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EXISTENCE AND UNIQUENESS OF NONLINEAR REALIZATIONS 

by 

Bronislaw JAKUBCZYK 

1. - INTRODUCTION. 

The realization problem can be formulated as follows. Given an input-
output system ("black box") described by an input-output map, find an internal 
description of the system (called realization of the system) and show that a "mini­
mal internal description" is, in a sense, unique. In the case of discrete time and 
a general (set theoretical) input-output map, this is a problem of the automata 
theory (cf.[6]) and is solved by introducing the concept of "state space" as a "mini­
mal memory" of the system. 

We are concerned with the case of continuous-time systems with the output 
having finite number of real valued components. The problem has a satisfactory 
solution for the case of linear systems (cf, KALMAN [6] and the bibliography cited 
there) and bilinear systems (cf. e .g.[3]) . In the case of the input-output map given 
by a finite Voltera series direct constructions of linear-analytic realizations were 
given by BROCKETT [l] and CROUCH [2] (see these proceedings). 

In the general, nonlinear case a basic result was obtained by SUSSMANN 
[8], ClO] (for related topics see SUSSMANN [9], Ql] and HERMANN, KERNER 
[4]), who proved that if an input-output map has a realization which is either ana­
lytical or smooth symmetric, then it has a minimal realization which is unique up 
to a diffeomorphism. 

Here, we give general necessary and sufficient conditions for existence of 
realizations of nonlinear input-output maps. We show that two minimal realizations 
are diffeomorphic (our definition of minimality is slightly modified with respect 
to [lO]). We outline the construction of a realization in the general case, The 
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detailed construction and proofs are contained in [5] . 

2. - INPUT-OUTPUT MAP OF A GIVEN CONTROL SYSTEM. 

Consider a control system of the form 

^ x = f(x,u) , x(0) = XQ 

Y = h(x) , 

where x(t)€X n-dimensional, differentiable manifold, u(t)€0 and y ( t )€Rr . 

Let U be a class of admissible control functions u defined on finite subin-

tervals [0,t ) of R = [0,oo). We assume that for any u€ U the equation u + ^ 
x = f(x, u) has a well defined unique solution on Co, t^] . Let $^ denote the 

diffeomorphism $^ : X • X which maps initial points of the trajectories 

into their finite points. For a given quadruple £ = (X,f,h,xo) we define the in­

put-output map p ,̂ : U • R1" of system (1) by 

(2) ps(u) = h(^(xQ)) . 

3. - CONTROL SEMIGROUP AND CONTROL GROUP. 

For the sake of simplicity, we shall consider here the class of piecewise 

constant controls only (see [5] for a general class of controls). Let Q denote a 

set of admissible values of controls (its elements will be denoted by a, 3 )• 

Denote by 

(3) a = (tk ak). • •(t2^2)(t1a1) 

the piecewise constant function ^ , a ^ ) "* ^ ' a(i") ~ OL for T€[CT^ ^ , o\) , 

a. = è t. (a = 0) , where t. 6 R = [0, oo) and 0 . The set of all such func-
i 3=i J « 

tions will be denoted by S and its elements by a, b, c . There is a natural semi­

group structure in S with multiplication defined by concatenation 

<4) ba=(Vm)---(Tl8l)(tkak)---(t iai) 

where b= (Tm3m)- • «(TJ|3J) . The identity in S is the empty sequence (3). 
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There is a natural action of R+ on S 

(5) ta= ((t tk) ak). . .((t tx) ax) 

(expansion). We identify a= (la) . 

The semigroup S can be extended to a group G called control group 
(see LOBRY [7]). The elements of G are formal sequences of the form (3) 
with t. € R and multiplication defined by (4) , where we identify (t^a)(t a) = 
(tj+ t )a and (Oa) - e . The element ta is defined by (5) for t> 0 and by 
ta= ((t t j ) ^ ) . . .((t tk)ak) for t < 0 . 

4. - INPUT-OUTPUT SYSTEMS. 
r r Assume that R is our output space. Any mapping p : S • R will 

be called an input-output map. By an input-output system we shall mean the triple 
(S, p, R1") . To have existence of realizations we shall impose two basic assump­
tions on the input-output map p (they have parallel versions if p is defined 
on the group G) . 

Denote b = (b., . . . , b ) , b. 6 S (b. € G) , 1 , a = (a,, . . . , a ) a. € S 
— 1 m l ' I — 1 q I (a. € G) , q^ 1 , t = (t., . . . , t ) , t. € R, (t. € R) and define the functions : l — 1 q i + vi , b b 

ijf- : RH • R RH > R ) by t~ = (t , where 
a. + a a a. 

{1 ( t )=p(b i ( tqaq) . . . ( t 1a1 ) ) . 

It may be useful to imagine (t a ). . .(t.a.) as a basic control and b. , ° q q 1 1 i 
i = 1, . . . , m , as measure experiments . 

Let k = Z, 3, . . . , oo, UJ . The regularity assumption on p takes the form 
b k (A.l) The functions belong to the class C for any a, b, 1, q^ 1 . 

In the case of k = uu and p defined on the semigroup S we shall 
also need a stronger version of (A.l). 

(A.l)' The functions have real analytic extensions onto R^ for any a,b, m^ 

l ,q^ 1 . 
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Define 
rank p = sup rankDty— (t_) 

a, b,t_ -

where D\|f denotes the differential of . We shall also assume that 

(A. 2) rank p < oo . 

In the nonanalytical case the following additional assumption will be used 

(A.3) V a € Q 3 s € Q Va,b€S vt>0 p(b(t 0 ) (t a) a) = p(ba)= p(b(ta) (t |3)a) . 

5. - REALIZATIONS. 

Now we shall precise what we mean by realizations of the input-output 
r k 

system (S, p, R ) . The quadruple £ = (X,f, h, x ) will be called a C realiza­
tion of the input-output system (S,p,Rr), k = 2 , 3 , . . . , o o , U ) , if 

(i) X is a C manifold (Hausdorff, without boundary)and x^C X , 

(ii) f : Xx Q » TX is a function such that the vector fields f(. ,a) are 
k f complete and generate C flows $, x , 

(ta) 
r k 

(iii) h : X • R is a function of the class C , 
(iv) the input-output map p is equal to p i . e . 

p(a) = h(*fa(xo)), a€S . 

The realization is called reachable (weakly reachable) if Vx€X 3 a £ S (a€G) 
f f f f $ (x )=x (for a = (t. a, )• . . (t. a j € G we define $ = $, ,o. . .o $, N . a o' k k 1 r a t ^ 0 ^ (^^J 

It is called observable if Vxlfx_€X, x . /x0 3bgS h(ff (x.))/h($f (x j ) . A rea- 1 Z 1 2 b l b Z 
chable and observable realization is called minimal. Weakly reachable and obser­

vable realization is called C^-minimal (minimal in the class C^) . The realiza­

tion is called s^mmetru: if Vct€Q ap€Q YxCX f (x, a) = -f (x, 3) . 
k k Two C realizations E and £' are said to be C -diffeomorphic 

if there is a C diffeomorphism X : X — X ' which carries E to E' i . e . 

(Dxf) o X_1= f , ho X_1= h' , X(xQ)= . 
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6. - THE MAIN RESULT . 

The following theorem gives general conditions for existence and unique­
ness of realizations of the system (S, p, Rr) . 

Theorem 1. - Let k = 2 , 3 , . . . , c o , 0 ) . The input-output system (S, p, Rr) has a 
k _ r C realization if and only if the map p can be extended to a map p : G • R 

which satisfies (A.l) and (A.2). 
k uu Any two C , k= 2, . . .,oo , minimal (C -minimal) realizations of 

(S, p, Rr) are (C^) diffeomorphic . 
The existence criterion of the above theorem is somewhat implicit. Ho­

wever the criterion can be transformed to an explicit form for two important 
classes of realizations. 

Theorem 2 . - a) k = 2, . . . , oo . Any input-output system, which satisfies (A.l), 
(A. 2) and (A. 3) has a minimal, symmetric, C realization T> such that 
dim X = rank p . 

b) k = u) . Any input-output system which satisfies (A.l)' and (A. 2) 
has a C^-minimal realization E such that dim X = rank p . 

Theorems 1, 2 are reformulations of the results of [5] (extended version). 
Namely, the existence part of Theorem 1 is contained in Theorem 4 of [5] and the 
uniqueness part of Theorem 1 in [5] . The full proofs are contained in [5]. Below 
we shall outline the proof of the existence part of Theorem 1. 

7. - NECESSITY. 

If there exists a realization £ , then the extension p : G * Rr can be 

defined by 
p(a) - M$*(x )) , a€ G . 

We define the following maps • : Rq • X , : X • Rrm 

* (t)= , , >(x ) 

^ ( x ) = (h(«* (x)) h(«* (x))). 
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We have that - t~ o ^ , thus it is easy to see that (A.l) and (A. 2) are satis-a a_ 
fied and rank^ dim X . 

8 . - CONSTRUCTION OF A REALIZATION (OUTLINE). 

For a given map p : G • R we introduce an equivalence relation 
in G 

a~ b » Vc p(ca) = p(cb) . 

We define 
X - G/~ 

and [a] denotes the equivalence class of a . Define the maps X —-» X , 
a€G , and h : X > Rr by 

i (Cb])=Cab], h([b])= p(b) 
a 

and let x = Le] . o 
The topology in X is defined as the strongest topology such that the maps 
t : • X are continuous for all a = (a1, . . . , a ) , q^ 1 , where 
a — 1 q 

• (t) = $, \ , ,(x ) . (t a ) - . . ( t i a / o' 

The C differential structure on X is introduced by defining the class of real 
valued functions of the class C on X : 

cp€ Ck(X, R) cp o # € Ck(Rq, R) Va . 

Using (A.l) and (A. 2) it can be proved that X is C , finite dimensional mani-
fold and $ ,h are functions of the class C . The vector fields f( . ,a) are 

a 
defined as infinitesimal vector fields of the flows % x . 

(ta) 
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