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THETA FUNCTIONS IN POSITIVE CHARACTERISTIC 

I. BARSOTTI 
(Padova) 

-:-:-:-

1 . The theta function of a divisor ; a. special case. 

The minimal requirement for something which has a claim to being called the 
theta function 0̂  of a divisor X on an abelian variety A (over a field k), is that 
0 should be a power series in a finite number of indeterminates, or a quotient of 
two such power series, and that it should be possible to treat X as the "divisor" 
of 0 much in the same manner as X is the divisor of an element z € k(A) when X is X 
linearly equivalent to zero. Such theta functions were developed ten years ago in 
[2] for the case in which k is of characteristic zero ; they were defined in a 
purely algebraic and local manner (no periods required), and naturally turned out 
to coincide with classical theta functions when k is the complex field. There 
seemed to be strong technical difficulties to the extension of the method to cha­
racteristic p, but it is now clear that it was only a matter of picking the right 
end of the rope. This has now been done, and we finally have theta functions also 
in characteristic p ; typically, no new tool born in the meantime has been neces­
sary. I will now briefly describe the underlying ideas and sketch the method and 
results ; details, complete proofs, and further developments will be found in a 
forthcoming paper by V. Cristante ; it is lucky that (Witt) covectors, which I have 
been using since 1958, have now become popular [3] ; I hope that the same will soon 
be true of bivectors, of which covectors are only a homomorphic image. Finally, I 
must apologize for the use of only those concepts with which I am familiar, thus 
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barring sheaves, schemes, spectra, and other complicated simplifications. 
Let k be a perfect field of characteristic p ̂  0, and let A be an abelian 

variety of dimension n over k. It may not be useless to say that by that expression 
I mean a particular set of points of a projective space over the algebraic closure 
of k ; a point, in turn, means a point with coordinates in that algebraic closure ; 
on the other hand, if the listener has a different picture in mind, the results 
will apply equally well to that picture. We could start with a commutative group-
variety (without periodic subvarieties) instead of an abelian one, as I did in [2], 
but the most interesting case arises when A is abelian. 

Set C = k(A) = field of rational functions on A, and let x = {Xj,...,x } be a 
regular set of parameters of the completion R of the local ring of the identity 
point 0 on A ; the maximal prime of R will be denoted by R+ ; thus, 
R = k{x] = k{Xj,...,xn], this being the ring of power series in x̂ ,...,xn, with 
coefficients in k and with integral nonnegative exponents. The field C can be cano-
nically embedded in the quotient field of R, and we shall consider it so embedded. 
We shall also use an affine ring k[y^9...,y^] of A, with m >, n, such that C = k(y) 
and that the identity point be at finite distance for y, say at y = 0. Let X be a 
divisor on A ; I shall tacitly assume, whenever a divisor is considered, that none 
of its components go through 0 ; naturally, this condition must be eliminated from 
a complete theory, but the elimination is an easy trick which adds nothing to the 
substance of the method. If X ̂  0 (linearly equivalent to zero), then X = div z for 
some z € C ; the condition on X entails that z E R, and clearly this z is entitled 
to be called the theta element of X, and to be denoted by 0 = 0v(x). It is uni-
quely defined but for a nonzero factor in k, and it can be normalized by requiring 
that z E 1 mod R+. 

Next step is the case X = 0 (algebraically equivalent to zero) ; before des­
cribing it I must recall that R is a hyperalgebra over k, with its coproduct IP 
which maps R algebra-isomorphically into the completed tensor product RxTR. (over k) . 
A regular set of parameters of RxR is the set 

{xx~l , lxx} = { . . . ,x/xl,...,...lxx̂ , . . .} ; 
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since many copies of R, A, C, etc. will be needed, I would rather index them ; 
thus, P may map R into RjXR̂ , and this will have regular parameters {x},x̂ } ; the 
individual x's , indexed from 1 to n, will never be used specifically again, so 
that no confusion arises. IPx is a set of regular parameters of OPR c R̂ xR̂ , and 
it is expedient to denote it by x̂ +x̂ . 

The conditon X E 0 means that aPX ̂  X for each P G A ; here, ap is the trans­
lation by P. It also means the following : on AxA = AjXA2 consider the divisors 
Xj = XxA2, X^ = AjX.X, and XJ2 = (div u )X = counter image of X if u : AjXA2 —> A is 
the law of composition ; then Y = XJ2-XJ-X2 % 0 ON A]xA2* Thus> Y has a tneta ele­
ment in the previous sense, namely an f(Xj,x2) £ RjXll2, symmetric in x̂  , x2 ; we 
select f E 1 mod(Rj~xR2)+, and then it is easily verified that 

f(Xj+x3,x2)f(xj,x3) = f(xj,x3+x2)f(x3,x2). 
In other words, f is a symmetric factor set of R into Rm , if Rm denotes the 
hyperalgebra k[t] (bialgebra really : no inversion) with coproduct |Pt = t ® t 
[one indeterminate ; algebraic torus of dimension 1 ; multiplicative straight 
line]. It produces an extension of R by R̂  (or viceversa, depending on the language 
you use), and it is well known that the only such extension is R ® R̂  (trivial ex­
tension). Therefore f itself is "trivial" as we now say, or associated to 1 as we 

once said (some H is equal to 1), this meaning that for a suitable g(x) €E R we 
have f(Xj,x2) = g(x̂ +x2)/g(Xj)g(x2). This g(x) is a theta element 0x(x) of X ; it 
is unique but for a nonvanishing (constant) factor in k, and for a nonzero factor 
h(x) E R which satisfies the condition h(Xj+x2) = h(xj)h(x2). Such an h is a mul-
tiplicative element of R, and it can exist if and only if R has a block of slope 1 
(by now everybody knows this meaning of the word slope, introduced in chapter 5 of 
[MA] ; anyhow, slope 1 is present if and only if there are pointsP ̂  0 on A such 
that pP = 0). 

So we now have 0 when X E 0 (which includes X % 0) ; it belongs to R ; more 
generally, if X has poles through 0 it belongs to the quotient field k{x} of R ; 
and it can be chosen in C if and only if X ̂  0. 
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2. Continuation ; general case. 
We now relinquish any special condition on X ; we shall denote by C the per­

fect closure of C, by 5t° the perfect closure of R, and by J{> its completion ; 
in the notation of [MA], the last three symbols would have been ^j^0, ̂ R, R, 
while C would have meant the union of the (pi.) rC for r = 1,2,..., after denoting 
by t the identity mapping ; this former C , which contains our present C , is still 
important, and will be used (and called CT) in section 5 ; it is automatically 
embedded in the quotient field of R when our C is so embedded. 

Let Cj be a copy of C, extend A over Cj, and consider the point P of the ex­
tension at which the coordinates y assume the values ŷ  (copy of y in Cj). It is 
known that apX-X E 0 if X denotes also the extension of X over Coi ; since Cj is 
perfect, the discussion of section 1 applies, and apX-X has a theta element 

(0 Cp(Xj ,x) e c"{x] , 

which we assume normalized by cp(xj,0) = 1. It is not difficult to prove that 
Cjp(Xj ,x) € £R>°{x] C %YR, and that we can also require <jp(0,x) = 1. The meaning of 
X_̂, X̂_. being as in section 1, and that of X̂ 23 being similar, consider the divisor 

Y = X123+X]+X2+X3-X12-X13-X23 

on AjXA2xA3 ; it is known that Y CJ 0, so that Y has a theta element F( Xj, x 2 , x 3 ) in 
the quotient field of Cj ® C2 <a Ĉ , normalized by 

F(0,x2,x3) = F(x],0,x3) = F(xrx2,0) = 1. 

The relation between cp and F is 
F(xj,x2,x3) = (p(xj ,x2+x3)/(p(x] ,x2)<p(xj ,x3) = cp(X]+x2,x3)/(f?(x] ,x3)cp(x2,x3) 

(not immediate, but not very hard either) ; from this, and from the symmetry of F 
in Xj,x2,x3 follows that <p (x j ,x2)/cp(x2 ,x j) is a skew-symmetric bi-multiplicative 
element of iR> "x ^ (it is the Riemann form of X on the radical part of R ; see sec­
tion 5) ; as a consequence, there exists a bi-multiplicative element 
x(Xj,x2) £ ̂R> x" 5b such that ̂ (x^x^) = <f (x̂  ,x2)x(x̂  ,x2) is symmetric ; it is in 
fact a symmetric factor set of £F6 (not of R) into R . It must again be asso-
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ciated to 1, and again, as in section 1, it provides a theta element 0̂ (x) of X by 
the relation ¥(Xj,x2) = 9x(xj+x2)/0x(xj)QX(X2)• In tĥ s gene*"al case ©x belongs to 
R and not necessarily to R ; when it does not belong to R it does not belong to 
Ro either. The relation between 0 = 0 and F is 

x 
(2) F(x ,x2,x3) = 0(x]+x2+x3)0(x1)0(x2)O(x3)/0(x]+x?)0(x]+x3)0(x2+x3) . 

This 0 is uniquely defined by (2) but for a quadratic exponential factor ; this 
expression shall mean the product of : 

i) a nonzero element of k ; 
ii) a multiplicative element of £Fk (which is necessarily contained in the 

block of slope 1) ; 
iii) an element e ̂  0 of j& such that Pe/exe is bimultiplicative (such e's 

are necessarily contained in the product of the blocks of slopes ̂  1). The theta 
element satisfies the usual relation 0VJ_V = 0V0V, and it identifies X uniquely. 

X + J- X Y 

3. The case of characteristic zero. 
The contents of sections 1 and 2 can be applied, with slight modifications, to 

the case of characteristic zero, and they afford a simplification of the method 
adopted in section 1 of [2], as they do not use classes of repartitions 
(H (A, C/G>A) for the connoisseurs). The modifications are the following : 

1) R is perfect, hence \R> = Ro = R and C°° = C ; 
2) one can select for x a set of integrals of the first kind ; in this case 

the + of <p(Xj+x2) is a true addition of sets of indeterminates. 
In the case of characteristic zero the name "theta functions" is appropriate, 

since the arguments of which they are functions are canonically selected (see 2 
above) ; in the case of characteristic p, on the contrary, o(x) is a special ele­
ment of \R? , not a special power series in the x's ; hence the use of the expres­
sion "theta element" rather than "theta function". 

'̂ Theta functions in a given hyperalgebra. 
We now start from an n-dimensional local equidimensional hyperalgebra R = k{x] 

9 



I. BARSOTTI 

over k ; equidimensional means that puR is also of dimension n. If *j£ , are 
related to R as in section 2, a nonzero element 0 € (Rs is of type theta on R if 
the function F of (2) belongs to the quotient field of R1 ® R2 ca R̂  (tensor product 
over k, not completion of . . . ) . This is the same definition adopted in [2], except 
that 0 is sought in cJh rather than R. As in section 3 of [2], and by similar ar­
guments, there exists a smallest subfield C, finitely generated over k, of the quo­
tient field of R, with the property that F belongs to the quotient field of 
C & C & C ; the field C inherits P from R, and is therefore a hyperfield ; in other 
words, C = k(A) for a suitable commutative group-variety A (a sketchy treatment of 
hyperfields is given in section 2 of [2] ; a developed theory is contained in [4]). 
More details about C can be found with the analytic machinery of bivectors : consi­
der the b'ivector {0} = (... ,0,0; 0,0,0, ...) ; its logarithm exists and is of the 
type log{0} = (...,v,v;v,v,...), where v is the Artin-Hasse logarithm of 0 . I will 
next recall the definition of GR : the discrete hyperalgebra R is the dual of R ; 
fR? is the completion of the dual of {R> ; £5k is the set of the elements d of 
biv \R» which are canonical, namely satisfy tPd = dx~l + l~xd (it is a sort of 
Dieudonne module) ; *£R is the subset of £lR> formed by those 
d = (...,d_j ;d ,dj,. . .) having the property that d_̂ R = 0, or, equivalently, that 
d , viewed as an element of End, 0̂  , induces an (invariant) derivation in R. For o k ' 
such d's I defined in chapter 5 of [MA] an element d* of End Biv^ , where K = 
vect k, which is not quite a derivation on Biv cJk (it turns out to be a component 
of a covector whose ghost components are derivations on a subring of BivCR^). Well, 
C contains all the components of all the bivectors d*d'*log{©} (which are really 
vectors), when d, d' range over ^ R ; if D is the field generated, over k, by 
these components and by their hyperderivatives, D itself is a hyperfield, and we 
strongly suspect that C = D ; so far it is only proved that the embedding of D into 
C is a purely inseparable isogeny. (Added Nov. 78 : C = D now proved). 

Two elements of type theta are associated if their ratio is a quadratic ex­
ponential ; the dimension of 0 is the dimension of the smallest subhyperalgebra of 
<?o which contains some element associated to 0 ; the transcendency of C over k 
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turns out to be not less than the dimension of 0 ; if it is equal to this dimen­
sion, 0 is a theta element on R, and it is nondegenerate when its dimension is n. 
The discussion in the next section will show that there are theta elements on R if 
and only if : for each block of slope a and dimension n̂  of R, with 0 < ct < 1 , 
R has a block of slope 1-a and codimension n̂  [this condition reflects the symmetry 
theorem satisfied by hyperalgebras arising from abelian varieties ; it would be 
interesting to establish the condition directly within the theory of theta ele­
ments, thus supplying a third proof of the symmetry theorem]. Picking theta ele­
ments (on R) in $k is equivalent to picking rational composition laws for R ; or 
also to viewing R as an algebraic group. 

Now that we have a theta element defined a priori, we naturally want to know 
whether 0=0 for some X on A ; the answer is the same as in [2] : X is the only X 
divisor on A (with no component on the degeneration locus in case A is not abelian) 
such that div F - XxAxA has no component of the form YxAxA ; this X is very stron­
gly ample on A (if 0 is holomorphic ) , namely : â X = X only when P = 0 ; by the 
way : X is effective (= positive) if and only if 0 is holomorphic, this meaning 
that 0(x]+x2)0(x]-x2) £31®CJL . 

5 * The abelian case and the Riemann form. 
For a deeper discussion we must make full use of the tools provided by [MAj , 

in particular those of chapter 6 ; let us go back to the case discussed in sec­
tions 1 and 2, where 0=0 for some X on A. Let us denote by Cf the union of the 
fields (pt) rC described at the opening of section 2 ; theorems 6.12, 6.13, 6.14 
(and others) of [MA] provide, for each d € ^Ry an element of vect C' , uniquely 
determined, but for a summand in K = vect k, by the following property : for each 
prime divisor Y on A (inverse limit of A < A < A...), let x„ be a repre-

pL p L Y 
sentative of X at Y ; then all the components of the vector d^cglx^} - ẑ  belong 
to the local ring of Y on A . After a suitable choice of the arbitrary summand it 
can be proved (easily) that for suitable elements e £R and ĉ  £ biv k (this 
being the quotient field of K) we have 
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(3) zd = d*log{0} + nd ~ cd . 

The mapping d —> nd is K-linear and commutes with IT (Frobenius) and t (shift) ; 
in particular, if d has slope 0 also nd must have slope 0 ; but £R contains no 
element of slope 0 (those elements all come from the separable = totally discon­
nected = etale block of a hyperalgebra) ; hence nd = 0 if d has slope 0, a fact 
which shows that for such d's, the bivector d*log{0}-cd is in vect R. Assume ins­
tead that d has no direct summand of slope 0 ; more precisely, in what follows d 
will range over ̂ R^, where R̂  is the radical part of R, made up of all the blocks 
of slope f 0 ; then nd <E Hf> R̂  (and this R̂_ is made up of blocks of slope ̂  1), and 
we would like to know more about it. If x has the meaning of section 2, define the 
elements cd, ̂ d of *6 R (actually of f=Rr) by : = (d <a l)*log{x) , and 
£ , = (1 <a d)*log{x) ; consider also the operators a = lim pr(pc) r , and 
3 = lim p r(p£.)r, and remember that 3z G V^jL is an old acquaintance, namely r-x» a r 
<p d, where <p is the Riemann form of X (see chapters 6 and 7 of [MA] ; do not con-
A A 
fuse with the mapping of A into its dual denoted by cp̂. in Lang's book : this map­
ping I had christened Av in 1954, and I haven't changed since). Application of $ to 
(3) gives ^̂.d = 3 (d*log{0 l-c^)+nd> while application of a gives 0 = a (d*log{0 }) +r\^ . 
On the other hand, from the definition of 0 and from (1) we can derive that 
a(d*log{0}) = Cd and that 3(d*log{0}-cd) = ?d. So nd = -£d> and Qxd = Cd+nd= ?d"?d-
We conclude that (3) gives the decomposition of the mapping 
(4) (d,d') > d'*(zd+Cd) 
into the alternating part 
(5) (d,d') > d'*?xd 
and the "symmetric" part 
(6) (d,d') > d'*d*log{0} . 
The word " symmetric " is in quotations because mappings (4) and (6) are not K-
bilinear ; with this limitation, due to the imperfect nature of d* as a derivation, 
(5) is a holomorphic differential of dimension 2, while (6) is a metric . 

We can now go back to a question left open in section 4 ; given a nondegene-
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rate theta element 0, when is the group-variety A abelian ? The discussion of this 
section provides the answer. To begin with, the equidimensionality of R rules out 
the possibility of periodic group-varieties ; hence A can only be the extension of 
an abelian variety by multiplicative lines (tori) ; the answer can thus be sought 
by "counting" p-division points, which are lacking on multiplicative lines. Equi-
valently, let f be the dimension of the block of slope 1 of R ; then, in order that 
A be abelian it is necessary and sufficient that when d ranges over the elements of 
^R of slope 0, the vectors d*log{0} = z , modulo vect C, span a K-module with f 
free generators ; when this is the case we say that 0 is an abelian theta element. 

6. Conclusion. 
This exposition starts with an article of faith (about 0 having to be a power 

series, albeit with non-integral exponents, as we have later seen) which I am about 
to abjure, with a warning that the following free-wheeling considerations are more 
than wishful thinking but less than a description of work accomplished. 

For a general setting we start from a group G which I choose to call "analy­
tic", and which is the candidate for being the "completion" of a commutative alge­
braic group A (this A is assumed to be an abelian variety in the description which 
follows) ; "completion" is the accepted word, but a very poor choice for something 
which is usually smaller than A. Anyhow, since groups are only dimly present, while 
hyperalgebras of "analytic" functions on groups are very much present, it is better 
to speak of C = k(A) and of R = functions on G : in C we select an array (= order) 
S such that PS is a subring of the quotient field of S <a S ; on S we place a sui­
table topology Tq, and denote by R the T -completion of S (naturally Tq comes from 
a metric) ; we then seek a "universal covering" g of G, which in terms of rings 
of functions means a "maximal embedding" of R into a hyperalgebra R . Essentially, 

must give enough information on the universal covering of A, which algebraically 
seems to be the maximal covering of A whose ramification arises only from insepara­
bility. In the first five sections S has been the local ring of 0 on A and Tq has 
been its natural local topology ; however, the same R, which I will now revert to 
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calling R, can be reached, as explained in chapter 6 of [MA] (modulo some silly 

mistake), by taking for S the intersection Sp of the local rings of all the p-

division points on A, and for Tq the ir-topology (this Sp is an array in C if k is 

not too small) ; hence the use of ̂ R rather than R. I will give a list of four pos­

sible selections of R and R , of which number 1 is the one just described, i.e. 

the one adopted in the preceding sections : 

1) S is 8^ ; Tq is the TT-topology (see chapter 6 of [MA]) ; R is \ , and 

R= ^1R> is the completion of the direct limit ̂ R > ̂R > ... This ^ 5Z> is 
the completed tensor product IIRII x" ^tR^, where """cR/ is the radical part of ^iR? 

(slopes < 1, and certainly > 0), while ""^^ is the logarithmic, or toroidal, part 
(slope 1). If f = sep codim A = dim IIRII , it is not idle to remark that 71±&> is 
isomorphic and homeomorphic to the hyperalgebra of certain measures on Qfp with 
values in k (at least when k is algebraically closed) ; the topology is that of 
uniform convergence on balls of bounded radius (k is taken to be discrete). This 
interpretation of 7T£R? , as well as similar interpretations in the cases which fol-
low, are the object of [5] . 

2) S is Sp ; Tq is the t-topology ; R is tR, and ;R> = tR is the completion 
of the direct limit CR > tR > . . . Now ^ = ̂  "x **R, , where ^ = ^ 
and t̂ >t is the separable, or etale, part of t"5l̂  (slope 0) ; it is isomorphic and 
homemorphic to the hyperalgebra of continuous functions on Q^, with values in k ; 
the topology is that of uniform convergence on compacts. 

3) S is Sp ; Tq is the pt-topology (remember that pL = TTt) ; R is R, and 
c&>= fR* is the completion of the direct limit R > R > ... Now 
<R> = n x <-% x <R , with <& * , * * ^ , % =- ̂  . 

4) S is Sq for a prime q f p (usually called ell) ; Tq is the qu-topology, 

where a basis for neighbourhoods of 0 consists of the maximal primes of Sq ; R can 

be called R , and <^R? = ^RP is the completion of the direct limit 

R > R > ... If n = dim A, £R> is isomorphic and homeomorphic to the 
q qc q qt q 
hyperalgebra of continuous functions on Q2nq with values in k ; the topology is 
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that of uniform convergence on compacts. 
If k has characteristic zero the only two known possibilities, barring special 

fields such as the complex field, are : 
1') (similar to 1) S is the local ring of 0 ; R is its completion ; = R 

(see section 3). 
4') Same as 4, q being any prime. 

After deciding on an <H>, a theta element on R (or element of type theta as the 
case may be) is simply a 9 G £R? such that the F of formula (2) is the ratio of two 
elements of R ® R <a R ; notice the ® rather than x. Naturally now F must be written 
as 

( (L x lP)(P0)(0 x 0 x 9)/(IPG x 1)(1 "x P0)(sc 9(1 x <P0)) . 

The field C is then retrieved as the quotient field of the smallest subring U of R 
having the property that the quotient field of U gj U ® U contains F. The existence 
of such 0's, for instance in case 4', is essentially due to the fact that the only 
crossed product of by the multiplicative group of nonzero elements of k is the 
direct product. Knowledge of 0 = 0^ must entail knowledge of the restriction p^ of 
the Riemann form of X to ̂  x ; the recipe is as follows : find a bimultiplica-
tive element x G ̂  x ̂  such that (P0/(Ox0)x e C°° x cĵ> ; then px is simply x/scX> 

or its reciprocal according to taste. This is p̂ . viewed as a skew-symmetric bi­
mul tiplicative element ; in order to view it as a bilinear element one must take 
its "logarithm" according to some suitable definition of the term. 
Examples : in case 1 (the object of this exposition) x 1S the x °f section 2, and 
the logarithm is log{ } ; in case 4, x 1S given by x(r»v) = O(O)0(v+r)/0(v)0(r) for 
v E Q̂ n and r £ Z?n ; the logarithm is the inverse of a standard homomorphism of 
Qp into the group of q -th roots of 1 in the algebraic closure of k. 

It is now only fair to ask whether Mumford's thetas [6] fit into this scheme. 
The work of comparison is a tall order, except that in 1970-71, when I still refu­
sed to consider thetas which were not power series, I devoted some time and effort 
to the construction of (illegal) theta elements which fall under case 4 above ; 
they turned out to be very similar to Mumford's thetas as described in section 8 
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of [6], modulo the fact that I had not selected q = 2. Thus, the answer to the 

question should be yes. 
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