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INVERSES FOR NONLINEAR CONTROL SYSTEMS 

by 

R.M. HIRSCHORN 

ABSTRACT . - A nonlinear control system is invertible if the associated input -
m 

output map is injective for nonlinear systems of the form x = A(x) + £ u. B.(x) 
y = C(x) which evolve on a real analytic manifold we obtain sufficient conditions 
for invertibility and construct systems which act as inverse systems. In the case 
of single-input systems our conditions are necessary and sufficient for inverti
bility. For invertible systems we construct nonlinear systems which act as left-
inverses for the original systems. 

1.- INTRODUCTION. Consider the system 
m 

x(t) = A(x(t)) + S B.(x(t)) ; x ( 0 ) - x € M 
i^l 1 

y(t) = C(x(t)) 

where M is a connected real analytic manifold, A, B. € V(M) , the real vector 
space of real analytic vector fields on M , C : M -» lRm is a real analytic map
ping, and u = (u ,̂ . . . , um) is a real analytic control function mapping [0, co ) 
into IR . Let x(t,u,XQ) denote the solution of the above differential equation 
and set y(t,u,x ) = C(x(t,u,x )) . The system (*) is said to be invertible at x 
if distinct controls u ^ u result in distinct outputs y (. , u, Xq) / y (. , u, x ) and 
strongly invertible if there exists an open dense submanifold M of M such 

a—J. o that for all x € M , the system is invertible at x . There is a considerable o o o 
amount of literal dealing with invertibility for linear control system (cf.[ l] ,[2], 
[3],[4]) and some partial results are known for more general classes of sys
tems (cf. [5] , [6] , [7] ). The purpose of this paper is to indicate a way in which a 
standard linear system arguement (see [3]) can be generalized to study the inver
tibility of certain nonlinear systems. 
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2. • N O N L I N E A R I N V E R T I B I L E Y A N D INVERSE S Y S T E M S . 

A standard linear test for invertibility involves creating a sequence of 
systems by differentiating the output map (see [3]) . Following this approach we let 
y(t) denote the output y(t,u,XQ) for the system (*). Differentiating y with 
respect to t we find that 

m m 
y[ '(t) = dC M(A(x(t))+ S u.(t) B.(x(t)) ) = AC(x)+ Z u. B. C 

X(tj i=l 1 1 i=l 1 1 
where VX€V(M) and f: M-> TRZ , X F(x) = df X(x) (cf.[8]). Thus we can write 
y^ ( t ) = AC(x(t))+D(x(t))u where D(x) = [B C(X) B2C(x) . . . B C(x)] is a 
mxm matrix for each x€ M . Let T = max [rank D(x)} . We assume that the 

x€M 
components of C have been reordered so that the submatrix ^^(x) °^ -^(x) 
consisting of the first 1̂  rows of D(x) has rank 1̂  for some x€ M . Set 

= {x€ M | rank D (x) = 1̂ } . It follows from the real analyticity of the entires of 
D(x) that Mj is an open dense submanifold of M . Now let 

Eo(x) 

\*T1 

Fo(x) 
I 

O 

(x(t)) ) = A) 

be an mxm elementary matrix whose entires are real analytic functions on 
and with the property that 

EQ(x) D(x) = 
Dx o 

o 

This results in a new system 

System (1) : x = A(x) + 
m 

i=l 
u B (x) ; x€ Ml 

Z = C (x) + D (x) u 

where C(x) = EQ(X) AC(X) , D^x) = EQ(x) D(X) , and by construction D^x) has 

rank on . 
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Définition. - We call 1̂  the invertibility index of system (1). The above pro-
rppdnrp r*nn Vie rpnppfprl to nrnHnrp a fipmipnrp of nnnlinpar svstpmfi Snnnnsp that 

x = A(x) + 
m 

i=l 
u. B.(x) ; x€ M, 

1 1 k 

Z = C (x) + D (x)u 

is the k-th system and has invertibility index 1^ , and state space , an open 

dense submanifold of M . 

zk = 

zk 

zk 
x 

•Ck(x) 

,Ck(x) 

+ 

D (x) 

o 

u 

and differentiating Z with respect to t we have 

(t) = ACk(x)4 
m 

i=l 
u i ¥ k ( x ) a Ê k ( x ) + D k 2 ( x ) u 

where D, is the matrix with columns B. C . Set D, = k 1 k k 
" V and let 

L K2 J 

r = max {rank D (x)} . For simplicity we will assume that components of C(x) 

have been reordered so that the submatrix D of consisting of the first 

P rows of Dn has rank F _ for some 1 x € M, . As above we set 

M, , = fx€M, rank D1 (x) = P } and note that M1 is an open dense sub ma -k+1 k k-̂  k+1 k+1 
nifold of M and hence of M . Finally, let 

Ek(x) = 
X+ix rk+i 

Ffc(x) 

O 

Wrk+1)x(m-rk+1) 

be an elementary matrix whose entires are real analytic functions on M, _ and 
k+1 

such that 

Ek(x) Dk(x) = 

•Dk (x)" 
Kl 

O . 
for all x€ M1 . 

k+1 
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This lets us define 

System (k+1) x = A(x) + S u. B. (x) ; x € M l l k+1 i=l 

zk+i= c k , i W + D k + i ( x ) u 

with invertibility index 1 ^ , Dk+1 = , an Ck+1 = ER 
ck 

A ek 

Given system (*) we have constructed a sequence of systems, a sequence 
of indices O ^ r ^ r ^ . . . and a sequence of matrix valued functions E (x) , 1 2 o 
E^(x) , . . . . We let a denote the least positive integer k such that T^ = m 
or oc — oo if r. < m for all k> 0 and call a the relative order of the sys-k 
tern (*). It is easy to verify that a is well defined (independent of the choice 
of EQ(X), E^(x), . . .) and we will show that a is related to the highest order 
derivative of y used to reconstruct the input from a knowledge of y(t,u,XQ) . 
The following theorems relate the above constructions to the invertibility of the 
system (*) : 

Theorem 1. - Jf_ oc*̂  co then the system (a) constructed above is invertible at 
XQ for all Xq€ . In particular the system (oc) is strongly invertible. 

Theorem 2 . - Consider the system (#) with relative order oc • Then if a = 1 or 
if a> 1 and for i € f 1, 2, . . . , m] 

B. Aj E(.) = 0 on M 
I k 

for 0 < k ^ a - 2 and 0 < j < a - 2 - k the system (») is invertible at x Vx € M 
o o a 

and in particular is strongly invertible. 

Corollary 1. - For single-input systems (m= 1) the condition ot< oo is necessa
ry and sufficient for strong invertibility. 

Corollary 2 . - Suppose that the system (*) satisfies the hypotheses of theorem 2 . 
Then there exists a matrix function H (x) defined on M such that Vx £ M , 

a 1 a o a 

136 



NONLINEAR INVERSES 

Zfl(t) = Ha(x(t)) 

y(1)(t) 

y(2)(t) 

y(a)(t) 

= H (x(t)) Y (t) a a 

and the system 

(**) 
x = A(x) + B(x) Ù ; x € M 

a 
y - C(x) + D(x) ù 

where 

A = A - E B B . . . B ] D"1 C 
1 2 m a a 

B = [ B B . . . B ] D"1 Ha 
1 2 m a 

C = -D'1 C and D = D"1 H 
a a a a 

acts as a left-inverse for the system (*). In particular, if u(t) = (y (t) , . . . , 

y^ ( t ) ) and x(0) = Xq then y(. , u, x ) = u(t) . 

Corollary 3 . - For multivariable time-invariant linear systems a < oo is a 

necessary and sufficient condition for strong invertibility and M = M = IRn . 

We remark that the left-inverse system described in Corollary 2 pro

vides a "practical" way to recover u(t) given y(t,u,x ) . 

Proof (Theorem l) : Since P = m and D (x) is by construction a mxm  
a a l 

matrix valued function on M of rank T , we know D exists on M , 
a a a a 

and the inverse system (*#) from Corollary 2 is well defined if we replace 
H (x) by an mxm identity matrix. Now we set u(t) = Z (t,u,x ) , and this 

a a o 
results in the evolution of the state vector x(t,u, x ) . A straightforward compu

tation shows that x(t) = x(t, u, x ) satisfies (**) when u= Z , and thus 
-1 ° 1 a y(t) = c(x(t))+D(x(t))u= -D (x) C (x)+D (x) u . Since u= Z = C (x)+ D (x) u , 
a a a a a a 

we have y( . ,Z , x )=u( . ) . Since u can be recovered from y( . ,u ,x ) the a o o 
system (a) is invertible at x 

o 
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Proof (Theorem 2) : The proof used to establish theorem can be repeated here if 
we can show that Z (t) = H (x(t)) Y (t) for some mx ma matrix valued function or a a 
H (x) on M . By assumption a cc 

B. E (. ) = B. A E (1) = . . . - B. A a ~ 2 E (i) = 0 
1 O 1 O 1 o 

*** B . E ^ . ) = . . . = B. A a ' 3 El(.)= 0 

B. E , ( . ) = 0 I a-2 

and by construction 

Z^t) = EQ(x(t)) y ( 1 ) ( t) = 

E y (1) (t) 

E^ (x(t)) y ( 1 ) ( t) 

where E"̂  is the submatrix of E (x) consisting of the first T rows and o o 1 2 
E (x) is the matrix formed from the last m-I^ rows. Following the construc
tion of the systems (l), (2), . . . , (a) , we see that 

Z 2 = 

1 
E l 

E 12 'x 

E o y (21=) 

(x(t)) ) (1) (1) . Now 

•j- E 2(x(t)) y ( 1 ) = E Z(x) y ( 2 ) + ( A E 2 (x) + £ u. B. E 2 (x)} dt o o o . . I I O i=l 
2 , x (2) A 2 , x (1) = E x) yv ' + A E (x) yv ' o 7 o 

from (*##) , and thus 

V 

E12 

E : (x) 

E 1 y ( 1 ) 

O 

E 2(x) y ( 2 ) +AE 2 (x ) y ( i ; 

= H2(x) 

y(1) 

(2) 
y 

One can continue this proceedure to generate H (x) . To complete the proof one 
a 

now repeats the steps outlined in the proof of theorem 1 . 
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Proof (Corollary 1) : See reference [5] . 

Proof (Corollary 2) : This Corollary is proved in the course of proving Theorem 2. 

Proof (Corollary 3) : See [3] . 
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