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ON CERTAIN PROBLEMS OF ARITHMETIC ARISING IN THE
REALIZATION OF LINEAR SYSTEMS WITH SYMMETRIES*
by

Christopher I. BYRNES

INTRODUCTION. -

Now, one way of organizing, if not attacking, the standard problems of linear,
finite-dimensional system theory is by taking into account the group of symme-
tries of the problem at hand. Thus, the realization question revolves around the
general linear group GL(n,k) and its action on state-space representations,
while the problems of state-space feedback or of linear quadratic optimal control
involve groups which are extensions of GL(n) . Moreover, for over a decade it
has been known that transfer functions, defined over k, which possess certain
symmetries often possess realizations which reflect these symmetries, e.g., the
driving-point impedances of linear networks or the frequency response of a Ha-
miltonian system. If k=IR, then it is well-known that the group of state-space
transformations preserving such a realization is a classical subgroup, e.g.

0(p,q) or Sp(n,R), of GL(n,RR) .

All of these interconnections become far more interesting when we consider
linear systems depending on a parameter or linear systems whose coefficients lie
in some commutative ring. Indeed, as we shall review in the next section, even
standard realization theory in these more general settings makes contact with the
topology and geometry of the parameter space, or with the algebra of the ring.
The problems here are, however, fairly tractible. The truly exciting, arithmetic
side of the topology and algebra will come to the fore when we consider the less
trivial actions of the classical groups in the second section. In particular, we ma-
ke significant contact with the Hasse-Minkowski theory of quadratic forms over
Z. and, motivated by earlier investigations of Youla [14] and of Koga f127, with

the quadratic analogue of the Serre conjecture. In the final section, we announce

* Partially supported by the NASA under Grant NSG-2265 and the ONR under
JSEP Contract N 00014-15-C-0648.
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C. I. BYRNES

some of the joint work done on this problem with T.E. Duncan.

I.- SOME TOPOLOGICAL AND GEOMETRIC ASPECTS OF LINEAR SYSTEM
THEORY.

Some of the recent infusion of topology and geometry is accounted for by the

interconnection between 3 viewpoints :

-] )

a) A system defined over a ring R of functions, say ]R[xl, .. .,xN
2t oor c(s?) .

b) A family of linear systems (A(}),B(}),C(})), Aé X, say X:IRN , S1 R

or SZ.

c¢) A map, X-¥X, into the space of Hankel matrices (of a fixed number m

of inputs, p of outputs, and n= McMillan degree).

Note that c) is almost the same as b) ; to understand the distinction it's
perhaps easiest to understand realizations in this context. As has been shown
((81,[11]), the space & of all minimal triples (A,B,C) modulo GL(n), with
m,p, and n fixed as above is a smooth, algebraic manifold. On the other hand,
M. Clark [9] has proved that the space ¥ is also a smooth, algebraic manifold

and it is not too hard to see that the natural map
n: % +X

which assigns to each class [(A, B, C)] the associated Hankel matrix
(CAJ_IB)EJ‘C is an algebraic map. Thus, a continuous family of system, as in b),
with constant McMillan degree, gives rise, after composing with mn, to a map
as in c). Of course, by evaluation, the data in a) gives rise to a family b), and
conversely. In order to complete the circle, we would have to recover a family

of realizations (A(A), B(\),C(A)) from a family of Hankels H(\) . Here we ask,
e.g., that the family be Ck w.r.t. A if HQ) is Ck w.r.t. A and that
the family (A(\), B(A\), C(A)) be minimal for every value A . This, of course,

is not possible, due to the non-existence of continuous canonical forms. If k=IR,
M. Hazewinkel [10] has produced a lovely example over X = S1 , involving essen-
tially the Mobius strip with X as its equator. For the complexes, one still does
not have continuous canonical forms (see the survey [7]). The issue is quite sim-

ple : if one chooses the canonical observable realization of H(\), then the only
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remaining obstruction to finding a minimal realization is that of choosing, conti-
nuously in X , a basis for the reachable subspace. Thus, as in the problem of
combing the hair on a tennis ball or of choosing an orientation on '"the surface
which all the world knows'', this obstruction lies in the topology of ¥ . Over
R , Hazewinkel computed enough to show that ﬂl(Z) £ (0) . Over € , the author

(&) # (0) .

and N.E. Hurt have shown Tr2

However, something actually can be said, if we are willing to speak geome-
trically. That is, starting with ¢) we can, provided rk H(A)= constant, repre-
sent H(A) by a generalized family. Thus, we can realize H(A) by, in lieu of
a matrix-valued function A(A), an endomorphism A of a vector bundle Q
(the state bundle), sections bi of Q, and dual sections Cj . By standard
techniques, this generalized form of a) corresponds to a system over R whose
state-module is projective but not necessarily free. Thus, slightly more general

forms of a) and b) correspond precisely to the data in c).

Example 1.1 ([5]) - Suppose H(A) is polynomial in A€ IRN and of constant

rank, say n . Thus, H induces a map

-1
H: IRN-O}CI z

and, since n-l is easily shown to be algebraic, a mapto X . Therefore

(by pulling back the universal family on £ ), H induces on ]RN a vector bun-
dle Q ofrank n , amap A : Q- Q, sections bi of Q, and co-sections
<, - By the validity of the Serre conjecture, Q is trivial ;thus, H can actually
be realized by matrix-valued polynomials (A(A), B(A\), C(A)), minimal at each

point.

Example 1.2.([41,[7]) - Here the ring is not Noetherian, consider R = )@1 , the
1
complex-valued L -functions on Z . We suppose given a Hankel matrix

1 . 1
(h ) of 47 functions and ask for an £ -realization, minimal over 2!

i+j-1
First of all, consider the Fourier transform,

~ n-1
H:51+K+Z

The condition that H have its range in ¥ is natural both from the point of

view of system theory and of harmonic analysis. System theoretically, it is just
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the condition that the dual of any minimal realization of H is also minimal
(Kalman Duality), while in terms of harmonic analysis it is one of the equivalent
conditions in Wiener's Tauberian Theorem. Assuming this, ItI therefore induces
a family on S1 and, since n_l is algebraic, the coefficients of this family

are in the range of the Fourier transform. On the other hand, the state bundle

Q on S is trivial since the complex Grassmanns are simply connected, but
what remains to be checked is that Q can be trivialized "within the range of the
Fourier transform'. This, of course, is possible, by the Docquier-Grauert Theo-
rem. In summary, any Hankel over /ll , such that ﬁ has constant rank, can

be realized by a minimal triple (A, B,C) over 1’«1

However, for even dimensional spheres the corresponding statements are
false. Indeed, by combining Bott Periodicity with some of the crude computations
made in [3], one can produce non-trivial families on any SZn . This shows how
the topology of the map X - I induced by H , can actually affect some of the
system theory involved. Of course, in the scalar input-output case, the existence
of the rational canonical form eliminates such complications. This makes the
non-trivial topology of I all the more fascinating. That is, R. Brockett has
shown ([1]) that £ splits into n+l components, each separated by the Cauchy
index of the transfer function. Therefore, if the McMillan degree is 2, there are
3 components and it is known [1] that 2 of these are diffeomorphic to IR4 , while
the component corresponding to Cauchy index 0 is diffeomorphic to ]R3>< S1 .

One generator for m GR3x Sl) = Z is the family,

2

_ (cosB)s + sin®

(1.1) gols) = {cosfls teind
s +1

To see that g is not null-homotopic, compute its Hankel :

(1.2) H: Sl—> T = 0(2), where
cos B sin 6
H(8)=
sin 0 -cos 0

is the component of 0(2) consisting of the reflections. The relationship between

gq and the group 0(1,1)c GL(2,IR) will be seen presently.
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II.- SOME ARITHMETIC ASPECTS OF LINEAR SYSTEM THEORY.

Motivated by questions of network synthesis [14] and by stability questions
(2] we consider for R = lR[xl, . .,xN] , or for R a ring of realvalued func-

tions on a connected space, or for R=Z

Question : Given a symmetric transfer function g(s) defined over R, does

there exist an internally symmetric, minimal realization of g over R ?

By an internally symmetric, minimal realization is meant a minimal triple

(A, B,C) satisfying

(2.1) I A= Al , I B='C,

where Ip is the standard quadratic form with signature p-q . Note that

p-q is ne’cqessarily the signature of the associated Hankel and is thus an exter-
nal invariant. According to Youla and Tissi, these always exist, by Sylverter's
Theorem, over IR and the subgroup which transforms one such realization to

all others is 0(p,q) = GL(n,R) .

In particular, for delay-time systems with commensurate delays, a necessa-
ry and sufficient condition for the existence of such realizations can be given [6].
That is, following E. Kamen, one can represent such a system as a symmetric
Hankel matrix whose entries are polynomials in a single variable x . By the
remark above, a necessary condition is a rather familiar one, viz. rank H(x)=n
is constant. This being assumed, the techniques of section 2 reduce the question
to the validity of Sylvester's Theorem over R =IR[x], which has been recently
proved by Harder ! This quadratic analogue of Serre's conjecture is false over
]R[xl,XZ] , but (to my knowledge) the question for delay-time systems with non-

commensurate delays is still open.

As always, a sharper condition can be given in the scalar case. Indeed, one

can show quite readily :

Theorem 2.1.- For scalar g(s), a necessary and sufficient condition for g

to admit an internally symmetric, minimal realization is that the Hankel be con-

jugate to Ip q-
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Now, over Z , this leads immediately to counterexamples in the indefinite
case. That is, one knows that for indefinite non-degenerate quadratic forms over
Z , the complete invariants are given by the rank (= McMillan degree), the si-
gnature (= the Cauchy index, by the Hermite-Hurwitz Theorem), and the type. For
example, the standard forms Ip, q are all of type I, since theyladmit vectors of
odd norm. However, the Hankel matrix (see (1.3)) of gﬂ/z(s) =2z is of type II ;

i.e., it admits no vector of ocdd norm. More generally, we have

Corollary 2.2.- No (Hamiltonian) transfer function g(s) , satisfying

g(s) = g(-s) admits an internally symmetric realization.

The definition case is far more subtle and will be presented elsewhere. In
the next and final section, we will present more applications of Theorem 2.1 to
families of linear systems.

Turning to the Hamiltonian case, suppose one has, over IR, g(s)= tg(-s) .

Then it is well known that there exists an (infinitesimally) Hamiltonian realization,
i.e. a minimal realization (A, B,C) satisfying

ga = -fay, sB - -tc

where J 1is the standard symplectic form, and any 2 such realizations are rela-

ted by Sp(n,R)c GL(n,IR) . Here, the obstructions are easy to obtain

Theorem 2.3.- If R is projective-free and if rank H(x) is constant, then

any Hamiltonian transfer function has an infinitesimally Hamiltonian realization.

Here, too, we have the obvious converse. If R is a ring of functions, then
rank H(x) constant is first used to obtain a generalized realization, while projec-
tive-free is used to obtain an honest realization of the form b) (section 1). Next,
the rank condition on the Hankel is used to deduce the statement usually implied by
Kalman duality, reducing the proof of the theorem to a classification of symplectic
forms over R . Finally, one obtains a ""Darboux Theorem'' by using projective

free.

For R=2Z, we replace H(x) by H mod(p) for primes p and use
Sontag's criterion for 'split'" realizations [13] to implement the duality argument.

Q.E.D.
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III.- THE HANKEL BUNDLES.

Let £ = Rat(n) denote the (moduli) space of scalar input-output systems of
McMillan degree n, over k =IR , and let R(p,q) denote the component of
Rat(n) of transfer functions of Cauchy index p-q . By the Hermite-Hurwitz Theo-
rem, for each g€ R(p,q) the signature of the associated Hankel is p-gq . Thus,
in contrast to the situation over Z , the indefinite case is far more interesting.
That is, R(n, 0)=~ R(0,n) = ]R2n while the topology of the intermediate R(p,q)

is still not completely known. Motivated by Theorem 2.1, we form

Definition 3.1.- The positive (resp. negative) Hankel bundle HJr on R(p,q) is
the vector bundle whose fiber over g€ R(p,q) is the positive (resp. negative)

eigenspace of the Hankel Hg

For example, for the ring C(R(p,q)) and the universal system on R(p,q),
Theorem 2.1 implies that there exists a network symmetric realization only if the
positive and the negative Hankel bundles are trivial. To put this another way, con-
tinuous, network symmetric canonical forms exist only if the Hankel bundles are
trivial. That is, for p-q fixed, set E(O,q) to be the (affine) variety of triptes
(A,b,c) satisfying (2.1). Then, the moduli, or quotient space, ls:(O,q)/O(p,q) is

simply R(p,q) and the existence of canonical forms is precisely the existence of

a cross-section of the map

~

(3.1) R(p,q) » R(p,q)

Thus, if p=n or q=n, a cross-section exists, since 0(n) is a retract of
GL(n,R) . Such cross-sections have been known in the litterature for almost half
a century, viz. the Cauer and Foster canonical forms for network synthesis -
which exist only for the RL or RC case. In the indefinite (or RLC) case,
T.E. Duncan and the author have shown that no continuous canonical forms exist,

even in the scalar case. The family gq of (1.1) provides an easy counterexample.

Example 3.1.- The positive eigenspace of He as a function of 8 is (by the
trigonometric addition formulae) the line in IR2Z which makes an angle 8/2
with the x-axis. In particular, one cannot choose a continuous basis for H+ over

1
S . To put this another way, the induced map
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sta R P~ s!

has degree 1 and, therefore, the line bundle H+ is non-trivial,

This can also be seen by analyzing (1.2), we have a map

(1.2) s'a 0(2) » 0(2)/ Z,x Z,=~ RP .

This is a special case of the map
(3.2) R(p,q) » Gass(p,n)~ GL(n,R)/0(p, q)

induced by the family H+ of p-dimensional subspaces of (the state-space) R,
which reflects the fact the Hankel bundles are associated to the 0(p,q) - bundle
(3.1) and thus (again) the fact that non-triviality of H+ and H are obstruc-

tions to the existence of continuous canonical forms.

Theorem 3.2.- In the indefinite case, the Hankel bundles are always non-trivial.

Thus, network symmetric forms exist only in the definite cases.

This result, together with extensions to the multivariable case appear in [6].
Some of the global properties of the space of scalar Hamiltonian systems, such as
the number of connected components and existence of canonical forms, have appea-
red implicitly in the work of R.W. Brockett and are also known to the author. The

multivariable Hamiltonian case, however, appears to be novel.
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