— 1 
21 

< (Cj |?|4|a(?)|d?)2< C ' l Q l " M l ' , 

and 

(9.8) [: 
| ^ ( x ) [ 2 

||h|| d x < c j | 5 | 2 t |a( ? )| 2 d § < C | Q | n ||a|!2 . 

Several further observations are in order for (p , 2 , t)-atoms centered at 

the origin. Let V be the gradient. 

|Aja(x)| < C |h|^|/a-(x)| 

(9.9) < c \h\l \c\t+l~l 

|(*±I-4)/4-I)j-l 
M l , n 2 P 2 

. 

rfhere if |h| < A|x| then \Q\ = 0(|x|) and if |x| < A|h| then \Q\ = 0(|h|) . 

Note also: 
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(9. 10) A^â(x) < C 

ilaJlo Z P Z 

which follows trivially from (9. l)(ii) with a = 0 and r ' = » . 

A remarkable amount of information can be derived from these elementary facts. 

For example, from Lemma (9. 1) with a = 0 we have for a (p , 2 , s^)-atom 

centered at the origin 

(9.11) I a ( x ) | < C |x| S l /||a||2 

n(--l) 
such that |f (x)| 

(9. 12) |a(x)| < C /||a||2 

¡ 1 / (ì-ì)}-1 

Note that the exponent of ||a-J in (9.11) is positive and in (9.12) is negative. 

We use (9.11) for 'Ja^ > | x | n and (9.12) for \\a\\* < |x|n (d = ( i - j)" 1) and we 

have 

(9. 13) |a(x)| < C |x| 
n ( i-l) 

Proposition (9. 14). If f 6 HP(lRn) then (in the sense of tempered distribution) 

f is a continuous function and there is a constant C > 0 , independent of f 

n(--l) 

such that |f (x)| < C JJ f U |x| P 

H P 

p 

Proof. If we interpret f € H and atoms as tempered distributions, then if 

f = ̂ k a k i-s a decomposition of f in terms of (p , 2 , s)-atoms, then, clearly, 

the series also converges as a tempered distribution and, hence, so does 

f = IXy&^ • Strictly speaking (9.13) applies only to atoms centered at the origin, 

but for other atoms we only need to multiply by an exponential of the form 

2*ix-50 

e , and so (9.13) holds uniformly for all (p , 2 , s)-atoms. An atom is in 
_1 

1 p 

L so a is continuous. From this estimate and: ^ X ^ l — f ^ l ^ l ^ l ^ 0 0 w e 

obtain that EX^a^x) converges uniformly on compact sets so f is a continuous 
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function. Now observe that: 

1 I 1 
n(--l) p n(--l) 

(9.15) |f(x)| < C £ |\k||x|
 P < C (S | x J Pj |x| P 

1 
p 

But || f|| = inf |E|Xk|
P| over all such decompositions and the result follows. 

H 

Let us now show that from (9.14) it follows that if m is a bounded multiplier 

on H P ( R n ) then m is a bounded function. By a multiplier on HP we mean^ as 

usual, a measureable function m such that if f € H P ( R n ) then there is a constant 

M > 0 such that 

(9-16) ||(mf)v|| < Ml'f" . 
H F H F 

The infimum over all such M is called the norm of the multiplier. 

For f a function and t > 0 let ft(x) = t
 n ^ P f(x/t) , and extend the map 

f -» ffc to H P in the obvious way. It is not difficult to see that 

(9.17) !!f|| D = ||f!l D , f € H
P . 

This follows directly from the observation that if a is a (p , q , s)-atom 

supported on the ball Q , then a is a (p , q , s)-atom supported on Q . the 
I 

dilation of Q by t . Note that |Q tl"
P [|̂  j l a

tl
q d xl = 

I t t 

M " P ( w ^ Q | A | Q D X , ? -

Furthermore, 

n(l --) 

(9.18) f (x) = t P f(tx) . 

From (9.16), (9.17) and (9.14) we have 

n ( i-l) 
(9.19) |m(x)f (x)| < Mil f 11 |x| P 

H P 

For x 4 0 let x' = x/|x| . if we let t = |x| ̂  and use (9.18) we have 

(9.20) |m(x)f(x') < Milf¡1 . 
H P 

Fix an f € H P such that f (x' ) = 1 . Simply take a 0°° function T) on 
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[0 , oo) that is equal to 1 on (— , 2) and is supported on (— , 4) . Let 

f(x) = 7](|x|) . It is easy to check that f is the Fourier transform of a 

(p , 2 , s , e)-molecule for H P for every possible set of indicies. This 

establishes: 

Proposition (9.21). If m is a bounded multiplier on HP(lRn) with norm M , 

there is a constant C > 0 , independent of m such that |m(x)| < C M for all 

x / 0 . Furthermore, m is continuous on lR n- j 0} . 

In the discussion that follows conditions are imposed on derivatives of m , 

D am . For most applications these may be interpreted as ordinary pointwise deriva­

tives. This is, however, not necessary and they only need to be defined as 

functions that are distributions derivatives of m . The following lemma is crucial 

for the study of multipliers on H P ( lR n ) if n > 1 . 

Lemma (9. 22). Suppose t is an integer, t > , and 

(9.23) R 2l pl" n J |D Pm(x)| 2 dx< A 2 

R<|x|<2R 

for 0 < | 3 | < t and all R > 0 . Then there is a C that is independent of m 

such that if r = 1 or — > 2 (|p| - t) + n then 
r I 

R ? r 9 9 (~ " 2 I 3 I > 

(9.24) [ J |D^m(x)| Z r dx] < C A R r , R > 0 . 
R<|x|<2R 

When 2 ( |3 | -t) + n < 0 then |x| ̂ ' |DPm(x)| < C A and D^m is continuous on 

p n - ioj . 

Remark. If 3 = 0 we have n - 2t < 0 so the lemma implies that m is bounded 

and continuous on R n - JOJ , and the bound of m depends only on the constant A. 

co 

Proof. Let 7) be a radial, C , non-negative function that is bounded by 1 , 

supported on | j < |x| < 4j and is equal to 1 on ¡1 < |x| < 2j . Let 
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f(x) = RI (BlT](x/R)Df3m(x) , K = t - | (3 | , and g(x) = f(Rx) = R' P ' T) (x)DPm(Rx) for 

some fixed R > 0 . Then DVg(x) = R ^ D ^ C R x ) . It follows from (9.23) that 

II¡12 — C'A for 0 < |v| < K for some C' > 0 , independent of m , v , K and 

R . 

Thus, g € L , K and ||g|| < C!A . (LZ'K is variously called a Lebesgue 
L 

space, Bessel potential space or Sobolev space. Details about these spaces and the 

Sobolev embedding theorem, that we will use directly below, can be found in Stein 

[16, Ch. V §2].) It follows from Sobolev's theorem that l^'^a CQ is a continuous 

embedding if K > ^ and c L q is continuous H > ^ - ̂  > 0 . In particular, 

llgll < CA if K>^-~, where C is independent of m and R (but does depend on K) . 11 "q — 2 q 

Now recall that K = t - | (3 | and write 2r = q . The condition X- > -J~~ can be rewritten 

~ > 2(|j3| - t) -f n . In this case we have (using the standard interpretation for 

r = oo) : 

[R<|/|<2R 
|D Pm(x)| 2 r dx] 

I 
r 

< R " 2 | B I [J |f(x)|2r] 

R 

1 

7-2|3| 
= P [J |g(x)| 2 r dx] 

R 

I 
r 

= R 
7-2|3| |f (x)| < C JJ f | 7 - 2 | p | 

This completes the proof of the lemma. 

Notation. If m satisfies the conditions of Lemma (9.22) for some t we say  

that m satisfies (#) . 

The following multiplier theorem requires that m satisfies a smoothness 

2 

condition in L of integer order; that is, that m satisfies the (#) condi­

tion. This condition is usually referred to as a "Hormander" condition. Some 

variants will be considered later in this section, but we note that for most appli­

cations this result suffices. 

While obvious, it is still useful to observe that the "Mihlin" condition: 
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(9.25) sup 
^_n 

|x||B| 
D^m(x)| < A , 0 < |(31 < t , 

implies (#) . 

Theorem (9.26). If m satisfies (#) , P < 1 
1 
P 

_1 
2 ' 

t_ 
n 9 then m is a 

multiplier on H^(R n) , and there is a constant C > 0 , independent of m such  

that the norm of m is bounded by C A (A the constant in the (#) condition). 

Observation. Suppose a is a (p , 2 , s^)-atom, s < s^ , and (p , 2 , s , e) 

is an admissible set of indicies for a molecule. From Proposition (2.3) we obtain 

that a is a (p , 2 , s , e)-molecule and ^(a) < C , for some constant C 

independent of a . In particular, if a is centered at the origin and 

t = n(j + e) is an integer, then from Plancherel we have 

(9.27) illâ1;!2 

1 
2 

I 

P 
t 
n ||Dva||2 

1 
2 

I 
2 

n 
t 
< C : 

for all v , | v | = t . 

The theorem follows from the following proposition: 

Proposition (9.28). Suppose m satisfies (#) and a is a (p , 2 , t - 1)-

atom centered at the origin, P < 1 : 

I 
P 

1_ 
2 

_t 
n Then (ma) v is a 

(P , 2 , n(1 
p 

1)1 n 
I 
2 

-molecule centered at the origin, and 

(9.29) K((ma) V) < C A , 

where C depends only on p , t and n . 

Proof. Note first that the indicies are admissible for p-atoms and p-molecules. 

(The only point that requires any care is t - 1 > [n(~ - ! ) ] • ) We claim that it 

will suffice to show that 

(9. 30) (Mil I? 
I 

p 
_t 
n |DV(-)I!2

P 

I 

IP 
1 

' 2 
n 
t < C | v | = t 

Just as was the case for (9.27) this is equivalent to 

(9.31) (||(ma) 
l 

I I2 

2 

1 
P 

_t 
n 

I W 6 (ma) V 

I 
IP 
2 

1_ 
2. 

n 
t < C , 

and so we only need to check that the moments of (ma) v , up to order 
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[n(i - 1)] , vanish. Note that [n(~ - 1)] < t - j so if |v| < [n(^ - 1)] , then 

IxI ̂ V ̂  (ma)V is integrable and consequently DV(ma) is continuous. Thus, to show 

that J(ma)v(x)xV dx = 0 , |v| < [n(- - 1)] we only need to show that 

DV(ma)(0) = 0 . Note that m is bounded (see the remark following Lemma (9.23)) 

and a(x) = 0(|x|t) as |x| -* 0 (see Lemma (9. l)(i) with a = 0) and so 

(ma)(0) = lim _^ m(x)a(x) = 0 and we are done if v = 0 . For other values of 

v , D V(ma)(0) = U m ^ ^ |h | " l V l A|h|(ma)(0) = li m ^ j ^ 0((h|
 t _l Vl ) = 0 . ( ^ = 

At i ... Al, I , the "mixed" difference operator, e, , is the unit vector with 
l hl e

n

 k 

coefficient equal to 1 in the k-th coordinate.) This establishes the claim. 

As in §2 we will let a = 1 - — + e and b = ̂  + e . Since e = — - ^ we 
p 2 n 2 

have a ~ — + TT - — , b = — and b - a = — - 7- • (The use of "a" to represent 
n 2 p n p 2 

both an atom and the value — + — - — should cause no confusion in context. ) 
n 2 p 

(9.30) will follow if we can show 

(9.32) ||(Daá)(DPm)¡|2 < CA/||a|£~B/b-a-1 , ¡a| + |p| = t . 

For [3 = 0, |a| = t we have 

l|DaS)m||2 < !|Daa|l2 < C MjhW^
 B/b-a-1 

which follows from (9.27). 

If 0 < |(3| < t then 0 < |cc| < t and Lemma (9.1) can be applied. 

!|(Daá)(DPm)¡!2 = Z , [ ,^ |D aa(x)| 2 |D Pm(x)J 2 dx 
2 lei 2^<|x|<2^K 

K 22¿(t-|a|) x 

- C l — 2t(2|3|-n) 

"a"2 *-b -a> ¿ 

/(2| P|-n) j | D 3 m ( x ) , 2 d x ] 

21<W\<2UX 

00 

+ C I [ J 
K 2^<|x|<2 

J_ _1 

|D aá(x)| 2 r' dx] r' [ J |D Pm(x)| 2 r dx] r 

M 2 ¿<|x|<2^ 1 

K 2^<|x|<2 
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Estimate for I . We have already used Lemma (9. 1). Now use (#) (without 

benefit of Lemma (9.22)) and we have 

2(b + J)-2 K 

\ < |CA2/||a!!2

 b " a | S 2 t e 

2( b + 2)-2 

< CA2 2nK/||a||2

 b " 3 . 

1 

Choose K so that 2 n K ~ ||a]|2 "
 3 and we have I ^ C A2/]]a| 

ib-a 
2 

Estimate for I 2 . Choice of r . For | (31 > j let r = 1 . For 0 < | (31 < j 

and 0 < |(31 < t - | let r = co . Note that if t > n these two cases suffice. 

2 

Note also that if p < — we always have t > n . In the remaining case we have 

fc " 2" £ | P | £ 2" 3 aiK* we °an cnoose an r so tnat 1 < r < oo and 0< 2 | (31 -^<2t-H. 

In all cases we have (i) 21 (31 - ~ > 0 and (ii) r and (3 satisfy the conditions 

of Lemma (9. 22). 

The result now follows from an application of Lemmas (9. l){ii) and (9.22). 

o 0 0

 9 » r ' £ (- - 2 | J31 ' 
I 2 < CA

Z £ [ J |D a£(x)r r dx] 2 r 

K 2l<U\<2Ul 

J_ 1 

< CA2 [ J |D aa(x ) J 2 r ' dx]'' [ s z ^ l p l D ^ 

|x|>2K K 

n K ^ - ^ M ) 
< cA2!!|D^|2|!r,

 r n 

. ¡ 11 -1 + 1 / ^ _ a ) 1 + 2 , 2 k L . l ) / ( b . a ) J 

< C A 2 !|a||2 * ^ !!a||; n ^ 

9 -(~/(b-a))+ 2 9 7 ~ - - 2 
- CA ,iall2 - CA / ̂ a ^ 

This completes the proof of the lemma. 

We will now consider a variant of the multiplier theorem for fractional orders 
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of smoothness. 

For future reference let us fix a function 7] that is 0°° , radial, non-

negative, supported on , 4) and for some constants 0 < < , A^<T](x)<A2 
I i i 5 -k 

for - < I x I < -r . Suppose further that if T| (x) = T) (2 x) then £ T], (x) = 1 if 
I I k k€U k 

x 4 0 . That is, JT]̂ | is the usual "nice" partition of unity for R n - JOJ . 

Let m^ = ml] . 

We say that m satisfies (##) for t > 0 if m is bounded, |m(x)| < A 

and for some integer t > t and all integers k we have 

(9.33) 2 k ( 2 t " n ) J | h | - 2 t J | A ^ ( x ) | 2 d x - ^ < A 2 . 

| h | < 2 k - 1 2 k < | x | < 2 k + 1 l hl" 

Remarks. (1) The condition (##) is handy for applications, but for proving 

theorems a more useful and equivalent variant is that for some integer t > t and 

all integers k 

2-kn JRn K ( X ) I D X ^ A 

(9. 34) 

I 

2M2t-n) | h | - 2 t r | At ( x ) | 2 d x ^ _ < A 2 
R R |h| 

The only point that is all delicate is to show that (9.34) implies that m is 

bounded. This is contained in the proof of Lemma (9.37) that follows, and it is 

then easy to check that the two variants are equivalent. 

(2) . If t is an integer the conditions (#) and (##) are equivalent. To see 

this note that the second version of (##) is equivalent to 

(9.35) 2M2|p | - n ) . ! p 12 d x < A2 
V k 

for all k € Z and for (3 = 0 and all | (31 = t (t an integer), using a 

Plancherel argument. It now follows that (##) is equivalent to requiring (9.35) 

for 0 < |p| < t and from that condition to (#) is immediate. 

(3). Many other variants of (#) and (##) can also be used and may be simpler 

to apply in particular situations. For example, (9.35) can be replaced by 
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conditions such as 

(9.36) 2

k < - « > J lh|- 2<^> J | < D \ ( x ) |
2 d x - ^ < A 2 

F F |h| 

for all k € Z , |p| = ^ < t , where t is an integer, t > t - l . 

We need a variant of Lemma (9.22) for the (##) condition. 

Lemma (9. 37). Suppose m satisfies (## ) for some t > y . Then there is a constant 

C that is independent of m such that if r=l or ^>n-2(t-s) and s > s > 0 , s an 

integer then 

k(2s--) - -
(9.38) 2 ' J |h|- 2 s [ J |A^(x)| 2 r

 d x ] ^ < C 2 A 2 . 

2 k<|x|<2 k + 1 M 

Furthermore, m is bounded and continuous on ]R2 - JOJ and \\m

t̂oo £ CA . 

Proof. Let g^(x) = m^(2Vx) = 1l(x)m(2Vx). Then 

(9. 39) 

J n l8.(x)|2 dx< A 2 

K 2^<|x|<2K 2^<|x|<2K 2^<|x|<2 
1R R h 

Consequently, g^ £ 2 and ||ĝ || 2 2 — C A * iS various-'-y called a Besov or 

^t 

Lipschitz space. Details about these spaces and the Besov-Taibleson embedding theorems 

(which gives various continuous inclusions between the Lipschitz and Be-ssel potential 

spaces and among the Lipschitz spaces ) can be found in Stein [16, Ch. V § 5 ]. ) We know that 
n 

2 2 2 t t _2 

A^ = L 3 <̂  L anC* t̂ iat t*ie embeddings are continuous. Thus g^ is bounded, 

continuous and '|g ¡1 < CA . From this it follows that m is continuous on R n - JOJ and 

! W L < C A . 

We may assume, without loss of generality, that t is the smallest integer greater 

than t . 
If ->n-2(t-s) then g € A 2 ' 2 c A 2 r ' 2 C L 2 r since t + >0 . Since the 

r & v t n n 2 2r 

2r „ ^ 
embeddings are continuous g^ € L , !|g^il2r£^ and so 

- V - I 
(9.40) 2 r [ J x |m(x)| 2 r dx] r < C A . 

2 <l xl< 2 

(If r = 1 this is immediate from (##) . ) 

143 



M. H. TAIBLESON - G. WEISS 

Observe, again, that g 6 A r > . Thus, if 0<s<t--^-\-^-, t h e n 

' b ' fev n n — 2 2r 
t _ 2 !2r 

2r 2 — _ 
g Ç A g ' (the inclusion is continuous) so that if s is an integer and s > s 

(9.41) [Rn |h|-2s [[Rn |Asgv (x) |2r dx] dh < c2 A2 
|h|n-

(If r - 1 this follows from g 6 A ' C A ' . ) From (9.41) we obtain v &v t s 

(9. 42) 
v ( 2 s - - ) r ,|h|'2s [f i s" ,2r . ,r 

J 0V-1' 1 J ,T 

r 
< C A 2 . 

|h| n" 

This implies 

(9.43) f ,|h|' 2 s [f i s" ,2r . , r 

J 0 V - 1 ' 1 J ,T A,m(x) dx] i, in 
| h | < 2 2 V < | x | < 2 V + 1 % N 

2 v(f - 2 s ) 
< C A 2 

But if we use (9.40) we easily obtain 

(9.44) 

I 

J 2 v - l l h l " 2 S t J + i K m ( x ) | - d x ] r - ^ 
I h l ^ - 2 y<|x|<2 V + 1 M 

n 
2 r < C A 2 

9v-l 
| n | > V 

M " 2 s 
dh ^ 2 < CA 
lh| n-

v(^2s) 
2 

This completes the proof of the Lemma. 

Theorem (9.45). If m satisfies (##) , p < 1 , " 2" ^ ' tnen m is a 

multiplier on H P(R n) , and there is a constant C > 0 , independent of m , such  

that the norm of f is bounded by CA (A the constant of (##) ). 

Proof. We may assume that t is not an integer (the "integer case" was done in 

(9.26)) and we may fix t = [t] + 1 . 

We will show that if a is a (p , 2 , t)-atom centered at the origin then 

(ma)V -molecule centered at the origin and $3((maV) < CA , C independent of a . 

Just as in the proof of Proposition (9.28) this will follow if we can show that 
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(9.46) {||(ma)||2 

l i t 
P n ( £ J M JlA^CmaXx)! 2 dx 

dh 
JP 2 

) < C A . 

We use the identity 

(9. 4 7 ) 
^ t ( f 8 > = ,f ( t ) ( T - k h ^ f > ^ > 

Thus we need to check that for k 4- t = t 

^t(f8> = ,f (t)(T-kh^f>^>-^<C/||a| dh 

| h | n 

< CA 

i r - 2 

!|aL b- a 

which is the analogue of (9.23). 

If k = 0 this follows from M | < C A (see 9.37) and the estimate 

J | h r 2 t J | A h ^ ( x ) |
2 d x - ^ < C / | | a | ! 2

b - a ,-^<C/||a| 

which follows from Plancherel, Fubini and Proposition (2.3). 

We now consider k + I = t , 0 < k < t , 0 < I < t , and choose K so that 

2 n K ~ 

1 

M l * " * • 

I n I11'"'' ! n lT kh 4 Â ( X ) ' 2 |A>(x)| 2 dx 
Jh€P n Jx€R n k h ^ 1 |h|n 

= S J ... J ...dx 
v € Z h€Rn 2 V<|x|<2 V + 1 

dh 

|h|n 

K 

-00 
|h|<2 v + 1 

-^<C/a| 

2 V<|x|<2 V + 1 

. .. dx 
dh 

|h|" 

K 

-CO I 
|h|>2 V + 1 

[ 

2V<|x|<2V+l 

< d x ^ + S 

|h|" K 

[ 

h OR 2 V<|x|<2 V + 1 

d x ^ 

-^<C/||a|-^<C/||a| 

Estimate for P̂  . This proceeds exactly as for the estimate for 1^ in (9.28). 

Choose r as in that estimate. Then 

P3 

K 
< S 

-co 
sup 

h€Rn 

<< , T - k h ^ a ( x ) , 
-^<C/||a| 

2r' 
dx] 

r' 

[I 
h€Rn 

I h l " 2 ^ [J |A km(x)| 2 r dx] 

< 

dh 

Ih|n 

> 
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Now use Lemma (9.6) and Lemma (9.37) and the estimate follows exactly as before. 

Estimate for P̂ . This mimics the estimate for I in (9.28). 

p <r v i T - k h V ( x ) . r |,i-2 (t-^) r , Ak , ,,2 J dh P ^ E sup I ~l I j |h| J |^m(x)| d x — . 
|h|<2 V + 1 W h€Fn

 2v<| x|< 2^l | h | 

x£(2 ,2 ] 

In the first term of each summand we have |h| < 2|x| and so we use (9.9). In the 

second use (9.37) with r = 1 . The estimate follows as before. 

Estimate for P̂  . We reduce this to two other estimates. 

P 2 < j ... ; ... dx 
|x|<2K |h|>|x| N 

= J ... J ... d x ^ + J ... J ... d x ^ i -
|h|<2K |x|<|h| M |h|>2K |x|<2K I11'" 

= P + P 
A 5 

Estimate for P^ . Since |x| < |h| we use (9.9) and obtain 

lT-kh V ( x ) l 1 Cl hl Thus, 

p 4 < c i N i M i . n l ( 2 ( £ r 1 + 1 / ( b - ) i - 2 ; M 2 ^ 1 " ^ 
|h|<2 K N 

< C lUII2 2-^<C/||a| 
| ( 2it±l) + 1)/(b.a)|-: 

l|a||2 " 

< C i|m£/||a||2 

,2t 
n -l)/(b-a)}-2 

Estimate for P r . We use Lemma (9. 6) with r = 1 . 

l T-kh v ( x ) l ^ c l h № l l 2 

X . lx 
чп 2' (b-a))-! 

Thus, 

146 



HARDY SPACES 

7 nv | é + 7>/0>-a)|-2-2 
P 5 < [C Hi 2 n K / H I 2 "

 2 ]J | h r
2 ( t - « dh 

n K (2Iilt) + 1 ) 

|h|>2 

2b 

< C A' 
2 2 

Ì2(Ì + |)/(b-a)!-2 
< C A2/la|| 

2 /il _nb-a 
2 

- 2 

This completes the proof of the Theorem. 

There is an occasional use of conditions such as (#) or (##) for L 

norms with r not equal to 2 . A convenient formulation is the following: 

Let m be a measureable function on R n and define the functions m^ as we 

did in the discussion which preceeded the statement of Lemma (9.37). We say that 

m satisfies (###) for r , 1 < r < » and t > n/min jr , 2 j if m is bounded, 

|m(x)| < A , and for some integer t > t and all k £ Z , 

2 

2k(t-n/r) [J I H ' 2 t [J l ^ ( x ) | r dx] < A . 
, ̂ ^n _n h 
hÇR xÇR 1 1 

If t is an integer this condition on the "difference" can be replaced with 

one on the derivative: 
I 

k(t--) r 
2 r [J i D ^ x ) ^ dx] < A , 

x£Rn 

for all |p| = t . 

r 2 
These conditions require that m "locally satisfy an -condition" in the 

r t 

first instance and a "local L 3 -condition" in the second. (These are not 

equivalent if r 4 2 , but the continuous inclusions L*3 t + S c A ^ 2 c L r , t & for 

all e > 0 , give us the room we need and, for the purposes of the multiplier 

theorem, they are equivalent.) To use these conditions we reduce them to the 

2 

L -case. If r > 2 the conditions drops to the corresponding condition for 

r = 2 , without loss in the smoothness index t , since the integration with 

respect to x takes place on an annulus. One restricts the integration with 
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respect to h to |h| < 2k""'L and then uses |m(x)| < A for the other part of the 

integral. If 1 < r < 2 one "lifts" to r = 2 s i n g the embedding theorems for 

the A ^ -spaces (as in the proof of Lemma (9.37)) with a subsequent loss in 

smoothness from t to t - ̂  + y „ Using these observations we obtain the 

following multiplier theorem as a corollary of (9.45). 

Theorem (9.48). If m satisfies (###) } p < 1 , - - i— \r T| < - , then m _ p 'mm [2,r]J n 

is a multiplier on H^(lRn) . 

Details are left to the reader. 
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