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SOME PROBLEMS IN ACCESSIBILITY THEORY 

by 

Ivan KUPKA 

0. - In this talk I want to discuss several problems that appear in the theory of 
accessibility of polysystems. Since very little seems to be known about these pro­
blems , I will indicate some ideas about possible solutions. The talk will consist 
of two parts ; the first one will consider left or right invariant polysystems on 
Lie groups the second one points out some pathologies in the structure of acces­
sibility sets and discusses the stability of transitivity or non transitivity. The 
proofs of all the results mentionned will appear elsewhere. 

1 • - GENERALITIES AND DEFINITIONS. 

The setting will be a C°° or C^ (real analytic) connected manifold 
M whose tangent bundle we denote by TM : the tangent space at x € M will 
be T M . 

x 

Definition 1. - A polysystem F on M will be a subset of TM such that 
F(x) = T MflF is a cone in ^ M which is not empty and not reduced to [o] 
for each x€ M . 

Definition 2. - a) For any x€ M , the accessibility set of x under F , de­
noted by A(x,F) , is the set of all y€ M such that there exists an absolutely 
continuous curve cp : [0,T]-* M satisfying the conditions : 

1) cp(0)=x, cp(T)=y 
2) for almost every t€ [0 ,T] , "^( t )€ F(x(t)) . 

dt 
b) The boundary B(x,F) of the accessibility set A(x,F) will 

be the set closure of A(x,F)f! closure of (M-A(x,F)). It is the disjoint union 
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of the accessible boundary Ba(x,F) and the inaccessible boundary Bi(x,F) : 

Ba(x,F) = B(x,F)f1 A(x,F) Bi(x,F) = B(x,F)(1 (M-A(x, F)) . 

Definition 3 . - A polysystem F is called transitive if for any x€M , 
A(x, F) = M . It is called weakly transitive if A(x,F) is dense in M . 

The basic problem of accessibility theory is to find conditions either 
necessary and sufficient or simply necessary or only sufficient for a polysystem 
to be transitive or non transitive. For general polysystems such a problem does 
not make much sense since exemple s, which we do not want to discuss here, show hat 
minor changes in a polysystem F will make a non transitive are into a t ransi­
tive one and vice-versa. So the transitivity property is very unstable. Hence it is 
advisable to restrict the nature of the systems. For cases of transitivity of gene­
ral polysystems see [2]. 

2. - INVARIANT SYSTEMS ON GROUPS AND INDUCED SYSTEMS. 

G will denote a connected Lie group, Lie (G) its Lie algebra. 

Definition 4. - A polysystem T on G will be called left (resp. right) inva­
riant if for any x, g € G , F(g x) = g F(x) (resp. F(xg)/ = F(x) g) where the 
map T G • T G (resp. T G—• T (G)) u—• gu (resp. u u g ) is the 

x g x x xg 
map induced by the left (resp. right) g-translation. 

Remarks .- 1) There is an easy one to one correspondance between left and 
right invariant polysystems. A left invariant polysystem is transitive if and only 
if the corresponding right invariant polysystem is transitive. 

2) A left or right invariant polysystem F is entirely determined 
by F(e) where e is the neutral element of G . 

Definition 5. - If M is a connected manifold on which G operates on the left, 
then any right invariant polysystem F on G induces a polysystem F^. on 
M as follows : if $ : GxM-* M is the action of G on M and x£ M , 
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FM(x)= fd$(e,x) (u, 0) |u€F(e)} . 

The following is trivial but important. 

Proposition 1. - a) If_ F is left (resp. right) invariant on G , then A(e,F) 
is a semi-group. 

b) For any g€G , A(g,F) = gA(e.F) (resp. A(g, F) = A(e.F)g). 
c) If_ G operates on the left on the manifold M and F is  

right invariant, for any x€ M , A(x, F ) = A(e, F) x . 
d) F is transitive (resp. weakly transitive) on G if and  

only if A(e,F)= G (resp. A(e,F) is dense in G). 
e ) J3L F is right invariant and if G is transitive on a mani-

fold M , then if F is transitive on G , F, , is transitive on M . 
]y[ 

For invariant polysystems on a group G it is easy to give a necessary 
condition for transitivity. 

Theorem 1 (chow).- If an invariant polysystem F is transitive, then F(e) 
generates the Lie algebra of G . 

This gives the following easy corollary. 

Corollary. - If F is invariant and symmetric (-F = F) then F is transi­
tive if and only if F(e) generates Lie(G). 

The following proposition is well known and technically very useful. 

Proposition 2 ([l]) .- a) _If F is an invariant polysystem and F(e) generates  
the Lie algebra Lie (G) , then weak transitivity implies transitivity. 

b) If_ F is right invariant, F(e) generates Lie(G) and 
M is a left G-manifold, then the weak transitivity of implies the transi­
tivity of F^, .  

1 M 

This last proposition enables us to settle the transitivity problem in one 
case . 
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Proposition 3. - If G is compact and F is invariant, F is transitive if and  
only if F(e) generates the Lie algebra of G . 

To see this notice that the necessity is just Theorem 1. The sufficiency 
follows from Proposition 2 and from the following : the closure of A(e,F) is a 
closed semi-group hence a Lie subgroup of G by the compactness of G . The 
Lie algebra condition implies that this subgroup is just G . So F is weakly 
transitive . 

No other necessary or necessary and sufficient conditions are known to 
me. Let us discuss now sufficient or generically sufficient conditions. First , we 
discuss a special class of polysystems. 

For any integer r 0 < r < dim Lie(G) , let us denote by Af g r(Lie(G), r) 
the set of all affine subvarieties of dimension r in Lie(G). This space is endowed 
with a natural topology. 

Definition 6. - An invariant poly system F on a group G is called bilinear if 
F(e) is an affine variety in Lie(G). 

Remark : It is easy to see that this is really the classical notion of bilinear sys­
tem . In fact if dim F(e) = m then there exist elements A, B . . . , B € F(e) . 

m m 
Such that F(e)={A+ E u. B. | (u ,. . . , u ) € IR ] . The corresponding equation is 

m j=l J J m 
-^( t ) = A(x(t))+ Z u.(t) S.(x(t)) where AfBlf . . . ,B are the left (or right) in-
dt j=i J J * m 
variant vector fields on G generated by A, B^,. . . , B ^ . 

Definition 7. - The genus of a real Lie algebra L is the smallest of the cardi­
nals of all the subsets of L which generate L as a Lie algebra. If G is a 
Lie group, the genus of G is the one of Lie(G). In other words the genus of L 
is the minimum of all integers m such that there exists a surjective Lie algebra 
homomorphism cp Free Lie algebra on (X ,̂ . . . , X j • L . 

Proposition 5. - Let G be a real Lie group. For any integer r , r ^ genus  
of G , there exists an algebraic subvariety E _of_ Af g r(Lie(G), r) of codi-
mension ^ 1 such that any bilinear F not belonging to E is transitive . In 
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particular these systems form on open dense set. 

As an example : if G is semi-simple its genus is 2. Hence on G , ge-

nerically any bilinear system with at least two controls is transitive. This applies 

in particular to the special linear group. 

If r < genus of G , the proposition is definitely false. The set of non 

transitive bilinear systems has then a non empty interior. V. Jurdjevic and I 

obtained a general sufficient condition in that case which, in a sense we will not 

discuss here, is the best possible. I proceed to state our result now, but only in 

the simple Lie group case where the statement is shorter. Hence we assume that 

Lie(G) is a real form of a simple complex Lie algebra. 

Definition 8 . - An element B€ Lie(G) will be called strongly regular if : 

1) ad B is semi-simple. All its eigenvalues except 0 are simple and 0 is 

an eigenvalue of multiplicity equal to rank Lie(G). 

2) If we order the eigenvalues of ad B by the lexicographic order (that is X^U 

if R e \ < ReM or Re \ = Re U and I m \ < Im^l) then there is exactly 

rank Lie(G) indecomposable positive eigenvalues. A positive eigenvalue is 

called indecomposable if it is not a sum of at least two positive eigenvalues 

(positive for the lexicographic order ! ) . 

This definition calls for several remarks. Firs t the number of indecompo­

sable eigenvalue is always no greater than the rank of Lie(G). For certain B 

it can be smaller but these are very special B , because of the following : the 

set of strongly regular elements forms an open dense set in Lie(G) whose com­

plement is a real algebraic variety of codimension . 

Before stating the theorem, one should be aware that if B€ Lie(G) , then 

the set of eigenvalues of ad B is symmetric that is, if ¡3 is an eigenvalue -

- (3 is one too . 

Theorem 2( Jurdjevie -Kupka). - Let G be a real Lie group which is a real  

form of a complex simple Lie group. An invariant polysystem F on G is_ 

transitive provided that : 

1) There is a strongly regular element B€Lie(G) such that B and -B 
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belong to F(e) . 

2) Let Lie(G)© (D = E ©0 E the decomposition of the complexified Lie algebra  o p 3 c c fi 
of G along the eigenspaces of ad B . Then the second requirement is that 
for each indecomposable 3 these should exist A+(3), A (|3)€F(e) such that 
the component of A ($) (resp. A (3') along E (resp. E ) is non zero. 

+ 3 -p 
The same should be true if 3 is the maximal eigenvalue of ad B (maximal 
for the lexicographic order). 

3) If the real part r of the maximal eigenvalue is also an eigenvalue there  
should exist elements A_̂  , A £F(e) such that if A (r) and A (r) are  
their components in the spaces E^ and E respectively then Kil(A (r), 
A (r))< 0 . Kil is the killing form of the algebra Lie(G) . 

This theorem calls for a few comments. Firs t the condition 1 and 2 are 
open dense conditions. Condition 3 is different. It is certainly open but not dense 
unless it is empty,that is , r is not an eigenvalue of ad B . It depends on the type 
of the Cartan algebra ker ad B . The methods of proof of this theorem give other 
results of similar kind. They also have many corollaries. Let us state one here 
which has bearing on the problem of accessibility for bilinear systems with one 
control, that is for invariant polysystems F such that F(e)€ Af g r(Lie(G), 1) 
and G is a real form of a complex simple Lie group. 

Corollary. - Let G be as in theorem 2. Let B€Lie(G) be a strongly regular 
element. For any A€ Lie(G) call F(A, B) the invariant system generated by the 
affine line {A+UB|U€1R} C Lie(G). Then we have the following situation : either 
1) the set of all A such that F(A, B ) is transitive contains an open dense set 
in Lie(G) , or 2) the set of all A€Lie(G) such that the mean limits : 

A = lim i f 6 <A> dt , A = l i m - / 6 J A > dt 
+ T.+oo T 0 ||etadB(A)H " T.+oo -T || (A)|| 

exist and are not zero contains an open dense set in Lie (G) and in the sub­
set where Kil(A , A )< 0 the set of all A's for which F(A, B) is transitive 
contains an open dense subset : (II II is any norm on Lie(G)). 
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If we consider for a moment the conditions in theorem 2 we see that they 
are semi-algebraic. Let us recall this concept. 

Definition 9. - A subset S in a real algebraic variety E is called semi-alge­
braic if there exist regular functions f f on E such that 

b 1 m 
S = { x | x € E f(x)> 0. . . f (x)>0 f _ ( x ) ^ 0 . . . f (x)^0} ; f , . . . , f do not 
need be distinct. 

Now Kalman's necessary and sufficient condition for the transitivity of li­
near systems is semi-algebraic . Hence one may ask if there exist necessary and 
sufficient conditions for the transitivity of bilinear systems which are semi-alge­
braic. To be more specific, call T(G,r) the subset in the affine grassmannian 
Af g r(Lie(G), r) of all affine varieties of dimension r which give rise to tran­
sitive invariant systems. The question then is the following : is T(G,r) a semi-
algebraic set ? The answer is no and counterexamples appear for G= SL(3 ;IR). 

On the other hand the following generalization of the preceeding question 
could have a positive answer. Let ft be the field of real rationnal functions of 
the real algebraic variety Af g r(Lie(G), r) . Then the new question is : does there 
exists a finite set {g^, . . . , g^} c: ft , such that T(G, r) is K-semi-algebraic 
where K is the field generated by ft and exp(g^), . . . , exp(g ) . K-semi-alge-
braic means : there are elements f f €K not necessarily distinct, all 
defined on T(G,r) and such that T(G, r) = fx | f (x)> 0, . . . , f (x)>0 , 
ft+1(x)*0, . . . ,fs(x)>0} . 

There is an easier question than the preceeding : is T(G, r) subanalytic ? 
I have no idea about the answers to these last two questions. An answer to them 
would give a good idea of the complexity of the transitivity problem for bilinear 
sytems. Before ending this part I would like to present a heuristic scheme that 
could give a method for approaching the preceeding problems and which motivates the 
second part. One possible way to study the transitivity of invariant systems is to 
compactify the group G . This can be done in many ways for any semi simple 
group but in general the compactification is not smooth. Let us then assume that 
G has a smooth compactification, that is,there exists a smooth compact manifold 
M on which G operates (on the left say) such that the action has one open dense 
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orbit & diffeomorphic to G . The remaining set is called the boundary 
of the compactification. Given a right invariant polysystem F on G it induces 
a polysystem F_ , on M . The restriction of F , to & is isomorphic to the 
original system F on G . Now the following lemma is fairly obvious. 

Lemma. - If F(e) generates Lie(G) (as a Lie algebra ! ) then if  
closure A(e,F)Pl closure A(e, -F) is non empty, F is transitive . 

The following generalization, then, of the preceeding lemma, seems plau­
sible : choosing an x let f (x ,F) be the intersection of the closure of 

A(x , Fj^) with the boundary of the compactification. If F(e) generates Lie(G) 
and belongs to Af g r(Lie(G), r) , then F(e) belongs to the boundary of T(G,r) 
if the sets f(x , F) and f(x , -F) meet in a boundary point, o o 

These considerations lead us to the study of the boundary of accessibility 
sets . 

3. - BOUNDARIES OF ACCESSIBILITY SETS OF REGULAR POLYSYSTEM. 

In this part we will consider regular polysystems and their accessibility 
sets . 

Definition 10. - A polysystem F on a manifold M is called C°° (resp. C^) 
regular if : (i) for each x 6 M , F(x) is a strict convex cone with non empty 
interior ; (ii) if T^M denotes the open submanifold of TM complement of the 
zero section, then F = FH T M is a C°° (resp. C^) submanifold of T M ; 

o o r o 
(iii) if IT : T M-»M denotes the canonical projection then the triple (FO>TT|F , M) 
is a sub bundle of the fiber bundle (T M, TT, M) . 

o 
The boundaries B(x, T) of the accessibility sets A(x,F) have the follo­

wing property which is valid in general under very mild conditions on F . 
We state it here only for regular polysystems . 

Proposition 6. - If F is a C°° regular polysystem, then for any x € M , 
B(x^,F) is a Lipschitz manifold. 
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Besides this property the sets B(x,F) can be pathological and if they are 
smooth their smoothness can be unstable. 

Pathology I : There is C regular polysystem F on any manifold Mf 
dim 3 , such that for some point x€ M the boundary B(x, F) is equal to the 
accessible boundary Ba(x,F) and is a C°°-compact manifold, and there exist 
arbitrarily small perturbations F ' of F which are C°° regular and such 
that B(x,F') is not stratifiable . 

Pathology II : On any C^-manifold M of dimension^ 3 there exists C^-regu-
lar polysystems F such that for some x€ M , the inaccessible boundary 
Bi(x,F) is nowhere subanalytic. 

On the other hand I conjecture that if for each x£ M the manifold 
F (x) = F HTM has everywhere positive normal curvature (for some Riemann ov o X ] r \ 
metric on M ; it does not depend on the metric) then the accessible boundary 
Ba(x,F) is subanalytic. 

Usually the property of transitivity or non transitivity for a regular poly­
system is highly unstable under perturbation. Here is a result that characterizes 
those systems whose transitive or non transitive character is stable under per­
turbation : for simplicity we assume M compact. Then there is a natural topo­
logy on the set of C°° regular polysystems, and the following is almost trivial. 

Proposition 7. - The transitive (resp. non transitive) character of a C°° regu­ 
lar polysystem F is stable under small C°° perturbations if and only if there  
exists a polysystem F ' on M such that : 1) F ' is transitive (resp. non tran­ 
sitive) ; 2) for any x€M the set F^(x) = F ' (x) fl T^M is contained in the inte­ 
rior of FQ(X) = F(x) (1 TQM (resp. the set F^ (x) contains fQ(X) in its interior) 

Stably non transitive systems admit the following nice characterization : 

Proposition 8 . - A C°° regular polysystem F is stably non transitive if and 
only if there exists a function f : M-> R such that for any v € F = FflT M:  0 0 
df(v)> 0 . 
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With this proposition we end our discussion of polysystems. 
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