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ON QUASI-REACHABLE REALIZATIONS OF A POLYNOMIAL RESPONSE 

by 

Eduardo D. SONTAG 

ABSTRACT. - This paper studies the class of qua si - reachable realizations of a 
fixed polynomial response. This class is described as a complete lattice. Various 
subclasses are explored in detail with respect to the induced order, and examples 
are given. 

I. - INTRODUCTION AND NOTATIONS. 

Polynomial response maps are basically those given by discrete-time 
Volterra series. A class of natural realizations for such maps is given by sys­
tems whose states evolve in n-dimensional Euclidean space via first order poly­
nomial difference equations, but various facts suggest that this class must be 
"completed" in order to allow for more arbitrary schemes as state-spaces. To 
shorten the exposition, most of the definitions and basic results of SONTAG 
[1976,1979] will not be repeated ; these will be quoted as "PRM (a)", where "(a)" 
refers to the numbering in these references. 

We recall some of the basic notations and definitions : fixing an infinite field 
k , a "k-space" means the set of all k-points of an affine k-reduced k-scheme ; 
"k~space morphisms" or "polynomial maps" are scheme-morphisms. An 
abstract system £ = (X, P, h, x*) is given by a (" state - space ") se t X , a 
("transition") map P : X x U = * X , an "output" map h : X Y , and an "initial 
state" xw in X . For simplicity, U (input-values space) will be km and Y 
(output-value s space) = k^ for some m, p, and P(x*, 0) = x* (equilibrium 
initial state). A morphism T : T>^ -* will be a map X^ with 

T(x*) = x* , T(P(x, u)) = P(T(x),u) , and h2(T(x)) = h (x) , for all x, u . 
A k-system has X a k-space and P, h polynomial maps ; a k-system mor­
phism is a T as above which is polynomial (so an isomorphism is a polynomial 
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change of variables in the state - space). An almost-variety X is a k-space with 
A(X) (= algebra of polynomial functions on X ) = a subalgebra of a finitely gene­
rated k-algebra (if A(X) is itself f. g. , X is a va rie ty) ; an [almost-] polyno - 
mial system has X an [almost-] variety. For an algebra A , X(A) is the 
k-space of k-points of A (= homomorphisms A -4 k ) ; both A(. ) and X(. ) 
are naturally seen as functors, giving an equivalence between the categories of 
k-spaces and k-reduced algebras. The input space Q was introduced in PRM 
as a "completion" of the set of finite - suppo rt sequences U [z] ; a system is 
quasi - reachable when the reachability map is dominating, i. e. when reachable 
states are dense in X . 

Attention is restricted here to qua si - reacha ble systems. If a given system 
is not qua si - reachable, it may be restricted to the closure of its reachable set ; 
this operation is rather straightforward, and restricting to such systems simpli­
fies matters considerably. Isomorphism classes of quasi-reacha ble systems are 
ordered in a natural way, as studied below. 

II. - THE LATTICE QR(f) . 

All systems appearing in this paper will be assumed to be qua si - reachable 

realizations of a fixed polynomial response map f . 

(2. 1). DEFINITION. - ^2 ^ ^1 means that there exists a k-system morphism 
T : Z2 . 

The above defines a pre-order among systems, which will become a partial 
order when isomorphic systems are identified. 

(2. 2). LEMMA. - U_ T : Z^-* Z2 , i = 1, 2 , are morphisms, then Tl = T2 ' 
Furthermore, the T. are dominating. 

Proof : Since £̂  is quasi-reacha ble, the abstractly canonical state-space 
X is dense in X . Thus by an argument as in PRM (7. 7), T. = T0 on X ac 1 i 2 ac 
The equality follows by continuity. A similar argument proves the last statement. 
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By a slight abuse of notation, the same letter will be used for a system and 
for its isomorphism class. Let QR(f) denote the set of all isomorphism classes 
of quasi-reachable realizations of f ; then QR(f) inherits the preorder ^ ; 
in fact : 

(2. 3). COROLLARY. - QR(f) is partially ordered by ^ . 

Proof : If T : £̂  -> T,^ and S : £^ -* 2 ̂  are morphisms, then TS : 2^ 
must be equal to the identity morphism, by (2. 2). Similarly, ST is the identity. 
So T is an isomorphism. 

Recall that £^ (f) is the system having the input space Q as its state-
space, and with transitions extending the concatenation operation on input se­
quences ; see PRM (6. 10). By PRM (8.2), the reachability map g : U [z] -» X 
extends to a polynomial map g from Q to X , for any k-system £ . 
If Z realizes f , then g induces an abstract-system morphism from the 
system with X = U [z] , P : = concatenation, and h, x* as in E (f) , into 

a 
2 . Thus g induces a k-system morphism from £^ (f) into £ . Since 
on the other hand, by PRM (11.3), the canonical realization 2^ is terminal 
among quasi-reachable ones, it follows that : 

(2.4). PROPOSITION.- £free(f) is the (unique) largest, and E the (unique) 
smallest, element of QR(f) . 

If T : 2̂  -* 2^ is a dominating k-system morphism, A(T) gives A(X^) 
as a subalgebra of A (X ) , with "co-transitions" A(P^) and "co-output map" 
A(h^) extending A(P^) , Ajh^) • Conversely, given any k-subalgebra A of 
A(X^ such that : 

(2. 5) A includes Af 

(note that A^ if a subalgebra of A(X ) , by the quasi-reachability assumption) 
and 

(2.6) A(P ) (A) is included in A ® U , U : = A ( U ) , 

then the restriction of A(P^) to A , together with the restriction of A(xJr) 
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to A and A(h^) (seen as a homomorphism into A ) , define a system 2^ 
with A(X^) = A and ^2 ^ ^1 ' -^urt^ermore > ^ determines a unique such 

(up to isomorphism), since A(P^) , A(h^) , A (x^ ) are given necessarily 
by the above procedure. 

Thus, the (isomorphism classes of) systems less or equal than 2^ are in 
a one-to-one correspondence with the algebras satisfying (2. 5) and (2. 6). Fur­
thermore, this correspondence preserves orderings, when the subalgebras A 
are ordered by inclusion. But (2. 5) and (2. 6) are preserved under intersections, 
and if a family A. satisfies (2. 6) then the algebra generated by the union of 
the A. again satisfies (2. 5), (2. 6). Translating these facts into the partial 
order for systems, and applying them for I! - % (f) : J 1 free 

(2. 7). THEOREM. - QR(f) is a complete lattice. 

Although the technicalities are very different, the above is formally very 
similar to the result for linear responses over rings presented in SONTAG Cl977]. 

III. - SOME RELEVANT SUBLATTICES. 

The lattice QR(f) is too "large", in that it contains realizations of arbi­
trary dimension. Certain sublattices described below are much more interesting ; 
it is a remarkable fact that there seems to be no way to study any of these lattices 
without in some way first introducing QR(f) . In this section, f will be assu­
med to be finitely realizable. 

(3.1). DEFINITION. - MD(f) denotes the (isomorphism classes of) minimal-
dimension realizations of g , viewed as a partially-ordered subset of QR(f) . 

(3. 2). THEOREM. - MD(f) is a complete sublattice of QR(f) . 

Proof : Minimal realizations correspond to those subalgebras A of the 
algebra of Volterra series which satisfy (2. 5) and (2. 6) together with the addi­
tional condition that A is alge braic over Â . . This is again a complete lattice. 
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(3.3). REMARK. - By PRM(9. 3) , if 2 is a realization of dimension n then 

the n-step reachability map is dominating. By the arguments in PRM (12. 12), it 

follows that two minimal realizations are isomorphic if and only if A(g ) (A) is 

the same subalgebra of A(Un) for both of them, where n = dim A^ . This per­

mits calculations to be carried out explicitly, in A(Un) . 

Realizations in MD(f) are characterized by the fact that their observation 

fields are algebraic over the canonical observation field Q̂ . . Another important 

subclass of realizations is : 

(3.4). DEFINITION.- A realization Z of f is qua si - canonical iff Q(£) 

is equal to . The poset of quasi-canonical realizations is QC(f) . 

(Note that the natural inclusion of the observation algebra Â -~- A(X^) in 

A(2) extends to an inclusion of in Q(£) , for any qua si - reachable reali­

zation 2 ). 

A dominating k-space morphism T : X =• Z is birationa 1 when A(Z) has 

the same quotient field as A(X) , (identifying via A(T)). The meaning of (3. 4) 

will be clarified by the algebraic : 

(3. 5). LEMMA. - Let X, Z be almost-varieties, T : X =* Z dominating. 

Assume that the field k is algebraically closed and has characteristic zero. 

Then T is birational if and only if there is a (Zariski) open set Z in Z 
_1 

such that the fibre T (z) has precisely one element, for each z in Z^ . 

Proof : The argument is essentially that in PRM (4. 6). By DIEUDONNE 

[1974, Section 5 .3 ] , the varieties X̂  , Z^ can be choosen to be normal 

( i .e . , A(X^), A(Z^) are integrally closed). If T is birational, n = m in 

PRM (4. 6) and the restriction map X̂  Z^ is finite and onto ; furthermore, 

s = cardinality of fibres = 1 by DIEUDONNE [ 1972, Prop. 5 . 3 . 2] . Conversely, if 

fibres have generically a single point then the argument in PRM (4.6) proves that 

n= m, so Q(X) is algebraic over Q(Z) , with separable degree one ; since 

char k = 0 , they are equal. 

The above is a straightforward generalization of a result well-known for va­

rieties. Since T, may be nonpolynomia 1, however, (3. 5) is needed in order to 
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conclude, for k as in (3. 5) : 

(3. 6). PROPOSITION. - The (qua si - reacha ble ) almost-polynomial system 2 is. 
in QC(f) if and only if there exists an open (hence dense) subset of its 
s tate - space X such that no two states in X̂  are indistinguishable. 

Proof : Immediate from (3. 5), by considering the canonical morphism 

T : 2 * £ . 

This justifies the terminology "qua si - canonical" = quasi-reacha ble plus 
"quasi-obse rva ble" in the above sense. Such systems have been suggested before 
in the context of minimality of diserete-time nonlinear systems ; see PEARLMAN 
C1977J . (A related concept appears implicitly in the last section of HERMANN 
and KRENER [1977] ). The "if" in (3. 6) is not true, for general f , over the 
reals, but it is valid for restricted kinds of systems (classes of multilinear sys­
tems, etc . ). 

(3. 7). THEOREM. - QC(f) is a complete sublattice of QR(f) . 

Proof : As in the previous cases. 

In particular, there exists a large st quasi-canonical realization £^ . 
Explicitly, 2^ can be obtained by intersecting Q with the algebra of Volterra 

f f series (this gives A , the algebra of functions on the state-space X ) , and 
restricting the maps defining ^freeW * That ^ indeed satisfies (2.6) follows 
from the more general result : 

(3.8). LEMMA. - H_ 22 ^ 2 , then (with the notations in (2. 5) (2. 6)), 
A : = Q(A ) 0 A satisfies (2. 6). 

Proof : Since 2^ is quasi-reachable, its transition map p is dominating; 
thus A(P) is one-to-one. So A(P) extends to a homomorphism from Q(A )̂ 
into Q(Â <S> U) , which itself restricts to a homomorphism from Q(A^) into 
Q(A?®U) . Since A? satisfies (2.6), the result will follow from : 
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(3.9) Q(A 8>U)n (A ® U)g Q(A2)® U . 

To prove this, let a be in the left-hand side, i. e. , a = I! c. <8> T. , where 
1 1 U = X(k [ T . . . . , T ] ) , c. in A, , and (E b. <g> T. ) a = E a. <S> T. , with the 1 m i 1 1 1 1 1 

a. , b in A , some b nonzero. 1 1 Z I 

The set : 
V : = { u in U with ( S b ® T ) ( u ) / 0 ) 

is a proper algebraic subset of U » ( see PR M (2. 4) ) and, for u in V , 
a(u) belongs to Q(A2) . Thus, by PRM (12.11), all c are in Q(A2), as 
wanted. (The same proof works for more general U ). 

The largest quasi-canonical realization E is therefore obtained, using 

T>=T>f (f) and £ = £, above. 1 free 2 f 

Other natural classes (sub-posets) of realizations are that of all polynomial 
realizations (X a variety) , or of all minimal polynomial realizations , or 
of all realizations with X^ = affine space, etc . These classes 
do not form sublattices, however. In fact, as shown by examples in the next sec­
tions, meets or joins of systems of these kinds are not necessarily in any sense 
"nice". This provides a further justification for considering nonpolynomial k-sys-
tems, seen as those needed to "complete" the various posets. 

IV. - FIBRE PRODUCTS. 

The lattice operations in QR(f) can be interpreted more concretely than in 
the previous sections. This is particulary simple with the join, which obviously 
corresponds to a fibre product construction, i . e . , (E^ join i-s gi-ven by 
the product of £̂  / £ ^ and 2 2 / Ê  in the cate gory of all k - system morphisms 
E/E£ from quasi-reachable realizations E into E£ (with the standard mor­
phisms r : Ê  / Ê  -* E^/E^ corresponding to the r : £^ E^ such that r 
composed with 22/£f is £ / £ ). Thus £ = (£ join £2 ) has state-space 
a closed subset of X̂  * X2 : 

(4. 1) X= {(gl(w), g2 (w)) , w in U* } , 
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and P((x1> x2),w) : = ( P ^ , w), P(x2, w)), initial state (x* , x* ) , and 
h(x ,x2) : = h^x^ (or h2(x2)). 

The calculations for the following examples are easy, using (3. 3) ; initial 
states are zero, and U = k , unless otherwise stated. 

(4.2). EXAMPLE. - Let £ be 
2 

x(t+l) = u (t) 
y(t) = x3(t) 

and 2 be 
L 3 

x(t+l) = u (t) 
y(t) = x2(t) . 

Both realize the same response map f with canonical realization (which is 
also their meet) : 

x(t+l) = u6(t) 
y(t) = x(t) . 

Their product is the system whose state-space is the "cusp" {(x , x ) in k 
3 2 1 2 

with x̂  = x2 j and 

x^t + 1) = u2(t) 

x2(t+l) = u3(t) 

y(t) = xt3(t) , 

which is more complex than the original systems. 

(4. 3). EXAMPLE. - Here 2 and 2 have as state-space the closed set 
4 2 consisting of those vectors (x,, x_, x_ , x . ) in k with x. x_ = xn , and & v 1 2 3 47 1 3 2 

input set U = k . The equations are, for £^ : 

x^t+1) - u(t) 
x2(t+l) = u(t) v(t) 
x3(t+l) = u(t) v(t)2 
x4(t+l) - x2(t)+ Xl(t) x2(t) u(t) + x (t) v(t) 

Y(t)= x4(t) 
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and for £2 : 
x^t+l) = v(t) 
x (t+1) = u(t) v(t) 

L 2 
x3(t+l) = u(t) v(t) 
x4(t+l) = x2(t) + x3(t)u(t)+ xx(t) x2(t) v(t) 

Y(t) = x4(t) . 

Their meet is the canonical realization £^ with X^ = all 4-vectors with 
x^ = x2 x^ , and : 

Xl(t+1) = u(t) v(t) 
x (t+1) = u2(t) v(t) 

L 2 
x3(t+l) - u(t) v(t) 
x4(t+l) = Xl(t)+x2(t) u(t)+x3(t) v(t) 

y(t) = x4(t) . 

Here the join turns out to be simpler than all of the above ; it is the system with 
X = k3 and 

x^t+1) = u(t) 
x2(t+l) - v(t) 
x3(t+l) = xx(t) x2(t)+ x}(t)2 x2(t) u(t)+ xx(t) x2(t)2 v(t) 

y(t) = x3(t) . 

V. - EXAMPLE OF NON POLYNOMIAL k-SYSTEMS. 

The purpose of this section is to give an example illustrating how nonpolynomial 
k-systems arise naturally when studying polynomial realizations in QR(f) . 

2 
(5.1). EXAMPLE. - Let f be the response of £Q , where X = k and 
x* = (1, 1)' and 

Xl(t+1) = Xl(t) x2(t) 
x2(t+l) = x2(t)(u(t)+l) 

y(t) = xL(t) . 

Then, there exists a family a polynomial systems £. such that for every non-
canonical (quasi-reachable)realization £ , there is an i with £ strictly 
greater (in QR(f) ) than £. . Since the canonical realization is nonpolynomial 
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(PRM (18. 1)), there results in particular an infinite chain 

1 < 2 > *4 > 28 < 8 > 2f • 

and T>£ appears in taking the meet of this chain. The £. have algebras 

K t TL , T , T2 , . . . , TL T^"1 , T^ 1 ; the construction is detailed in SONTAG [1979]. 

A consequence of this construction is that it is not possible to obtain a "canonical 

realization theory" for f solely via affine spaces, or even polynomial systems, 

at least if the existence of a terminal object in the category of qua si - reachable 

realizations is sought, as usual in system theory. 

VI. - FINAL REMARKS. 

Various other classes can be defined as subposets of QR(f) . "Normal" 

realizations, for instance, form an interesting subclass which give "less singular" 

state-spaces and permit a much stronger uniqueness result for canonical realiza­

tions ; this is explained in SONTAG [197 9] . Similarly, results can be easily ex­

tended to more arbitrary input and output - values sets, or to systems whose 

state-spaces are nonaffine schemes, although in this latter case the exposition is 

technically more complicated. 
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