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ON THE CLASSIFICATION OF SMOOTH COMMUTATIVE FORMAL GROOPS. HIGHER HASSE-
WITT MATRICES OF AN ABELIAN VARIETY IN POSITIVE CHARACTERISTIC. 

by 

Bert DITTERS 

(Amsterdam) 

1. The aim of the present note is to report on the classification of smooth 
commutative formal groups -in short : formal groups- over a perfect basefield k of 
characteristic p > o or over i ts Wittvectors WCK]. The main tool will be a set 
c = (c_Ji > o} of matrices with entries in WCK], called higher Hasse-Witt matri­
ces, because for curves of positive genus these matrices are a natural lifting 
and generalization of the original definition of the Hasse-Witt matrix as given 
in [2], cf no. 4 below. There can be found various methods described in the 
l i t térature by which an explicit classification of formal groups may be given. 
We mention the one dimensional case over an algebraically closed K, described 
in the fift ies by Dieudonné, using hyperalgebraical methods and at the same 
time by Lazard, using direct methods. The one dimensional case over W(k] is 
given in Honda, [3], lemma 3.4, where he uses properties of the transformer. 
The higher dimensional case over k is treated in the well-known paper of Manin 
[5], where an explicit description of the two dimensional case is given, using 
extensiontheory for special submodules. In the sequel we present a method for 
explicit classification that works for both k and WCK]. 

2. Let G be an n-parameter commutative formal grouplaw over A = k or 
A = WCK]. In short : let G be a formal grouplaw over A. We denote C = G (G) i t s 
group of p-typical curves and 0(G] = A[[X^,..,X ]] i t s contravariant bialgebra 
with co-multiplication y given by yCXj = G CXi 1,1 EL X J if G = CG , . . . ,G ] . 
We assume the canonical curves é. : 0(G] -> A[[t]], defined by cb.CX.] = 6 . t , 
1 < i, j < n, to be p-typical. There is a natural action of WCK] on C, 
(a,(J)) a(|) for a e WCK] and (j) e C satisfying the well known rules F a = a° F and 
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\Ja° = aV. Here G is the Frobenius on W(k). We extend this action in the obvious 
way of M (W(k)) to the direct sum Cn. Denoting = ^ ,<b ) e CR the n-n G T1 rn 
tuple of canonical curves, we recall the following facts: 

F1 . Every \l) e C may be written as \b = .1 V A. d> with A. e H C W C KD 3 . 1=0 ~i TG i n 
F2. In particular we have for the Frobenius F acting on CR: 

(2.13 F(j) = .1 V1 c. cb c. e M (W(k)). G 1 = 0 ~i G i n 
G is determined by (2.1] and every choice of c. e N (W(k)) determines a formal 
grouplaw over A. 

F3. If Fi is another formal grouplaw over A with Feb,, = .1 V c! d).,, then H is 
H 1=0 -1 H 

isomorphic to G over A if and only if C contains an element \p as in F1 with 
00 2 

A invertible and such that Fib = .1 V/ c! il*. 
o r 1=0 ~i Assume H to be isomorphic over A to G, and f i rs t assume A = K. Then by F3 we have 

CO j_ CO j_ FiL» = .X V c! \b and \b = .1 V X. d)_ with A invertible. It follows: 1=0 ~i 1=0 ~i G o 
CO -J CO i 

(2.2) p i|i = FV i|i = VF i|i = V.I V c! ( .1 VJ X . (J) ) 
~ R R R 1=0 -1 j=o ~J G CO 1 CO i 00 -i 

(2.3) = .1 VJ A. pch = .1 VJ A. V.I V c. <(>_. 
j=o ~j rrG j=o ~j 1 = 0 ~i G 

It does not follow that the coefficients of V (j) in (2.2) and (2.3) are equal, 
i . e . i t does not follow that 

(2.4) . Z c A . = . I A. c. , n > o -
i + j = n 1 j i + J ^ n J 1 

If however (2.4) holds, both the sets c = {c.l i > 0} and c' = {c1 Ii > 0} deter-
mine isomorphic formal grouplaws. Because a formal group over A Is just an A-
isomorphism class of formal grouplaws over A, we use (2.4) for an explicit clas­
sification as follows: given the c , determine A. £ H (W(k)) with A invertible 
in order to find a set c' = {c^|i > 0} with the nicest possible properties. This 
c' then determines a representative of the isomorphism class of G. 

00 i 00 i If the base ring is W(K) we have: F(()n = .1 V c. (J)p and = . I V A $ such fa TG 1=0 ~i G 1=0 ~i G 
00 -j that FU» = .Z V c[ il>. It follows that : R 1=0 ~i 

F\b=.t V1 c! .1 Vj A. (pn 
R 1-0 ~i j=o ~j G 

= F.I V1 A. cb = AQ F(j)r + p .1 V1 X cb. 1=0 ~i G ~o TG ~ 1=0 ~i+1 G 

The set of equations, analogous to (2.4) then becomes: 
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3 n + 1 
(2.5) . Z c!Q A . = X° c + p X n > •. 

i+j=n 1 j • n n + 1 
3. Example: Suppose K algebraically closed and G to be an one parameter formal 
grouplaw. If all c. = o, then G = X + Y. Suppose h > 1 minimal such that c / o, l ^ h i 
then c' =..= c,' r. = o and c' X = X° c. A . Choose X such that c' . = 1 . 

o h-2 h"1 • o ti-1 • h-1 Assume X , . . . ,A to be chosen such that c' . . = o for 1 < i < s, then (2.4) o s h-1+i 
gives: 

h+s + 1 h 
A „ + c,' A = A cL + A , CL ^ . 
s + 1 h + s o o h+s s + 1 h-i 

This defines mod p a separable polynomial in A , hence we may find A such 
s + I s + I that c' A = o, thus c' = o. A representative for G is given by the relation h+s o h+s h 

F(j> = X/h-1 (j)̂  equivalently, p(J) = V (j), thus we recover the well Known result of 
Dieudonne-Lazard. 

4. Definition. If the formal grouplaw G over A is given as in F2 by FcJ) = oo ± t t = .X V c. (b . we call the set of transposed matrices c = { c. i > o} the i = o ~i G l1 
(higher) Hasse-Witt matrices of G. 

For the justification of this term, consider a function field K in one variable 
over the field of quotients B(KJ of W(K). Let g > 1 be the genus of K. We adopt 
the notations of Hasse-Witt, [2], Gatz 4: Assume that K has a non special divi-
sior J> = fi f>^ and let TT be a local parameter at J> .̂ By the theorem of Riemann-

( s ) ( s ) ( s ) 
Roch i t is clear that there exists for every s > o, a set v = (v.^ , . . ,v ) e 

s + 1 1 g 
£ Li-fr ), essentially unique, and a matrix Ĥ  c h (B(K)) such that 

r i rr H p H . p ri 
(4.1) v = - - . . - : . . - mod f̂o 

s + 1 s s-i TT ^ 
TT TT TT 

For s = o, (4.1) just defines the usual Hasse-Witt matrix in the context however 
of characteristic zero. 
Theorem 1 . I_f K has good reduction at the prime (p) o_f B (K) , the matrices 
H_̂ , i > o all are p-integral. The choice of determines a formal grouplaw G over 
W(K) for the Jacobi functionfield of K and the covariant Dieudonne module of G is 

oo i t given by F(j)n = .1 V H. (j) . — — G i = o - l G 

The proof uses the fact that by the residue theorem, cf . loc .c i t . Satz 6, one has 

(4.2) B s+1 = .1 p1 B s-i „ H , s > o. 
p -1 i=o p -1 1 

By well Known results of Honda, the differentials of the f i rs t Kind -~~ = 
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CO \J X B 7T define G over W(k) if K has good reduction mod p, and the author's v = o v 
results on formal groups imply that G is defined over W(k) if and only if (4.2) 
holds with all H. £ M (W(k)). (p -> B s . is a Hilbertfunction in the termino-
logy of [1].) Moreover i t can be shown, that u =p- .1 H. T is a special ele-
ment for G in the sense of Honda [3], consequently, if k = one has by loc. 
c i t . section 5.5 that the Frobenius IT on G mod p satisfies 

oo -j +1 (4.3) det(p E - .1 H. TT ) = o. 
1 = 0 1 

As is known, the Hasse-Witt matrix Ĥ  mod p only gives information of the unit 
root part of the characteristic polynomial of the Frobenius on G, i . e . the hori­
zontal slope of the Newton polygon of G. As (4.3) shows, the higher Hasse-Witt 
matrices determine the full Newton polygon. For instance, the example given by 
Koblitz [4], p 209 of curves having different rank Hasse-Witt matrices Ĥ  mod p 
but the same Newtonpolygon and conversely, same rank Hasse-Witt matrices but 
different Newtonpolygons can fully be understood by looking at the f i rs t higher 
Hasse-Witt matrix Ĥ  of these curves. 

5. A curve may have (and generically usually has) an infinite number of non 
zero Hasse-Witt matrices. At the oral exposition, the following result was con­
jectural, but has been established in the mean while: 
Theorem 2. If_ k is algebraically closed then every formal group over k has a  
representative with only a finite number of non zero Hasse-Witt matrices. 

If k = F , the theorem is false even in dimension one. The theorem is not unex-P 
pected in view of Hanin's finiteness theorem , [5], th. 3.4 but we were not able 
to derive theorem 2 from th is . Specializing to the case of dimension 2 we have, 
using the relations (2.3): 

Theorem 3. Let G be a two dimensional formal group over an algebraically closed 
field k of characteristic p > o, then G has a representative of the following pos­
sible types : 

^ A 
a. pcf) = o and G = 2 Ĝ  . 
b. p<}) = Vh(}), 1 < h < °° . 

d . p* = Vh (1 °]Y + Vh + K(° > , 1 < h < k < co . 
MY 0 0 • 1 N 

c2. D<J> = Vh (1 °)(j) . 1 < h < » . 
' T 0 0 N 

d1. p<}> = Vh (° 1)(j) . 1 x< h < - . 
0 0 
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. ,n , • 1 , , . ,h+m r • o, . d2. pd) = v ( )d> - V L J 6 , 1 < h < m < o o . 

d3. p$ = V ( )4> - V ( , ) 4> , 1 < h ^ m < TO . 
• • • 1 

d4. there are 1 ^ m, n < °° such that if y = miriln,n) 
u T ~ '1 wh ro 1 h+m , v . . i r o o , , , . ,n + m+n,o o, 

• • . • a. 'i • 
i ^ o i 

All a_̂  are in the image of the Teiehmuller map T : K —> W(K] and â  t o. 
(For convenience we write c <p instead of c cj) for matrices c and $ € C ) The expli 
cit form d4 of the theorem is due to Kneppers. The theorem gives explicit genera­
tors for the covariant Dieudonne module of G, e.g. in d4 i t has two generators 

, (J).-, subject to the relations p ^ A = V cj)̂  aRd P §n = -V m( I V1 a _.({>,_>)-V ' m R̂  

The subdivision a, b, c and d reflects a normal form for the f i rs t non zero Hasse 

Witt matrix of G. Combining all possibilities for a curve of genus 2 with Hasse-
Witt matrix (° °) one finds that the completion of i t s Jacobivariety over an 1 o M -y 
algebraically closed field k of characteristic p > o can be given in the form 
p4> = V(° )̂ - V^(° °) - V^(° °), a e Im T. Full proofs and results over the base M • • o a 1 o h 
ring W(k) will be published elsewhere. 
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