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THE FORMAL COMPLETION OF THE SECOND CHOW GROUP,

A K-THEORETIC APPROACH

by

Jan Stienstra

1. Introduction
Let X be a smooth projective surface over a perfect field k of character-
istic p> 0. Incase p= 0 it will be assumed that k is algebraic over @

(because there are problems if does not vanish),

k/@
Recall that the n-th Chow group of X, denoted CHn(X), is the group of

codimension n cycles on X modulo those which are rationally equivalent to

zero., Bloch's formula CHn(X) = Hn(X,f](n allows us to study Chow groups

)

using algebraic K-theory. Here kn is the sheaf of abelian groups on X

, X
which is associated to the pre-sheaf (open U) Kn(l"(U,o'X)) [16].

We will discuss the structure of the formal completion of the second Chow

N\
group (at the origin). This formal completion is a covariant functor CH; from

the category of augmented local artinian k-algebras to the category of abelian

groups. It is defined by

(1.1) C{;—I}Z((A) = ker[HZ(X XkSpec ALK )—q‘- HZ(X,*.Z’X)] H

2, X X_ISSpec A
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J. STIENSTRA

the map q in (1.1) is induced by the augmentation map A — k. (See also [4],
here CIJ\Z is called Fz)
whe HX e 0"
N2
We want to unravel the structure of CHX by studying a morphism of
functors
N2

2 A
(1.2) H (X,}‘()®0TCK2 - CHy

(see §3 below). Suitable conditions on X imply the injectivity of this map and
the pro-representability of its cokernel (functor). (See [17] for pro-represent-
ability of functors.) It seems likely that this cokernel is naturally isomorphic to
the formal group at the origin of the Albanese variety AlbX.

The present text describes the main results of the author's thesis [19].
Proofs are to be found in [19]. An appendix is added to show that there are no
non-trivial morphisms from HZ(X,JV') ®D T(AZKZ into a pro-representable functor.
This result is not in [19]. It shows that, if (1.2) is injective and has a pro-
representable cokernel, HZ(X,W) ®p TClJ\K2 is the smallest subgroup (functor) of
CAH}2< for which the corresponding quotient is pro-representable. In another paper
I want to relate the cokernel of (1.2) to the formal group at the origin of Alb X.

I would like to thank Spencer Bloch for explaining the problem to me and the
stimulating conversations we had. In particular, it was his idea to study the
kernel and cokernel of (1.2). I also thank Fred Flowers for the careful typing of
the manuscript.

§2. Algebraic preliminaries

(2.0) The schemes X x, Spec A and X have the same underlying

topological space. The map K - K , x between sheaves on this
t

2,X kapec A

space splits. We denote its kernel by K So we have

2,XQA/X

(2.0.1) &;(A) = HZ(X’*Z,X@A/X)
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COMPLETION OF THE CHOW GROUP

Since 'K is the sheaf associated to the presheaf

2,XQA/X

(open U) v kex[K,(I(U, 0, )@ A) ~ K,(I(U,04))]

n2
it seems natural to start our study of CHX with a description of
ker[KZ(R @k A) — KZ(R)] for a k-algebra R and an augmented local artinian
k-algebra A.
(2.1) For an ideal I in a ring S one can define relative K-groups Kn(S,I)
such that there is a long exact sequence
-rr
3
(2.1.1) —»K3(s)———- K3(S/I) -
"2
~ K, (8, 1) > K,(s) —> KZ(S/I) -

- K1(S,I)—>K1(S)——1-> K (/1) = ---

(see [11],[13]).
If I is contained in the Jacobson radical of S, one has the following results.
(2.1.2) the maps m and m, are surjective
. *
(2.1.3) Kl(S,I) =1+1 = ker[S —(S/I)].
We can reformulate this as follows
(2.1.32a) The group Ki(S,I) is the abelian group, which has a presentation
with generators <a>, one for every ael, and defining relations

<a>+<b> = <a+b - ab> for a,b e I.

Of course <a> corresponds to 1-ae 1+1.

(2.1.4) The group KZ(S,I) is the abelian group, which has a presentation
with generators <a,b>, one for every (a,b) e RXIWIX R and
defining relations
(D1) <a,b> = -<b,a> for ael
(D2) <a,b> + <a,c> = <a,b+c - abc> for ael or b,ce I

(D3) <a,bc> = <ab,c> + <ac,b> for ael.
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J. STIENSTRA

These facts are proven in [3],[14],[11]. It should be noticed that the notation

<a,b> in (2.1.4) corresponds to <-a,b> in other articles.

The above results hold in particular for S = R®k A and I= R®k m .,

where m, is the maximal ideal of A. In this case the homomorphism S — S/I

(2.2) Assume for a moment char k= 0. Put S= R®kA and
1 1 n

I= R®5 m, . Define QS,I = ker[QS/Z - QR/Z]' There is an isomorphism
1
(2.2.1) K, (s,1) = QS’I/dI
. 1 n n-1
defined by <a,b> Z Fa b db mod dI (see [4],[14]). Assume now

n>1
that R has no zero divisors and that k is algebraic over @. Let k' be the

algebraic closure of k in R. Then one has an exact sequence

1®d 1

(2.2.2) K@ m, R®EQA’TA —_ [Qé’l/dl] S [Q;/}E/dR] Qm, — 0.

One can analyze the functor é\H}‘,Z( using this exact sequence, sheafified with
respect to R (see§3). Essentially this is the method Bloch uses in [4], though
his groups are slightly different and his arrows go the opposite way.

For p >0 there is no isomorphism (2.2.1) and the analysis of
KZ(R®kA’ R®k Ln_A) has to be done with K-theoretical means. After all it will
appear—that thi—s_ method works in characteristic zero as well as for positive
characteristics.

(2.3) Following [6] we define
(2.3.1) CK (A) = ker[K (A[x]) - K (a)],

q q q
the functor of formal curves on Kq evaluated at A.

n+l
(2.3.2) Can(R) = ker[Kq(R[t]/(t )) — Kq(R)] s for n> 1.

Varying n we get a projective system C, Kq(R), with structure maps induced by

the canonical projections R[t]/(tn+1) - R[t]/¢™). We define
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COMPLETION OF THE CHOW GROUP

(2.3.3) CKq(R) = l.ianKq(R),

the functor of curves on Kq evaluated at R .

The latter group carries a topology given by the filtration with the subgroups
ker[CK (R) - C _K (R)]. The standard reference for C_K and CK is [5]
q n q n q q

a
(see also [19]). Note however that in [5], lim Can(R) is denoted as CKq(R)
instead of CKq(R). The above notations are taken from [6].

According to (2.1.3.a) and (2.1.4) we have generators and relations for the
groups CnK1(R) and CnKZ(R)' These sets of generators are in fact too large.
It suffices to take
(2.3.4) for CnKi(R) the elements <at' > with ae¢ R, 1< m<n.

2.3.5 for C K_(R) the elements <atm,b> with a,be R, 1t<m<n
n 2

m-1 .
and the elements <at ,t> with ae R, 1 <m < n+l,

Let us write <atm>, <atm,b> and <atm-1,t> also for the elements of CKi(R)
and CKZ(R) respectively whose image in every CnK1 (R) and CnKZ(R) is
<at™> , <atm,b> and <ath1,t> respectively, The sets of these elements
generate CKi(R) and CKZ(R) topologically. (Incidentally, the relation with the
generators used in [5] is given by <at™> =1 -at™, <at™, b>= {1 -abt™, b}
provided beR* and <at™ !l t> = {1-at™ ¢} (cf[14]).

It is possible to get a similar result for eKi(A) and aKZ(A). Using the
fact that Kq(g[x]) = Kq(_li) one shows easily that eKq(A) is the kernel of the
split surjection Kq(A[x], IBA[X]) - Kq(A’ IBA). Thus one obtains a presentation

N A
for CKi(A) and CKZ(A). As before it suffices to take as generators
(2.3.6) for eKl(A) the elements <ax > with a e m m>1

A
(2.3.7) for CK,(A) the elements <ax,b> with a,be A, a or be m,,

-1
m=>1 and the elements <ax ,»X> with aem

A,m_>_1.
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J. STIENSTRA

A A
(2.4) Inside CKi(R), CKZ(R), CKl(A) and CKZ(A) one distinguishes the

subgroups of p-typical (formal) curves [5],[6]; in fact these subgroups are direct

summands. We denote these summands by W(R), TCKZ(R), VAV(A) and TaKZ(A)
respectively. The projection operator onto the typical parts is in all four cases
denoted by E. The group W(R) is in fact the group of p-Witt vectors of R and
\I/\V(A) is the group of "formal" p-Witt vectors of A, The letter E refers to the

relation with the Artin-Hasse exponential; indeed in CKl(R) one has
p(n)
E<t> = |] (1-1t) " where B is the Mobius function (see [5]).
n e]N\p zzZ
-1 m

The operator E Kkills all elements <atm>, <atm,b>, <at™ ,t>, <ax = >,
m m-1 . .
<ax ,b> and <ax ,x> for which m 1is not a power of p [19]. Thus one

finds the following sets of (topological) generators

r
(2.4.1) for W(R) the elements E<atP > with aeR, r>0
r r—'l
2.4.2 for TCK_(R) the elements E<atP ,b> and E<atP ,t> with
2

a,be R, r>0
Ir

(2.4.3) for W(A) the elements E<axP > with ae m,, r20
r
A
(2.4.4) for TCKZ(A) the elements E<ax® ,b> with a,be A,
r
-1
a or be m r 2 0 and the elements E<a.xp , X> with

Ar

a e mA, r > 0.

(Convention: for p =0 we only take r = 0 and pr =1.)

In case p = 0, one has the following isomorphisms

(2.4.5) R —=—> W(R) a b E<at>
1 ~
> >
QR/Z = TCKZ(R) adb E<at,b
m - \,A\I(A) a +» E<ax>
ot —~5 1K, (A) adb = E<ax,b>
A, m 2
ALY
(Recall: ot = ker[o! ~ @' 1, by definition.)
YA, mp A7z k/2z"
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COMPLETION OF THE CHOW GROUP

(2.5) The groups W(R), TCKZ(R), VAV(A) and TéKZ(A) are modules over
the ring W(k) of p-Witt vectors over k. Multiplication with the Witt vector
E<at>, in particular, is induced by the substitution t + at and x + ax
respectively [6].

These groups are also equipped with endomorphisms V (Verschiebung)

and F (Frobenius). Inthe case p >0 the map V comes from the substitutions

P P

t »t° and x > x respectively. The map F is the corresponding transfer
map, explicitly given by

(2.5.1) FE<atpr> = E<aptpr>

FE<atpr,b> = E<apbp_1tpr, b> and

r 4 pr—i_
FE<a.1:p ,t> = E<at

»t>
and similar formulas with x instead of t. In the case p=0 we take V =F =
identity map.

In fact, W(R), TCKZ(R), \ll\V(A) and TéKZ(A) are left modules over the
Dieudonné ring P . Recall that ® is the non-commutative polynomial ring
W(k)[F, V] with commutation rules FV = VF = p if p > 0 (respectively
FV=VF =1 ifp=0), Fa=a'F and oV = Va’, where o isin W(k) and o’
is its image under the Frobenius automorphism of W(_IE)

Every left )9 -module M is in a natural way also a right K -module, namely
with wa = a:w, wF = Vo and wV = Fw for ae W(k), we M. We will use this
right action for W(R) and TCKZ(R).

(2.6) From the pairings which Bloch has constructed in [6] one obtains maps

(2.6.1) ®: W(R) @ TéKZ(A) ~ K,(R®, A, R®, _m,)

(2.6.2) ¢: TCK,(R) @ W) - KZ(R®EA. R®E m,)

One has explicitly
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J. STIENSTRA

(2.6.3) O(E<at>QE<bx,c>) = E LII:) <anbncn—1,c>
neIN\ pZ
and, in case p > 0,
r T
s(E<at>@E<bxP “1,x>) = > i‘-(:—)<bnanp 1.
nelN\p ZZ

Similar formulas hold for .

In case p =0, ® and ¢ correspond via the isomorphisms in (2.2.1) and

1

(2.4.5) to the obvious maps from R®5 QA’E?.A

1 ;
and QR/Z®k m,, respectively,

1
© e ar@, -E“—A/ UR®, m,).

In any case, the images of ® and i together generate the group

KZ(R®_1§A’ R®_IS m_A). We get therefore a surjection
— ~
(2.6.4) [ TCKZ(R)®D W(A) — coker &®.

(2.7) Assume p = 0. One can check without difficulty that the iso-

morphisms in (2.2.1) and (2.4.5) induce an isomorphism
[Q1 /dR]®. m, —» coker &
R/k k —A :

Inthis case the kernel of —4—1 corresponds exactly to dRQ@

m .
k™A

(2.8) Assume now p> 0. We define
m-1

image of W(R) in K1(R[t]/(tp 1)) for m=1

(2.8.1) w_(R)

m-tiy
>
TCKZ,m(R) )) for m>2

image of TCK,(R) in KZ(R[t]/(tp

1

TCK, (R) = QR/E

The group Wm(R) is the usual one, i.e. W(R)/VmW(R). The group TCK2 m(R)
1
is the same as TC__K_(R) of [5]. It is also the same as the W_Q of the
m- 2 m Spec R

De Rham-Witt complex [9]. Only in characteristic 2 is it necessary to define

TCK2 1(R) separately; the other definition (that is, as the image of TCKZ(R) in

KZ(R[t]/(tZ))) would give wrong results in this case. In characteristic ¥ 2,
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COMPLETION OF THE CHOW GROUP

however, there is no difference (because of Van der Kallen's theorem [10]).

1
There is in any characteristic a surjection from TCKZ(R) onto QR/k .
r r - r
-1
We are going to use the notations E<atP >, E<atP ,b> and E<atP ,t>

also for the images of the so-called elements of W(R) and TCKZ(R) in Wm(R)

and TCK2 m(R), for every m. In particular,
t

1
(R) = Q is in fact the l-form adb.

(2.8.2) the element E<at,b> of TCK R/k

2,1
The endomorphisms V and F of W(R) and TCKZ(R) induce maps for

every m > 1

(2.8.3) Vv Wm(R) - Wm+1(R) , F: Wm(R) - Wm(R)

(R) , F:TCKZ’m+1(R)~> TCKZ’m(R).

: K -
V:TC 2,m<R) '1“CK2’m+1

In [5] 2 homomorphism (of groups)

(2.8.4) d: Wm(R) - TCKZ,m(R)
is defined. It is given explicitly by
r r 1
(2.8.5) dE<atP > = E<atP 77, ¢>
1
It is the same as the map W_(R) - W _Q of the De Rham-Witt complex.
m m Spec R

1
For m =1 one has Wl(R) =R and TCK, 1(R) =Q and d is the ordinary

R/k

differentiation d: R — Q;/E ,

For every m, Wm(R) and TCK2 m(R) are W(k)-modules and the map d
2

(up to sign).

is linear, One has furthermore the basic relation
(2.8.6) Fdv = d.
Next recall that the group _VY(R) of unipotent Witt covectors is defined as
the limit of the inductive system
W, (R) _V_,.WZ(R)_V. e Y W_(R) V. ...

(see [8],[15]). We define the map

(2.8.7) o ¢ W(R) —- TCKZ’m(R)
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J. STIENSTRA

to be the limit of the maps

m-xr

-dv :W_(R) —~ TCK, (R) for r<m

2,m

r-m
-F d: W _(R) TCKZ,m(R) for r>m

One can identify the elements of W(R) with sequences

a= (-, a_n,a_n+_1,...,a-l,a0) with a_ e R for all n and a_ = 0 forn >> 0.

The map 8m is then given by the formula

m-1 m- 2

-1 -1
(2.8.8) 8 _a =E<t,a0tp > +E<t,a_1tp >4 ...
p-1

e+ E<t,a >+ E<a t,a >+ ...
-m+1 -m -m
n-m+1 1

...+E<ap TTt,a >+ ...
-n -n

1
h H - = i i -
Note that 8, \iV»(R) TCKZ, 1(R) QR/E is in fact the well-known map

-1 p -1
ardag+ a[fl da_; +...+ta; da__+... (cf [15]).

h j 1 -
The projection TCK (R) - TCK m(R) maps 8m+1 W(R) onto

2, m+1 2,

BmW(R). So it induces a map

[TCK, (B2 W(R)] ~ [TCK, (R)/a W(R)I.
We define
(2.8.9) TCKZ(R)/B YV’(R) = lim [TCKZ’m(R)/Bm W(R)]
and
(2.9.10) BY(R) = ker[TCKZ(R) - TCKZ(R)/BYV’(R)] .

The group 3W(R) is in fact a K -submodule of TCKZ(R). It is generated

m m
-1 -
by the elements E<t,atp > and E<aP lt,a.> with a € R and m > 0. One

has, according to (2.6.3) and its analogue for , the following relations

m m
(2.8.11) WE<t at’ '>®E<bx>) = ®(E<at>®E<b,xb" 1>)
m

m
P -lt,a>®E<bx>) = ®(E<at>@E<bx’ '1,x>)

WE<a
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COMPLETION OF THE CHOW GROUP

So the map  of (2.6.4) induces a surjection

(2.8.12) ﬁ:[TCKZ(R)/Bw(R)]®b W(a) -~ coker @ .

(2.9) Theorem. Assume p> 0. Let R be a regular local k-algebra of

(Krull) dimension > 1, Let A be an augmented local artinian k-algebra. Then

the homomorphism { of (2.8.12) is an isomorphism and the homomorphism & of

(2.7.1) is injective. So one has an exact sequence

0 W(R)®DT6KZ(A) ~ K,(R®, A, R®, m,) ~

~ [TCK, (R)/PW(R)I® W(a) ~ o ]

The proof of this theorem is based on a lengthy analysis with generators and

relations far the various groups. It is given in [19].
Note that if one uses the isomorphisms (2.2.1) and (2.4.5) to translate the

exact sequence (2.2.2) one gets in characteristic 0 almost the same result as (2.9)

would give for p = 0.

§3. Applications to geometry

Recall the hypotheses: X 1is a smooth projective surface over a per-
fect field k of characteristic p> 0. 1In case p = 0 it is assumed that k is

algebraic over @.

We will discuss the characteristic zero case first, because it is technically

easier and can be formulated in the more common terms of differentials, It is

also treated in [4].

(3.1) Assume p=0. Then we get from (2.2.2) an exact sequence

1
3.1.1 0 k! d - -
(3.1.1) S @ dm, OB, = K, xgax

—»[Q}I(/E/dO'X] ®5mA - 0
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J. STIENSTRA

for every augmented local artinian k-algebra A, depending functorially upon this
A; here k'is the algebraic closure of k in the function field E(X) Note that the

sheaf k'®k m, is constant. Taking cohomology groups we get an exact

sequence:

(3.1.2) -+ = H (x,0} /40,)®, m, L, wix,o W8, A

m

k
X /K m,

~ 2
~ CH (A) — H (X,Qx/k/dO )®k_rr_1A - 0 .

Since X 1is smooth, the Hodge-De Rham spectral sequence degenerates at

E1 [7]. From this it follows that

o (x, ! /ao) = el ) e Hn+1(X,O‘X)

X/ X /k

1
for all n. In particular, H (X Q /dGX) = HZ(X,Q It can be shown that

X/K X/k ).
the image of the map & of (3.1.2) is HZ(X, OX)®k dm, . Thus we find the exact

sequence

(3.1.3) o—»HZ(X,OX)®E[QIA,QA/dmA] - é\Hf((A) -

- Hi )@ m, - O

It depends functorially on A, The functor

2 1
(3.1.4) A v+ H (X,QX/E)®EQA

2
is the formal group over k with tangent space H (X, 8

X/k)" So it has the same

tangent space as the formal group at the origin of Alb X, which we denote

N\ P
Ale . Therefore it is isomorphic to Ale . So we have:

(3.2) Theorem. Assume p = 0. Then there is a short exact sequence

G.2) 0= HRO®, ), L, /am,] > S ~ Qb)) - o

which is functorial in A. Z

From now on we assume p > 0.

(3.3) We introduce some notations. Given a functor G from (commutative

rings with 1) to (abelian groups) denote by sheaf(G) the sheaf on X which is
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COMPLETION OF THE CHOW GROUP

associated to the pre-sheaf (open U) + G(I'(U, OX)). We now define:

¥ ® TCK, (a) = sheaf(W(-)®°T€:K2(A))
[3CK,/0 1@, W(A) = sheaf((TCK,(-)/2W(-)I®  W(a))
W, = sheaf(Wm(-))

:)C‘kz’m/amw = sheaf(TCK (=)/ 8., W(-)

2,m

Following Serre [18] we define

(3.3.1) H (X,W) = Llm H'(X,%_)
3. s = 1m (AP

and similarly

n . n
(3.3.2) H (X,3C%k,/0 W) = gr%nH (X,chz,m/amz{) .

The groups Hn(X,W) and Hn(X,JC"JLZ/B‘!!') are in a natural way N-modules.

One can show that there are natural isomorphisms

(3.3.3) » HA(X, W g T&KZ(A)) o~ HZ(X,W)®nT€3K2(A)

HZ(X,[JG:)(Z/ag[]®° W(a) = HA(X,9CK,/0¥) @ W(A) .

2
The proof of this result uses the fact that H is right exact (dim X = 2) and does
1
not work for H .
(3.4) From §2 we conclude that there is an exact sequence of sheaves
on X:

(3.4.1) 0 —»W@b T&KZ(A) - % - [UCXZ/BE_V]®‘3\?V(A) - 0

2, XQA/X
for every augmented local artinian k-algebra A, depending functorially on A.
Taking cohomology and using the isomorphisms in (3.3.3) we get the following
exact sequence of covariant functors from the category of augmented local
artinian k-algebras to the category of abelian groups:

(3.4.2) »Hl(X,[JCfKL/B)_!]®D{I\V) -

2 A ~ 2 2
- H (X,W)@UTCKZ»CHX - H (X,JC"kZ/a_yg)tg W - 0.
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We now are going to discuss conditions which imply that the functor
2 ~
H (X,J(’."kz/a)x)®b W is pro-representable and that the morphism
2 A D2 L
H (X,)"')®bTCK‘2 - CHX is injective.

(3.5) It can be shown that for all m,n the sequence of sheaves on X

n
\4
(3'5'1) 0 »jcxz,m/amz{ - JC'J‘Z, m+n/8m+nﬁ -
proj.

Prbegen, /o w - O
is exact. One has the corresponding exact sequences of cohomology groups

&
1 n, m 2
(3.5.2) e T H (X9C%, /0 w) ——H x,5e%, /o %)

v 2
—— H (x,:r@‘xz /8

w
m+in’ m+n—>

2
) - H (x,;ro:xz’n/an;!) -0 .
This is analogous to the situation for Witt vectors (see [18]). Because of this

analogy we follow Serre in calling Sn m 2 Bockstein operation.

2
Using the sequences (3.5.2) and the fact that H (X,jckz 1/81’5_1/> ), being a

1
X/x)

2
shows that for every m, H (X,:jQ‘}(Z m/am)_V) ) is a W(k)-module of finite length,

2
quotient of H (X, , is finite-dimensional as a vector space over k, one

2
Therefore, the projective system {H (X,:ICJ(Z m/Bm)_s: )} has the Mittag-

m2>1
Leffler property. Taking the limit of (3.5.2) for varying m and fixed n we find
that the sequence

n
2
(3.5.3) HZ(X,GGJLZ/ay_!)V_, H?‘(x,ac:k.z/ay) - H (X,JCZKZ n/an;!_ ) >0

is exact.

2
(3.6) Theorem. The functor H (X,:JGIKZ/B)_!)®°\’;V is pro-representable

if and only if the left N -module HZ(X,SC‘RZ/B{) has no V-torsion or

equivalently, if and only if all the Bockstein operations & o 2Ye zero.

Proof. This follows from the classification of smooth formal groups by

means of their covariant Dieudonné module (see [12] IV(7.12) and V(6.18)) and the

results in (3.5) @
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2
(3.7) Theorem. Assume that H (X,:}C)‘-Z/B)_/() has no V-torsion,

2
Assume furthermore that the Frobenius endomorphism of H (X, OX) (i.e., the

map induced by the p-th power map on OX) is bijective. Then the map
A N\
HZ(X,)V)®'S TCKZ - CH;Z( is injective.
For a proof of this theorem see [19].

(3.8) Remarks. Unfortunately we cannot compute the Bockstein

operations. The only surfaces for which we could verify that the Bocksteins are

1

2
zero all have H (X,QX/5

2

) = 0 (which implies H (X,ﬂekz/agy) = 0). Among
these examples are the rational surfaces and the K3-surfaces,

I expect however that for every smooth projective surface X over a per-

. ~
fect field k the covariant Dieudonne module of the formal group AlbX is
2

isomorphic to H (x,gc:kz/a {)/(V-torsion). That may give us more hold on
the situation.

It appears to be difficult to find a good condition which implies the injectivity

2 A N2
of the map H (X’")®.v TCKZ - CHX . The condition that Frobenius F should
2

act bijectively on H (X,O'X) is probably much too strong. But on the other hand,

2
if X 1is a supersingular K3-surface in the sense of [1], F is zero on H (X, )

A 2\
and the map HZ(X,yV)@D_ TCK2 - CH2

< is not injective. So some hypothesis

2
about the action of F on H (X, W) may eventually appear to be necessary.

(3.9) The hypotheses in Theorem (3.7) are so strong that they have other
2 A N2
nice consequences besides the injectivity of the map H (X,W)@D_ TCKZ nd CHX

A
and the pro-representability of the functor HZ(X,JC']\’.Z/BK)®D' w.

Define :TC'KZ'm = sheaf(TCKZ’m(-))
and HZ(X JEK) = anZ(x Jex )
’ 2 == ’ 2,m’*
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Then under the hypotheses of (3.7) one has (see [19]):

2 2
H
(x,3C 7‘2, /B ) s H (X, JC”)CZ’ o)
for every m and moreover

2 2
ker[H'(X,JCK, )~ H (X,JCK, )] = HZ(X,Q}I()

for every m., The map CHX - H (X,ﬁC“KZ) ®L3 W which now appears admits a
X 2 - /N 2
section, namely the map H (XJC’KZ)® W - CHX which always exists
IS

(cf (2.6.2)). So we find:

Under the hypotheses of Theorem (3.7) there is a split short exact

sequence of functors

2 ~ N2 2 . oA
(3.9.1) 0 —-H (X,W)®b TCK, - CHy - H (x,:}c‘kz)@bw - 0.

As examples we can at the moment only offer:

1) rational surfaces: in this case all terms of (3.9.1) are zero.

~
2) K3-surfaces whose formal Brauer group Br_ (see [2]) is isomorphic to the
i . . N2 2 A

multiplicative group Q}m : in this case CHX =~ H (X, )®‘3 TCK2

R

~
w(k) ®, TCK, .

APPENDIX
In this appendix we prove the following theorem

Theorem. Let k be a perfect field of characteristic p>0. Let M be a

right RN -module and let G be a pro-representable functor from the category of

augmented local artinian k-algebras to the category of abelian groups. Then there

A
are no non-trivial natural transformations from the functor M®QTCK7_ to G,

Proof. Let A be an augmented local artinian k-algebra. According to

A r—l
(2.4.4), TCKZ(A) is generated by the elements E<axP x>

>

with
r

r>0 and the elements E <bx" ,a> with a,be A,

a or b e m,,
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r 2 0. Using the relations (Dl1)-(D3) one reduces the set of generators to the set
T

1,x> as before and of those elements E<bxF ,a> with
r

ber_n_A,ae_r_rlA, or aek, r>0. We show that E<bxP ,a>=0 for

r
of elements E<a.xp

N
b e m, and a e k. Let N be such that L 0. There exists c e k such that
N r r D N N_1 r
a= cP . Then we have E<bxp ,a> = E<bxP ,cp >(——é) P E<cP bxP ,C>
2N 1 N r+N A
E<cP TP XP ,c> = 0., Thus we find that the group M®‘3TCKZ(A)
r
-1
is generated by the elements m®E<axp , x> and m@E<bx,a> with meM,

g
N

a,b e m, , r> 0,
We introduce the following notation: for every s >0 and £ > 1 with p'{l

let 1. € k[a, b] be the ideal generated by the monomials a"b? with

L
nps +qt > lps and we define Ay, = k[a, b]/IS e

A
Now let ¢: M®0TCK2 =+ G be a natural transformation., We want to show

A
that for every A, ¢ Kkills the generators of M®DTCK2(A). It suffices to show

r
-1
<p(m®E<axp ,x>) = 0 and ¢(m@E<bx,a>) = 0 when A:As,e for all

s and £ with p/f/l and ps_r>£. Fix s and £. Put A=A 0 and

ep° s 2 N
A' = k[u]/(u Py, The substitution a + uP , b u’ defines an injective ring
homomorphism f: A - A', Since G is pro-representable, the map

G(f): G(A) - G(A'") is injective, too.
ol
P s X >

The little computations below show that the elements m@E <ax
~ ~
and m@E<bx,a> are killed by the map M®DTCK2(A) - M®°TCK2(A') which
is induced by f. So ¢ maps them into ker G(f) = 0. We are done.

It remains to give the little computations:

s T, r s-r
E<uf %P ,X> = p E<uf , x> by (D2) and (D1)
s R |

= p E<u, uP x> by (D3)
2s-r s
P -1
= E<u,u xP > by (D2)
= 0 since sz-r>zps
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2+pS-1

E<u£x,up > = psE<u X, u> by (D3)

S

s 2s
+p°%-1
Ptp -LP > by (D2), (D)

= E<u
=0 Z
The preceding theorem has the following analogue in characteristic zero.

It is left to the reader to prove this,

Theorem., Let k be an algebraic extension of @. Let M be a k-vector

space and let G be a pro-representable functor from the category of augmented

local artinian k-algebras to the category of abelian groups. Then there are no

1
non-trivial natural transformations from the functor M®k [ /k/dm ] to G.

These two theorems show that under the hypotheses of (3.7) and (3.2) the
subgroups HZ(X w)® TEK and I—IZ(X )R [Ql /d ], respectively
’ (5} 2 XK -k Tm o ’
2
of CHX are the smallest subgroups for which the corresponding quotient is

prorepresentable.
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