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SLOPE FILTRATION OF F-CRYSTALS 

by 

Nicholas M. Katz 

(Princeton) 

-:-:-:-

This paper is devoted to the systematic study of the variation of the Hodge 

and Newton polygons of an F-crystal when that F-crystal moves in a family. As 

such, it constitutes a natural sequel to my report [6] on Dwork's pioneering 

investigations of such variation. However, I have tried to make this paper self-

contained and accessible to non-specialists. 

Some of the results are new, and interesting, even in the "classical" case of 

F-crystals over perfect fields. I have in mind particularly the "basic" and 

"sharp" slope estimates (cf 1 .^4, 1 . 5 ) and the "Newton-Hodge" decomposition 

(cf 1 . 6 ) . These "pointwise" results are in fact the key to all the "global" 

results given in 2 . 3 - 2 . 7 • 

Special thanks are due to Arthur Ogus for suggesting the possible existence 

of the Newton-Hodge decomposition. 
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SLOPE FILTRATION OF F CRYSTALS 

I. F-Crystals over perfect fields 

( 1 . 1 ) Basic definitions 

For any perfect field k of characteristic p > 0 , we denote "by W(k) its 

ring of Witt vectors, and by 

a:W(k) > W(k) 

the absolute Frobenius automorphism. For any integer a ^ 0 , we have the notion 

of a aa-F-crystal over k , namely a pair (M,F) consisting of a free finitely 

generated W(k)-module M together with a aa-linear endomorphism F:M + M 

which induces an automorphism of M® Q, . A morphism of aa-F-crystals 
Z p 

f:(M,F) > (M,F' ) is a W(k)-linear map f:M > W such that fF = FTf . 

The category of aa-F-crystals up to isogeny is obtained from the category of 

aa-F-crystals by keeping the same objects, but tensoring the Horn groups, which are 

Z^-modules, over Zp with Qp. An isogeny between aa-F-crystals is a morphism 

of F-crystals which becomes an isomorphism in this new category. 

exterior powers of a aa-F-crystal (M,F) are the aa-F-crystals 

(A1M,A1(F)) with underlying module A ^ ^ j ( M ) , and with cra-linear endomorphism 

AX(F) defined by 
A1(F)(m1A \m) - F(m )A . . .AF(I. ) . 

For i = 0 , but (M,F) ̂  0 , we define (A°M,A°(F)) to be (W(k),aa) . 

The iterates of a aa-F-crystal (M,F) are the aan-F-crystals 

(M,Fn) , n = 1 , 2 , . . . . 

( 1 . 2 ) Hodge polygons 

The Hodge numbers h°, h1, h2, ... of a aa-F-crystal (M,F) are the 

integers defined as follows (cf [9])« The image F(M) is a W(k)-submodule of 

M of maximal rank, say r , so by the theory of elementary divisors, there 

exist W(k)-bases {vn ,..., v^} and {wn ,..., w^} of M such that 

115 



N. KATZ 

F(v. ) = P V , 

with integers 

0 < a., < a^< . . . < a 
— 1 — 2 — — r 

These integers are called the Hodge slopes of (M,F) . The Hodge numbers h1 of 

(M,F) are defined by 

h1 = # of times i occurs among {an...a } . 
1 r 

Thus we have 

1 h1 = r (r = rank(M)) 
i>0 

M/F(M) — « (¥(k)/p1W(k) ) 
i>0 

Notice that we have the elementary interpretation: 

1 . 2 . 1 h = 0 for i < A < — > 

F = 0 mod pA i.e. F(M) N PAM 

1 . 2 . 2 h1 = 0 for i > B <===> 

M >̂ F(M) =3 pBM < — > 

3a~a-linear V:M > M such that FV = VF = pB . 

According to a marvelous theorem of Mazur [ 9 l , these "abstract" Hodge numbers 

sometimes coincide with more traditional Hodge numbers. Thus let X be a projec­

tive smooth W(k)-scheme, all of whose Hodge cohomology groups HJ (X>^x/W(k) ̂  are 

assumed to be free, finitely generated W(k) modules, whose ranks we denote 

h1,J(X) . Let Xq be the projective smooth k-scheme obtained from X by reduc­

tion modulo p . Then for each integer j >_ 0 , the crystalline cohomology groups 

HJ . (X ) are free finitely generated W(k)-modules, given with a a-linear F ens o 
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SLOPE FILTRATION OF F CRYSTALS 

which provides a structure of a-F-crystal. Mazur's theorem asserts that the 

stract Hodge numbers of these a-F-crystals are given by the formula 

h^IT3 . (X );F) = hiî<j(X) . 
cris 0 

Given a aa-F-crystal (M,F) , whose Hodge slopes are 0 £ a^ <_ . . . <_ a^ , 

the Hodge slopes of the i°h exterior power (A^M,A^(F) ) , 0 <_ i <_ r , are the 

. I integers 

a. . = a. + a. + . . . + a. l £ j 1 < - - - < j - £ R 5 

(as follows immediately from computing the matrix of F in the bases 

{v. A...AV. } and {w. A...AW. } of AXM). 

Jl Ji Jl Ji 

The Hodge polygon of (M,F) is the graph of the Hodge function on [0,r] 

defined on integers 0 <_ i <_ r by 

Hodge M ) = least Hodge slope of (A1M,A1(F)) 
r 

j 0 if i = 0 

an +...+ a. if l < i < r 
( 1 i - -

and then extended linearly between successive integers. If we define 

ord(F) = greatest integer A with F = 0 mod p^ 

= least integer A with hA(M,F) 4 0 

then we have 

HodgeF(i) = ord (A1(F)) . 

The Hodge polygon thus looks like 
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(h°+h1+h2,h1+2h2) 

(0,0) 

length h length h length h 

The points (h +...h1, rh1+2h +...+ihi) at which the Hodge polygon changes slope 

are called its break-points. 

The Hodge polygon is not at all an isogeny invariant, as simple examples show. 

The only general result I know about its isogeny-behavior is the following trivial 

"specialization" property. 

Lemma 1.2.3. 

Suppose we have an exact sequence of qa-F-crystals 

0 • (M1,F1) y (M,F) • (M2,F2) • 0 . 

Then the Hodge polygon of the direct sum (M-^Mg , F^GF^) lies above the Hodge  

polygon of (M,F) . 

Proof. Equivalently, we must show that for 1 < i < r = rank(M), we have 

ord (A1(F)) < ord (A1(Fl«F2)) . 

Now we have 

A1(M m ) « « Aa(M1)8Ab(M2) 
a+b=i 

so that 
ord (A^F «F )) = min (ord (Aa(Fx)®A°(Fg)) . 

a+b=i 
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SLOPE FILTRATION OF F CRYSTALS 

But the direct sum § A (M )®A (M ) is exactly the associated graded of the 
a+b=i 

Koszul filtration ("by "how many m^'s") of AXM . Thus any congruence 

Ai(F) E 0 mod PA implies the same congruence for each of the A^F-^SA^CF^) , 

a + "b = i , which is to say that we have 

ord (Aa(F )0Ab(F )) >_ ord (AX(F)) if a + b = i . 

(HEP 

In fact, Mazur's theorem strongly suggests the desirability of studying 

F-crystals only up to "Hodge-isogeny", i.e. only regarding as equivalent two 

F-crystals which have the same Hodge polygon and which, are isogenous. We will not 

pursue that point of view here, except in so far as the "Newton-Hodge" decomposi­

tion, which we will discuss further on, may be regarded as a step in that direc­

tion. 

( 1 . 3 ) Newton polygons 

The Newton slopes of a cra-F-crystal (M,F) are the sequence of r = rank(M) 

rational numbers 

0 < X, <...< A 
— 1 — — r 

defined in any of the following equivalent ways. 

Pick an algebraically closed overfield k' of k , and consider the 

aa-F-crystal over k' 

(M 8 W(kf) , F®aa) 
W(k) 

obtained from (M,F) by "extension of scalars". For each non-negative rational 

number A , written in lowest terms N/M , we denote by E(A) the aa-F-crystal 

over k' defined by 

E(A) = ((Z [T]/(T%N))®K W(k') , (mult, by T)®aa). 
P P 
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According to a fundamental theorem of Dieudonne (cf [8]), the category of 

aa-F-crystals up to isogeny over an algebraically closed field k1 is semisimple, 

and the E(A)'S give a set of representatives of the simple objects in this 

category. Thus we can write 

(M8W(kf) , F®aa) 
isog © E (N /M±) 

with a unique finite sequence of rational numbers N-̂ /M̂  <_ N^/M^ <_..., ZM^ = r . 

The Newton slopes of (M,F) are defined to be the sequence of r rational numbers 

(XL9...AR) d£n (N1/M-L repeated M1 times , N^M^ repeated M2 times,...). 

For each rational number A , we define 

mult(A) = # of times A occurs among (A , ...jA^) . 

From the above explicit description of the Newton slopes, it is obvious that 

1.3.1 

I 
xm 

mult(A) = r (r = rank(M)) 

for each A , the product A mult (A) lies in 7L ; in 

particular the Newton slopes admit r! as a common denominator. 

For the next characterization of the Newton slopes, we choose an auxiliary 

integer N j> 1 which is divisible by r! , r = rank(M) , and consider the dis­

crete valuation ring 

R = W(k')[X]/(X%) = W(k')[p1/N] • 

We extend a to an automorphism of R by requiring that a(x) - X . For any 

rational number A with NA e TL , we may speak of 

p^ = the image of XN^ in R . 

Let K denote the fraction field of R . Again by Dieudonne , we know that 

M % K admits a K-basis el9...,er which transforms under the aa-linear 
W(k) 
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SLOPE FILTRATION OF F CRYSTALS 

endomorphism F^oa by the formula 

A. 
(F®oa)(e.) = p 1e. . 

An equivalent, and for us more useful, characterization of the Newton slopes is by 

the existence of an R-basis u ,... ,u of M 8 R with respect to which the 
1 r W(k) x 

"matrix" of F®aa is upper-triangular, with p 1 along the diagonal: 

entries 
in R 

л1 
р 

X 
г 

i.e. 
л. 

F(U.) = р u. mod У Ru. . 
1 1 Л* J 

Either of these last two descriptions makes it obvious that the Newton slopes 

of the î *1 exterior power (A"*"M,A"*"(F) ) of (M,F) are the (r/i) numbers 

X J 1 + " - + X J 1 1 i J! < J2 <•••< ¿i i r , 

Р 

and that the Newton slopes of the nth iterate (M,Fn) of (M,F) are 

(nAl5...,nAr) . 

The last description of the Newton slopes makes clear the elementary 

interpretations 

1.3.2 all Newtons slopes A^ of (M,F) are = 0 if and only if 

F is a aa-linear automorphism of M . 

1.3.3 all Newton slopes A. of (M,F) are > 0 if and only if 

F is topologically nilpotent on M , i.e. iff and only 

if Fr(M) c pM where r = rank(M) . 
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The Newton polygon of (M,F) is the graph of the Newton function on [Q,r], 

defined on integers 0 _< i <_ r by 

NewtonF(i) = least Newton slope of (A^A1 (F)) 

) 0 if i = 0 

) X +...+X. if 1 < i < r 
L 1 i ~ ~ 

and then extended linearly between successive integers. In terms of the distinct 

Newton slopes y^ of (M,F) together with their multiplicities mult(y^) , 

arranged in strictly increasing order y^ < y^ < ..., the Newton polygon looks 

like 

length=mult(y^) length=mult(y^) length=mult(y^) • 

The points (mult(y^)+...+mult(y^) , y^ mult(y^)+...+y^ mult(y^)) at which the 

Newton polygon changes slope are called its break-points. From the earlier noted 

fact that the products y^ mult(y^) are all integers, it follows that the break-

points of the Newton polygon are always lattice-points in IR , i.e. they have 

integer coordinates. 

By its very construction, the Newton-polygon is an isogeny invariant (indeed 

over an algebraically closed field it is the isogeny invariant). In contrast to 

the case of Hodge polygons, we have 
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Lemma 1.3.^. 

Suppose we have an exact sequence of ga-F-crystals 

0 • (M1,F1) • (M,F) • (M2'F2} * 0 * 

Then the Newton polygon of the direct sum (M^M^^F^QF^) coincides with the  

Newton polygon of (M,F) . 

Proof. Extending scalars, we may suppose k algebraically closed. By Dieudonne's 

semisimplicity theorem, our exact sequence splits in the "up-to-isogeny" category. 
fllED 

Example. Over IF , take M = % ©Z , F  * — p P P 

The Newton and Hodge polygons are 

Newton Hodge 

p 1 
0 p2 

Remarks. In our characterizations of the Newton slopes of a aa-F-crystal, we 

make use of the integer a , (not just of the automorphism aa), in order to ex­

tend cra to an algebraically closed overfield of k . However, in the next sec­

tion we will give an "internal" characterization (cf 1. U. i+) (i.e., one that in­

volves no extension of scalars) of the Newton polygon (in terms of Hodge polygons 

of iterates). Consequently, the Newton polygon of a given aa-F-crystal over k 

depends only on the automorphism o& of k , and not on the auxiliary choice of 

a . (Of course aa as automorphism of k determines a unless k is finite.) 

By Manin [8], we know that if aa is the identity on k , i.e., if 

k<= ~F , then the Newton slopes of a aa-F-crystal (M,F) on k are precisely the 

p-adic ordinals of the eigenvalues of "F viewed as linear endomorphism of M". 

In terms of a matrix (F_ ) for F , this means that the Newton polygon of the 

aa-F-crystal (M,F) coincides with the Newton polygon of the "reversed" character­

istic polynomial det(l - T(Fjj)) of the matrix (F^ ) . 

However, if aa 4 id* on k , then the Newton polygon of a aa-F-crystal 

(M,F) need not coincide with the Newton polygon of det(l - T(F..)) , where 
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(F^J) is the matrix expressing the action of F on some basis of M . Here is 

an example, due to B. Gross. Over 3F 2 with p E 3 mod k , consider the 
P 

a-F-crystal of rank two with matrix 

' l - P 

(p+l)i 

(p+l)i 

p - 1 

The eigenvalues of this matrix both have ordinal 1/2 (since trace = 0 , det = p). 

But this matrix is q-linearly equivalent, via 1 i 
i 1 , to the matrix 

1 0 

0 p 

and hence our a-F-crystal has Newton slopes {0,1} , not {1/2,1/2} . 

(l.4) Newton-Hodge relations; the basic slope estimate 

In this section we will discuss various relations between Hodge and Newton 

polygons. 

Theorem l.̂ -.l (Mazur) 

For any qa-F-crystal (M,F) , the Newton polygon is above the Hodge polygon. 

Both polygons have the same initial point (namely (0,0)) and the same terminal  

point (namely (r, ord(det(F))). 

Proof. For any aa-F-crystal of rank one, the Hodge slope and the Newton slope 

coincide. Applying this remark to (A°M,A°(F)) = (w(k),aa) and to (ARM,AR(F)) , 

we see that the two polygons begin and end together. To show that 

Newton^i) > Hodge^(i) for 1 < i < r , 

it suffices to show that for each of the exterior powers of (M,F) , we have 

least Newton slope >_ least Hodge slope , 

i.e., we must prove 
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Newton (l) >_ Hodge (l) 
r r 

universally. But in terms of the matrix A. . of F8cr on M8R with respect to 

any R-basis u^,...,^ of M8R , we have 

Hodge^l) = ord(F) = min (ord (A..)) 
i,j p 1 J 

As we may choose the R-base so that this matrix is 

/ entries \ 
P . in R 

Newton slopes An <...< À 1 — — r 

we get 

Hodge (l) = min (ord (A.,)) < ord(p ) = A_ = Newton^d) . 
r . . p 1J — 1 F 

1,J ЩЕБ 

Remarks. If we compare largest rather than smallest slopes, we get 

greatest Newton slope <_ greatest Hodge slope , 

simply because the two polygons are both convex, and have the same terminal point, 

i.e., they end like 

Newton 

Hodge 

л 
г 

Р 

Thus denoting by A and B the least and greatest Hodge slopes and by A^ and 

\^ the least and greatest Newton slopes, we have 

1.4.2 A < A < A < B . — 1 — r — 

As a by-product of this method of proof, we get the 

(l.U.3) Basic slope estimate 

Let (M,F) be a qa-F-crystal of rank r , and let A >_ 0 be a rational 
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number. For any real number x , denote by {x} the "next higher integer", i.e., 

{x} = - [-x]. Then (M,F) has all Newton slopes _> A if and only if for all in­

tegers n _> 1 we have 

ord (Fn+r~^) > {nA} 

^n+r-1/..x _ {nA> 1. e. , F (M) pu M . 

Proof. We begin with the "if" part. Let A^ be the smallest Newton slope of 

(M,F) . Then the smallest Newton slope of (M,Fn+r_1) is (n+r-l)A1 , while by 

hypothesis its smallest Hodge slope is >_ {nA} . By the previous theorem, applied 

to (M,Fn+r-1) , we have 

(n+r-l)A _> {nA} >_ nA for all n _> 1 , 

whence A^ >_ A as required. 

Conversely, we must show that, still denoting by A the smallest Newton 

slope of (M,F), we have 

ord (Fn+r-1) >_ nX1 . 

Extending scalars to R (cf 1.3.Iff) it suffices to show 

nA 
(F®aa)n+r" (M8R) ^ p M8R . 

In terms of a suitable R-basis ^ j . . . , ^ of M8R , we have 

A. 
(F®aa)(u.) = p \i. + elt. of T Ru, . 

1 1 j<i j 

Iterating, we find, for all N >_ i , 

NA (N-l)A 
(Feaa)^(u.) e p V + p Ru._1 + ... 

(N-i+l)A1 
e p M8R . 

Since i £ r , and the LL span M8R , we find 
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-1 
(F0aa) r 1 (M8R) cz p 1 M8R 

as required. 

Corollary 1.4.4 

The Newton function of (M,F) is obtained from the Hodge function of the  

iterates (M,FN) of F by the (archimedean) limit formula 

Newton^(x) = lim — Hodge (x) . F n . n n—>~00 F 

valid for 0 <_ x <_ r = rank(M) . 

Proof. Since both the Newton and Hodge functions are defined first on integers 

0 <_ i <_ r , then interpolated linearly between successive integers, it suffices 

to prove the formula for x = an integer 0 <_ i <_ r . The formula, for (M,F) 

and x = i 5 is equivalent to (indeed term by term identical with) the formula for 

(A1M,A1(F)) and x = l . Thus it suffices to prove universally that, denoting by 

A the smallest Newton slope of (M,F) , we have 

X = lim ^ ord(FN) . 
1 n —y 00 

By the basic slope estimate, we have 

(n+r-l)A >_ ord (FN+R_1) >_ {nÂ }̂ >_ nA , 

from which the required limit formula is immediate. C$ED 

Examples. Consider the a-F-crystal over IF^ with M = Z G 21̂  and F given by 

the matrix 

I 
F = 

P 1 

0 P2 

The graphs of the functions Newton^ and — Hodge are 
F n Fn 
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(2,3) 

(1,1) 

(0,0) 

(1,1-1/n) 

(1,0) 

as drawn : the highest is Newton^ , the middle is that of — Hodge for some 
F 

n >_ 2 , and the lowest is that of Hodge^ . 
r 

If instead we take M = % % % , F given "by 
P P 

F = 
0 1 

P о, 

then the graphs of Newton^ and of all — Hodge _ coincide: 
r 2n T-î-n 

F '(2,1) 

(0,0) 

while the graph of — H o d g e is 
F2n+1 

(0,0) 

U»2n+1; 

(2,1) 

The point of these examples is that the Newton polygon may or may not be 

attained at some finite n , and that the sequence of approximating functions need 

not be monotone. The common features of the examples, namely that all approximants 

are convex polygons lying on or below the Newton polygon, but sharing its begin­

ning and terminal points, are indeed common to all examples. This follows from 

Theorem 1 . 4 . 1 applied to (M,Fn) , and the fact that —Newton = Newton^ . 
F 
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(1.5) Sharp slope estimate 

In this section we will give a sharpening of the basic slope estimate, in 

which the "lag" term r - 1 is replaced by a sum of certain Hodge numbers. 

Sharp Slope Estimate 1.5.1 

Let (M,F) be a qa-F-crystal, and A _> 0 a rational number. Let 

h^jh1,..., be the Hodge numbers of (M,F) . Then all Newton slopes of (M,F) 

are >_ A if and only if for all integers n _> 1 we have 

n+ У h 1 

ord (F i<A ) > {nA} . 

Proof. The "if" part is proved exactly as for the basic slope estimate. To prove 

the "only if" part, we first reduce it to a reasonable-sounding assertion about 

determinants, and then give an unpleasantly computational proof of that assertion. 

Suppose then, that A^ is the least Newton slope of (M,F) and that we are 

given a rational A 

0 1 x 1 x± -

Because the function "ord" assumes only integral values, it suffices to prove that 

ord (F 
пн- У h 1 

i<A ) >_ nA . 

Extending scalars to a suitable R containing p as well as the p 1 , it 

suffices to prove that 

(F®aa) 
n+ У h 
i<A (M8R) er pnA M8R . 

At this point, we must observe that for any real A >_ 0 , we have 

n+ I h1 
ord (A i<A (F)) >_ nA for n > 1 

i . e . , HodgeF(n + I h1) > nA . 
i<A 
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To see that this is true, look at the Hodge polygon. It has a break-point at 

( [ h1 , [ i h1) , and from this point rightwards the slopes are all _> {A} , so 
i<A i<A 

that we have 

Hodge (n + £ h1) >_ £ in. + n{A} _> nA 
i<A i<A 1 

for all real n _> 0 . 

Let us further observe that in terms of a suitable basis un,...,u of 
1 r 

M8R , the matrix of F8aa is of the form 

p 
entries 
in R 

Л 
r 

P 

an upper triangular matrix over R all of whose diagonal entries lie in the ideal 

pAR of R . 

Lemma 1.5« 2 

Let R be any commutative ring with 1 , I cz R an ideal, and <J>:R >• R 

an endomorphism of R such that 

for any x e R , <J>(x) e xR . 

Let M be a free R-module of finite rank, and let F:M * M be a (fr-linear 

endomorphism of M , whose matrix relative to some R-basis {u^} of M is 

upper triangular, and has all of its diagonal entries in the ideal I . Suppose  

that for some integer k _> 0 , we have the congruences 

Ak+n(F) E 0 mod In for all n _> 1 . 

Then we also have 

Fk+n E 0 mod In for all n >_ 1 . 
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If we apply this to our R = W(k')[p1//W] , <j> = aa , I = pAR , M8R with 

F8aa , we get the "sharp" slope estimate. 

To prove the lemma, let us denote by (F ) the matrix of F relative to 
-̂ J 

the R-basis {u.} of M : 1 

F(u.) = I F..UJ ; F.j = 0 if i > J , F.^ e I . 

The matrix of Fn is the product matrix 

< V < * < V ) ••• (O n-1 (Fij))• 

each of whose entries is a sum of products of the form 

.n-1, F i i * *(Fi ! > • • • • si ) 11'12 12'13 V n+1 

By the hypothesis made on <J> , each of these products is divisible by the corres­

ponding product "without <j) " 

F. . • F. . • • • F. 
11,12 12'13 ^ ' V l 

(Of course this product vanishes unless i_ < i_ < ... < i , since (F..) is * 1 — 2 — — n+1 ij 
upper triangular.) So it suffices to show that each such n-fold product lies in 

In"k , for n >_ k . 

Let J(n) denote the ideal generated by the n x n minors of (Fi,J .) . By 
n—k 

hypothesis, we have J(n) ^ I for n >_ k , so it suffices to show that 

F. . • ... F. . e J(n) + I • J(n-l) +...+ In_1J(l) + In , 
1V12 W l 

whenever 1 < i_ < . . . < i _ , < r . Since the diagonal entries F. . lie in I , — 1 — — n+1 — 1,1 

it suffices to treat the case when i1 < i0 < ... < in+1 _ . This case follows 

inductively from the following well-known determinant formula, whose verification 

is left to the reader. 
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Formula 1.5.3 

Let (X. ) be an r x r upper-triangular matrix (X. .=0 if i > j) 

indeterminates. For each subset T ̂  {l,...,r} of cardinality v >_ 2 . 

we define 

т = {tx < t 2 ... < t v} 

det(T) = det 

T1; v 2 xt t T1 , tV 

x V t 2 xt2,t3 Xt2, tv 

xt _,t , 
v-1 v-1 

xt 15t 
v-1 v 

= the (v-l) x (v-l) minor indexed by 

( t l V i » X (t2'---tv) 

and we define 

f(T) = Xt t Xt t Xt t * 
tl,t2 t2't3 v-1' v 

Then we have the formula 

det(T) = 
s<=T-{tl9tv] 

(-l)#S • f(T-S) • nSES X 
s ,s 

( 1 . 6 ) Newton-Hodge decomposition 

In this section we give a fundamental decomposition theorem for 

aa-F-crystalsj in terms of the interrelations between their Hodge and Newton 

polygons. I owe entirely to Ogus the idea that such a decomposition should 

exist. 
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Theorem 1 . 6 . 1 (Newton-Hodge decomposition) 

Let (M,F) be a qa-F-crystal of rank r . Let (A,b) e Z x Z be a break­ 

point of the Newton polygon of (M,F) , which also lies on the Hodge polygon of 

(M,F) . Then there exists a unique decomposition of (M,F) as a direct sum 

(M,F) * (MX«M2 , F^Fg) 

of two a -F-crystals (M^F^ and (M2,F2) , such that 

1 . 6 . 1 

rank (M1) = A 

Hodge slopes of (M 9F1) = {first A Hodge slopes of (M,F)} 

Newton slopes of (M 9F ) = {first A Newton slopes of (M,F)} 

1 . 6 . 2 

rank (M2) = r - A 

Hodge slopes of (M2,F2) = {last r -A Hodge slopes of (M,F)} 

Newton slopes of (M ,F2) = {last r - A Newton slopes of (M,F)} 

In terms of polygons, this means that the Hodge (resp., Newton) polygon of (M,F) 

is formed by joining end-to-end the Hodge (resp. Newton) polygon of (M^,F^) with  

the translate by (A ,b) of the Hodge (resp. Newton) polygon of (M2,F2) . 

Pictorially, we have 

(M1,F1 

(M2,F2) 
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We give the proof in a series of lemmas. 

Lemma 1 . 6 . 3 

Hypotheses as in Theorem 1 . 6 . 1 , there exists a unique F-stable W(k)-submodule 

M <= M such that 

iM^ is free of rank A , and M/M^ is free of rank r - A . 

if we put F1 = F/^ , then the Newton slopes of (M19F ) 

are the first A Newton slopes of (M,F) . 

Lemma 1 . 6 .k 

Hypotheses as in Theorem 1 . 6 . 1 , and notations as in Lemma 1 . 6 . 1 above, put 

M2 = M/M1 , F^ = F/M^ . Then we have a short exact sequence of qA-F-crystals 

0 • (M1,F1) • (M,F) > (M2,F2) y 0 

in which (M 9F1) and (M^jF^) satisfy the properties 1 . 6 . 1 and 1 . 6 . 2 of  

the conclusion of Theorem 1 . 6 . 1 . 

Lemma 1 . 6 . 5 

The exact sequence of qA-F-crystals in Lemma 1 . 6 . 5 above admits a unique  

splitting 

(M,F) - (M1,F1) 6 (M2,F2) . 

Proof of Lemma 1 . 6 . 3 . We first use "Plucker coordinates" to reduce to the case 

when A = 1 . The hypothesis that the Newton polygon of (M,F) has a break-point 

at (A,b) , and that the Hodge polygon of (M,F) goes through (A,b), is equi-

valent to the hypothesis that the Newton polygon of (A M,A (F)) has a break­

point at (l,b), and that the Hodge polygon of (AAM,AA(F)) goes through (l,b). 

Admitting temporarily the truth of Lemma 1 for (A\[3AA(F)) and the point 

(l,b), we obtain a unique AA(F)-stable line L in A ^ , such that (L,AA(F)) 

has Newton slope = b . Therefore if there exists M1 c: M of the sort required in 
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Lemma 1 , we must have L = A (M ), by uniqueness of L . Conversely, if we can 

show that L is of the form AA(M1) for some W(k)-submodule M1 ^ M with M/M. 

locally free, then M1 is uniquely determined by L (Pliicker embedding!), M1 

is necessarily F-stable (since L is), and its Newton slopes are necessarily the 

first a Newton slopes of (M,F) (otherwise the Newton slope of (L,A^(F)) would 

be too big). 

To verify that L is of this form, it suffices to verify that L satisfies 

the Pliicker equations, and for this we may first make any infective extension of 

scalars, e.g., from W(k) to the fraction field K of a suitable ring 

R = W(kf )[p1//N] of the sort considered in 1.2. But over such a K , M8K 

admits a K-basis e , ...,e with respect to which the matrix of F is 

p1 

. л 
г 

P 

where An < ... < XA < À.,n < ... < X are the Newton slopes of (M,F) . Inside 

A (M)8K , it is now visible that there is a unique F-stable line of Newton slope 

b = X^ + ...+ X^ , namely the K-span of e^A.../\e^ . But L8K is also such a line, 

so by uniqueness, we have L8K = Ke^A. . .Ae^ , whence L8K satisfies the Pliicker 

equations. 

It remains to treat the case (A,b) = (l,b) . In this case, as the Hodge 

polygon goes through (l,b), the endomorphism F of M is divisible by p^ . 

Dividing F by p~k , we are reduced to the case (A,b) = (1,0); i.e., the case in 

which zero occurs as a Newton slope of (M,F) with multiplicity one. We must 

find an F-stable line L ̂  M on which F induces an automorphism, and show that 

any such line is unique. For this, it suffices to show that for every integer 

n >_ 1 , there is a unique F-stable line L^ in M/pnM on which F induces an 

automorphism. Because F has zero as a Newton slope with multiplicity one, 

all Newton slopes of A (F) are strictly positive, and hence we have 
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A2(FV) E 0 mod p if v >_ rank(A2M) = (̂ ) 

i.e., A2(FV) E O mod pn if v >_ n(^) . 

But all iterates FV of F also have zero as a Newton slope, and hence all 

iterates FV of F have zero as a Hodge slope, i.e., 

FV i 0 mod p for v = 1 , 2 , 3 , . . . . 

For any v >_ n(2) 5 we thus have FV f 0 mod p , but all 2 x 2 minors of FV 

are E 0 mod pR . This means exactly that for each v ̂  n(^) 5 the image of 

FV : M / p ^ > M/pnM 

is a line L ^ M/p M (in matricial terms, at least one of the columns of the  n, v ^ 
matrix of FV is not divisible by p , and all the other columns are congruent 

mod pn to W(k)-multiples of this column). By the definition of the Ln, v ̂  as 

images, we have 

F(L ) = L n c L for all v . n,v n,\>+l n,v 

Since the L for v > n(^) are lines, we must have n,v — 2 

F(L ) = L = L for v > n(T0) . n,v n,v+l n,v — 2 

Therefore if we define L to be L for any v > n(^) , L is an F-stable 

line on M/p1^ on which F induces an automorphism. That Ln is the unique such 

line results from the fact that 

Ln = r\FV(M/V%) , 

so that L must contain any such line, and hence be equal to any such line, 

This concludes the proof of Lemma 1 . 6 . 3 QED . 

We now turn to the proof of Lemma 1 . 6 . 4 . By construction, ( M ^ F ^ has as 

Newton slopes the first A Newton slopes of (M,F) , and therefore by ( 1 . 3 . 4 ) 
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(M^JF^) must have as its Newton slopes the last r - A Newton slopes of (M,F) 

In terms of a basis of M adapted to the filtration M1 c M , the matrix of F 

looks like 

A IB 

0 I) 

with A the A x A matrix of F1 on M1 , and ID the (r-A) * (r-A) matrix of 

F2 on M2 . 

Let us begin by showing that this matrix has the same Hodge polygon as does 

A 0 \ 

\0 3D/ 

For this, it suffices to show that "elementary column operations" allow us to pass 

from one to the other, i.e., to show that all the columns of IB are W(k)-linear 

combinations of the columns of A . By hypothesis, the Hodge polygon of (M,F) 

goes through (A,b), and hence 

all A x A minors of 
fA B 
0 B are = 0 mod p"̂  , 

in particular all A x A minors of (iA,B) are = 0 mod p 

Because the Newton polygon of (M,F) goes through (A,b) and because (M^,F ) 

has as Newton slopes the first a Newton slopes of (M,F), we have 

detGA) = p b x unit. 

It now follows by Cramer's rule that all columns of IB are W(k)-linear com­

binations of the columns of A . Hence the matrices 

r 1 
\ o vj 

A 0 

0 I) 

have a common Hodge polygon. 
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Intrinsically, this means that (M,F) and (M^M^ F $F ) have a common 

Hodge polygon. Therefore we have a partition 

{Hodge slopes of (M,F)} = 
i=l,2 

{Hodge slopes of (lYLjF^} . 

So we need only verify that the Hodge slopes of (M^,F^) are the A smallest 

among those of (M,F). But the sum of the smallest A Hodge slopes of (M,F) is 

b (the Hodge polygon of (M,F) goes through (A,"b)). So it suffices to see 

that the sum of all A of the Hodge slopes of (M ,F ) is b . For this just 

recall that the Newton polygon of (M^F.^) ends at (A,b), and hence its Hodge 

polygon ends there as well. QED 

We now turn to the proof of Lemma 1 . 6 . 5 • In a basis of M adopted to 

M c M , the matrix of F is 

A B 

0 3D 

As we have seen in the proof of Lemma 1 .6.U , the columns of B are all 

W(k)-linear combinations of those of Jk , so we can write this matrix 

Ik 

о 

AT 

TD 

for some integral matrix (C . 

Let n denote the largest Hodge slope of A , and let m denote the smallest 

Hodge slope of 3D . Then p/A and p 3D are integral. Since m ^ n by 

Lemma 1.6.1*9p is integral. Notice that either pnA 1 is topologically nil-

potent (i.e., that the a a-F-crystal (M - ^ p 1 ^ ) has all Newton slopes > 0) , 

or that p D is topologically nilpotent (i.e., (M^p Fg) has all Newton slopes 

> 0), or possibly both; this is immediate from the inequalities 
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*!<••.< A A < n < m < V L 1 ' • • I X

R 

X A < A A + 1 

To split the projection of (M,F) onto (M^F^) is equivalent to finding an 

A x (r-A) matrix X , with entries in W(k) , so that ( ) , viewed as the matrix 

of a W(k)-linear cross-section M2 -> M of the projection M ~> M2 , is a 

morphism. of aa-F-crystals. Matricially, this means 

/ x \ U m\ I x° 

\ 1 / \ 0 H) / 

i.e. , 

XD = ,AXa + AŒ 

I.E., 

-i a 

p nA X p % = X G + E 

i.e. , 

X = ( P v V ^ ) a " a - £ a~ a • 

Because either p Ik or p n-D is topologically nilpotent, the method of 

successive iterations leads to a unique solution of this equation. 

Remarks. If we apply this Newton-Hodge decomposition to the contravariant 

Dieudonne module of a p-divisible group, we recover the cannonical decomposition 

of such a group over a perfect field into the product of an etale group, a bi-

connected group, and a toroidal group. 

etale biconnected toroidal 
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II. F-crystals over F -algebras  p 

(2.l) Basic definitions 

In this section we recall the basic notions concerning crystals on arbitrary 

affine schemes in characteristic p > 0 (compare [ 2 ] ) . By an absolute test object, 

we mean a triple (B,I,y) consisting of a p-adically complete and separated 

X^-algebra B , a closed ideal I c B with p e l , and a divided power structure 

y = {Y n} on the ideal I for which "Yn(p) = "the image, in B , of p D/n! in . 

Given an IF -algebra A q , by an AQ-test object we mean a quadruple (B,I,y;S) 

consisting of an absolute test object (B 9I sy) together with a structure s of 

A q - algebra in B/l , i.e., together with a homomorphism of ]F^-algebras 

s : A q • B/I . A map of AQ-test objects f : (B,I,y;S) > (B' , 1 ' ,y' , s ' ) is 

an algebra homomorphism f : B * C which maps I to I' , "commutes" with the 

given divided power structures YJY' 5 a n a- induces an A^-homomorphism 

B/I • B'/l! (for the given structures s,s'). 

A crystal M on A is rule which assigns to every A -test object — u o o 
(B,I,y;S) a p-adically complete and separated B-module, noted M(B,I,y;S) , and 

which assigns to every map f : (B,I,y;S) > (B',I',y' ;s') of A -test objects 

a B 1 -i somorphi sm 

M(f ) 
M(B,I,Y;S) 8 B' > M(B' ,1' ,Y' ;S' ) 

in a way compatible with composition of maps of test objects. A crystal M is 

said to be locally free of rank r if for all A^-test objects (B,I,Y;S) , the 

B-module M(B,I,y;s) is a locally free B-module of rank r . A morphism of 

crystals on A , u : M • N , is a rule which assigns to each A -test object 

(B,I,Y;S) a B-module map 

u(B,I,y;s) : M(B,I,y;s) ^N(B,I,y;s) 

in a way compatible with the isomorphisms M(f),N(f) . The category of crystals 
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on Aq up to isogeny is obtained from the category of crystals on Aq by keeping 

the same objects, but tensoring the Horn groups, which are Z -modules, over E 

with fl^ . An isogeny between crystals on Aq is a morphism of crystals on AQ 

which becomes an isomorphism in this new category (explicitly, u : N • IA is an 

isogeny if and only if for some integer n >_ 0 , there exists v : M > N with 

uv = p = vu). 

Suppose we are given two IF^-algebras, Aq and Bq , and a homomorphism 

<J> : AQ * . If (B,I,y;s) Is a B -test object, then (B , 1 ,y ; s • $ ) is an 

A^-test object. Given a crystal M on A^ , the "inverse image" crystal M(0) 

on B is defined by the formula o J 

M((j))(B,I,y;s) = M(B,I,Y;s(J)) . 

Similarly, given a morphism u : M > N of crystals on Aq , its "inverse image" 

u(4>) . M U ) > N U ) IS DEFINED BY U ^ ( B , I , Y ; S ! = U(B,I,Y;S4)) . 

For any IF -algebra A , we denote by a : A y A the absolute Frobenius 

endomorphism a(x) = x^ , and by aa , a >_ 1 , its a ^ iterate. By a 

aa-F-crystal (M,F) on Aq , we mean a locally free (of some rank r ) crystal M 
( ^ \ 

on A^ together with an isogeny F:M > M . A morphism of a -F-crystals 
on Aq , f:(M,F) y (M' , F' ) , is a morphism f:M y M' of crystals on A^ 

/ a \ 
such that F'-fv" - f • F . The cate gory of a -F-crystals up to isogeny, and 

the notion of an isogeny between aa-F-crystals, are defined in the expected way. 

Given a aa-F-crystal (M,F) on A q , and any homomorphism of JF^-algebras 

$:A O y B q , the inverse image ( M ^ , F ^ ) is a aa-F-crystal on B q (because 

a a • <f> = <j> • a a for any homomorphism <j> of F_^-algebras). 

( 2 . 2 ) Perfect rings. 

When A is a perfect IF -algebra, i.e., when a:A • A is an automor-

phism, the ring W(A ) of Witt vectors of A q provides an initial object in the 

category of all AQ-test objects, namely (W(A q), (p), y ; s) . The divided power 

structure y on pW(A^) is uniquely determined by the requirement Y^(p) = p n/n!; 
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the homomorphism s:AQ W(A )/(p) is the inverse of the isomorphism 

W(AQ)/(p) A q obtained by sending a Witt vector to its first component. 

Evaluation at this initial object provides an equivalence of categories between 

the category of crystals on A q and the category of p-adically complete and 

separated W ( A q )-module s . Given a homomorphism §'- 0̂
 y B Q of perfect 

IF -algebras, the construction M I >- M (0) on crystals corresponds to the con­

struction on modules 

M I • M 8 W(B ) = the W(B )-module M(o) 
W(A ) ° 

o 
in which W ( B q ) is viewed as a W(Aq)-algebra by means of W(<|>):W(Ao) >• W ( B Q ) 

If we denote by a the automorphism W(a):W(A Q) W ( A q ) , then the 

category of a -F-crystals on our perfect A q is equivalent to the category of 

pairs (M,F) consisting of a locally free (of some rank r ) W(AQ)-module M 

together with a aa-linear map F:M > M which induces an automorphism of 

M®™ $ . Z p 
P 

In particular, when A q is a perfect field k , we recover the more mundane 

notion of aa-F-crystal with which we were concerned in Chapter 1. 

( 2 . 3 ) Grothendieck*s specialization theorem. 

We now turn to the consideration of a aa-F-crystal (M,F) over an arbitrary 

F^-algebra A q . For any homomorphism ^:^-Q * k with k a perfect field, 

( M , F ) ^ is a aa-F-crystal over k . Its Newton and Hodge polygons depend only 

on the underlying point ker(cj)) e Spec(A Q), and not on the particular choice of a 

perfect overfield of the residue field at this point. This allows us to speak of 

the Newton and Hodge polygons and slopes of (M,F) at the various points of 

Spec(A Q) . The following theorem and corollary are a slight strengthening of 

Grothendieck's specialization theorem. 
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Theorem 2.3.1 (Grothendieck) 

Let (M,F) be a aa-F-crystal of rank r over an arbitrary F -algebra A 

Let X >_ 0 be a real number. The set of points in Spec(AQ) at which all Hodge  

(resp. Newton) slopes of (M,F) are _> X is Zariski closed, and locally on 

Spec(AQ) it is the zero-set of a finitely generated ideal. 

Corollary 2.3.2 

Let P be the graph of any continuous IR-valued function on [0,r] which is 

linear between successive integers. The set of points in Spec(A ) at which the  U r Q _ 

Hodge (resp. Newton) polygon of (M,F) lies above P is Zariski closed, and is  

locally on Spec(A ) the zero-set of a finitely generated ideal. 

Proof. The Corollary follows by applying the theorem to the various exterior 

powers of (M,F) . The theorem for Newton slopes follows from the theorem for 

Hodge slopes, applied to a suitable iterate (M,Fn) of (M,F) , as follows. 

Because Hodge slopes are always Integers, and Newton slopes are always in ~- TL 
a 1 for a -F-crystals of rank r , we may assume that X lies in ^ T ^ " According 

to the basic slope estimate, we have 

n+r—1 
F has all Newton slopes _̂ A > F has Hodge slopes >_ nX 

"lr ^ 
F has all Newton slopes _> n+r-1 

Therefore, if we choose n so large that 

1 . n X < X r! n+r-1 

then we have 

n+r—1 
F has all Newton slopes >_ X 4 ' * F has all Hodge slopes >_ nX . 

So we are reduced to proving the theorem for Hodge slopes. 

As replacing A^ by its perfection A ^ e r f and (M,F) by its inverse image 

on A-o 
p e r f alters neither Spec (A ) nor the perfect-field-fibres ( M , F ) ^ of 
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(M,F) at the points of Spec(AQ) , we may assume that A q is perfect. As the 

theorem is local on Spec(AQ) , we may further assume that (M,F) is a free 

W(Ao)-module of rank r with a <ja-linear endomorphism F . Because Hodge slopes 

are integers, we may also assume that A is an integer. 

In terms of a basis of M , F is now given by an r x r matrix (F^ ) 

with entries in W(A ) . For any homomorphism ^ : A
0 k with k a perfect 

field, ( M , F ) ^ is given by the r x r matrix (W(cJ>)(F. .)) obtained by applying 
1 5 J 

<J> component-wise to the F. . , individually thought of as Witt vectors. Now 
1 3 J 

( M , F ) ^ has all Hodge slopes >_ A if and only if all the W(<f>)(F. .) lie in 
1 5 J 

A 2 
p W(k) , i.e., if and only if the first A components of each of the r Witt-
vectors W((f>)(F.- .) all vanish, i.e., if and only if $ annihilates the ideal in 

2 
A q generated by the first A Witt-vector components of each of the r matrix 
coefficients F. . e W(A ) . 

i,J o 

A question. Is there a natural structure of closed subscheme on these Zariski 

subsets of Spec(AQ) defined by "slopes _> A"? Given a aa-F-crystal over 

3F [e]/(e ) , does it make sense to ask if its Newton or Hodge slopes are "every­

where" >_ A ? 

(2.U) Newton-Hodge filtration. 

In this section we will consider the case in which A q is an IF^-algebra of 

one of the following two kinds: 

A is smooth over a perfect subring A of A . o oo o 

A q is a formal power series ring in finitely many variables 

over a perfect subring A of A * oo o 

In both cases, there exists a p-adically complete and separated Z^-algebra A^ 

which is flat over TL , together with an isomorphism A^/pA^ A q , such that 

for each n _> 1 , A^ = kj^+1k^ is formally smooth over Z / p N + 1 Z . The al­

gebra A^ is naturally a W(Aqq)-algebra; it is unique up to automorphisms which 
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are the identity on W(A ) and which reduce mod p to the identity. The ab­

solute Frobenius map 0 : ^ Q

 y ^ Q

 m a y ^ e lifted, non-uniquely in general, to a 

ring homomorphism E : A • A which is necessarily o-linear over W(A ) . 

The algebra A^ provides an A -test object, namely (A^,(p),y;s) , in which 

s is the inverse of the given A /pA — > A . This A -test object is "pseudo-

initial" in the sense that any A^-test object receives a map from it, but this map 

need not be unique. Evaluation at this "pseudo-initial" object provides an equi­

valence of categories between the category of crystals on A q and the category of 

pairs (M,V ) consisting of a p-adically complete and separated A^-module M to­

gether with an integrable, nilpotent W(A )-connection. 

If we fix a lifting Z : A^ > A^ of a , we similarly obtain an equiva­

lence of categories between the category of aa-F-crystals on A^ and the category 

of triples (M, V ,F^) consisting of a locally free (of some rank r ) A^-module 

M together with an integrable, nilpotent W(Aqq)-connection V and a horizontal  

(2 A) (Ea) 
morphism F : (M ,V ) • (M,V) which induces an isomorphism after 

(E ) a 

tensoring M and M over Z with Q¿ 
p p 

per f 
Let us denote by A the perfection of A . The method of successive 

o o 

Iterations allows us to construct for each choice of E , a unique homomorphism 

i(l) : A y W ( A P E R F ) which reduces mod p to the inclusion A Q • ^ P e r f 

1 oo o o o 
and which sits in a commutative diagram 

A - Í ( Z ) > W ( A p e r f ) 

OO o 

[z ^Jw(a) 

A r , w ( APerf } . 

This homomorphism i(E) should be thought of as the universal "E-Teichmuller 

point" of A^ . In fact, i(E) provides a construction of W ( A p e r f ) as the 

p-adic completion of the "E-perfection" lim A^ (in which the successive tran­

sition maps A • A are all E ) of A . Notice that 
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(2.U.1) pA = 1(Z) (A ) 0 PW(Aperf) 
oo oo o 

simply because A^/pA = A <= Aperf * W(Aperf) /pW(Aperf) 

Given a cra-F-crystal on Aq , thought of as (M,V9FE) , its inverse image on 

Aperf is the pair (MjF̂ ,) (i(E)) obtained from (M,F ) on A0 by the extension 

of scalars i(z) : A • W(APERF) . 

Theorem 2.k.2 (Newton-Hodge filtration) 

Let (M,V,F ) be a ga-F-crystal over an F^-algebra Aq of the type dis­ 

cussed above in 2.h. Suppose that (A,b) € Z x 7L is a break point of the Newton  

polygon of (M,V,FE) at every point of Spec(AQ) , and that (A,b) lies on the  

Hodge polygon of (M,V,FS) at every point of Spec(A ) . Then there exists a  

unique F^-stable horizontal A_-submodule M1 E ̂  M , with M1 locally free of  

rank a , and M2 === M/M1 locally free of rank r - A , such that 

at every point of Spec(AQ) , the Hodge (resp. Newton) 
slopes of (M , v|M , F21Mi^ are the A smallest of  
the Hodge (resp. Newton) slopes of (M,V,F^) , 

at every point of Spec(AQ) , the Hodge (resp. Newton) 
slopes of (M2, V|M2, F^|M2) are the r - A greatest  
Hodge (resp. Newton) slopes of (M,V,F^) . 

Furthermore, when A is itself perfect., the exact sequence of qa-F-crystals 
Q L _ _ ^ < 

o y (MX, V|MI9 FE|M1) y (M,V,FZ) y (M2, V|M2, FE|M2) y 0 

admits a unique splitting. 

Proof. Localizing on Spec(AQ) , we may suppose that M is a free A^-module of 

rank r . Consider first the case (A,b) = (l,b) . Then the least Hodge slope is 

b at every point. This means that each matrix coefficient F. . in A^ has 

i(E)(F. .) e W(APERF) with its first b Witt-vector components nilpotent, and 
1 3 J ° 
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hence zero, in AP6RF . Therefore i(Z)(F..) lies in pbW(Aperf) , and so F. 
o ij ^ o ij 

lies in p A^ . So dividing F by pb , we may assume b = 0 . This means that 

the matrix coefficients FIJ generate the unit ideal in A^ (because after ex-

tending scalars to W(Aperf) , their first Witt-vector components generate the unit 
per f 

ideal in Aq ; as these first components are just the F mod p , in Aq , the 

F_̂  mod p generate the unit ideal in Aq and hence the F_ generate the unit 

ideal in A^ ) . For every iterate FV of F , its matrix coefficients still 
r 2 v generate the unit ideal. But for v >_ n(^) ? all Hodge slopes of A (F ) are >_ n , 

at each point of Spec(AQ) , so that all 2 x 2 minors of FV lie in pnA (by 

the same Witt-vector argument in W(APer^)) . So we can construct the required 

line L ̂  M as the "limit" of the images mod pn of FV , for v _> n(^) , just 

as we did in the case of a perfect field. This construction via images of iterates 

of F makes obvious that L is F-stable and horizontal (since F itself is 

horizontal). The slope assertions about F on L and on M/L are pointwise, so 

are already proven. 

We do the general case (A,b) by constructing the required line L in 

A^(M) . It remains only to see that this line Is of the form A"̂ (M ) for some 

locally free M1 cz M of rank A with M/M1 locally free. [The F-stability and 

horizontality of M1 then are consequences of the F-stability and horizontality 

of the line; the slope assertions about M1 and M/M_̂  are pointwise, so are 

already proven.] To see that L satisfies the Pliicker equations, it suffices 

to do so after an arbitrary injective extension of scalars. For this purpose we 
first embed A in W(A Perf) . Then, because A0 Perf is reduced we can embed 00 o o 
W(APERI) in the product, indexed by all homomorphisms <j> : Aper • k with k 

a perfect field, of the W(k)'s. This reduces us to the case Aq = a perfect 

field, in which case we have already proven it. 

As for the splitting in the case of a perfect Aq , the proof is word-for-

word the same as in the case of a perfect field. 
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Remarks 

Let (M,V,F) be a aa-F-crystal over an IF -algebra A of the type dis-

cussed above in 2.k. Suppose that at every point of Spec(A Q) , the Newton and 

Hodge polygons coincide with each other, and that they are constant, i.e., inde­ 

pendent of the point. Let us denote by h0,*!1,..., the Hodge numbers. Then the 

associated graded pieces of the Newton-Hodge filtration are aa-F-crystals 

(M V F ) of rank h 1 , such that F. = p 1?. with (M.,V.,F.) a "unit-root" 1 1 1 1 1 1 1 1 

(all Newton slopes = 0) aa-F-crystal. But a unit-root cra-F-crystal of rank h 1 

is equivalent (cf [ 7 ] ) to a continuous representation of the fundamental group of 

Spec(A ) in GL(h1,W(F )) . It would be interesting to understand the "meaning" 
P a

 a of these p-adic representations, especially when the a -F-crystals in question 

arise as crystalline cohomology groups of families of varieties. 

( 2 . 5 ) Splitting Theorems. 

In this section, we give a splitting theorem up to isogeny for slope filtra­

tion of aa-F-crystals over perfect rings. 

Theorem 2 . 5 * 1 

Let A be a perfect ring, and let  o x " 

0 y (M1,F]_) y (M,F) y (M 2,F 2) y 0 

be an exact sequence of qa-F-crystals over A q . Suppose that for some rational  

number X , the Newton slopes of (M jF^ at every point of Spec(A Q) are all 

<_ X , while the Newton slopes of (M ,F ) at every point of Spec(A Q) are all > X. 

Then in the category of qa-F-crystals up to isogeny, this exact sequence splits  

uniquely. 

Proof. Localizing on A q , we may assume that M, M_L, M 2 are free W ( A q ) -modules 

of ranks r, r l 5 r 2 respectively. Because the Newton slopes of (M,F) at any 

point of Spec(A Q) lie in the discrete set 1/r! Z , we may in fact choose rational 

numbers A < X 2 such that at all points of Spec(A Q) , (M-^F^ has all Newton 
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slopes £ A^ , while (M^F^) has all Newton slopes _̂ A . In terms of a basis of 

M adopted to the filtration, the matrix of F has the shape 

'A E 

10 D 

A splitting of the exact sequence is a morphism (M^jF^) • (M,F) which is a 

cross-section of the projection. In terms of the given bases, the matrix of a 

splitting is an r x r matrix of the form 

X 

1 

where X is r1 x r3 , 1 denotes the r^ x r^ identity matrix, and where X 

satisfies the matrix equation 

a 
a 

AX + (E = XB 
i.e., 

i.e., _ a _ a 

X - (A - 1XD) a - - ( A" 1E) Q " • 

We must show that this matrix equation has a unique solution matrix X with 

entries in W ( A Q ) 8 QP . Let us denote by Mat the space of all r1̂  x R2 

matrices with entries in W ( A Q ) 8 3^ , with the linear topology defined by the 

entry-by-entry congruence modulo pnV/(A ) . Consider the a a-linear endomorphism 

V of Mat defined by 

—a 
x i • v(x) = C^" 1 x iD) a 

Suppose we can prove that V is topologically nilpotent. Then our matrix 

equation 

x _ V(x) = -(Qk'h)f a-a 

X° = ñ 1 Х Ш - Jk 1 [ C KSOSOSM 
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obviously has the unique solution 

{(n+l-r1)(N-A1)}{(n+l-r 

and we are done. 

We will deduce the topological nilpotence of V from the basic slope estimate, 

applied to |i 1 and to D . Because (M^F^) has all slopes >_ A^ , we have 

{(n+l-r )A } 
(F ) = 0 mod p . 

Because /M^,F^) has all Newton slopes <_ A^ , its determinant has its single 

Newton=Hodge slope <_ r-j_̂i — r̂î î " • So putting N = {r-|_Â } , the a a-linear 

endomorphism p^F^)-1 of M18Q^ actually maps M1 to M1 . Hence (M.̂  ̂ ( F ^ )_1) 

defines a a a-F-crystal over A0 , all of whose slopes are >_ N - y1 . So by the 

basic slope estimate, we have 

p (F̂ J = 0 mod p 
{(n+l-r1)(N-A1)} 

and hence we have 

{(n+l-r )A } 
p (F ) = 0 mod p 

{(n+l-r)(A2-A1)-N(r-l)} 

In terms of the matrices A 1,3D , these estimates may be rewritten 

a 2a (n-l)a 
BH)a Da Ba = 0 mod p 

{(n+l-r )A } 

{(n+l-rjA } (n-l)a _ a _ 
p d d A . . . A A = 0 mod p 

[(n+l-r)(A2-A1)-N(r-l)} 
5 

which together give the estimate for the endomorphism V 

{(n+l-r)(A -A )-N(r-l)} 
Vn = 0 mod p 

As A2 > Al 5 thiS estimate establishes the required topological nilpotence of V . 
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(2 .6 ) Isogeny theorems 

In this section, we will give an Isogeny theorem for aa-F'-crystals over 

curves. Thus let A he an IF -algebra which is either  o P 

an integral domain, smooth of dimension 
<_ 1 over a perfect field k 

a formal power series ring in one vari­
able k[[T]] over a perfect field k 

Theorem 2 . 6 . 1 

Let (M,V,F) be a qa-F-crystal over an F^-algebra A q of the above (2 .6 )  

sort. Suppose that A is a positive real number, such that at every point of 

Spec(A Q) , all Newton slopes of (M,V,F) are >_ A . Then (M,V,F) is isop;enous  

to a qa-F-crystal (M',Vf,F') which is divisible by A in the sense that 

for all n >_ 1 , (F' ) n = 0 mod p^ n X^ 

(where [x] denotes the integral part of the real number x ). 

Proof. In the case when A q is itself a perfect field, the basic slope estimate 

^ives (r denoting the rank of M ) 

^n+r-1 _ A _ {nA} 
F = 0 mod p for all n >_ 1 

which in turn implies that if we put v = {(r-l)A}, we have 

p VF n E 0 mod p'-nA^ for all n >_ 0 . 

Therefore we can define a W(k)-module M* with 

M <= M f c= p~ VM 

^y 

/ n i 
M f = I image of r . n : M • p VM 

n>.0 WnX^ , 
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The basic inequality [x+y] >_ [x] + [y] allows one to check that for all n >_ 0 , 

the operator Fn/p^n^ maps M' to itself. The fact that M' is "caught" be­

tween M and p VM guarentees that M' is a free W(k)-module of the correct 

rank. The inclusion of (M,F) into (M1,F) is the required isogeny. 

In the general case, the basic slope estimate applied pointwise together with 

the "Witt-vector-component"-argument already used shows that over Aoo we still 

have 

pVFEn E 0 mod p^nA^ for all n >_ 0 . 

So it is natural to define an A -module MT with 

CO 
M c M V p M 

^y 

M' = 

n>0 
Ï image of 

p[nAj 
(IN) 

M 

Clearly M' is horizontal (it1s defined in terms of the horizontal maps ^^n), and 

is stable by all the operators F^/p'"11^ , now viewed as lan-linear endomorphisms 

of M1 . The only problem is that I cannot prove (or disprove!) that M' is a 

locally free A^-module. (Even the fact that M' is finitely generated depends on 

the fact that, in the case envisioned, Aq is noetherian. Can one give an 

effective bound on the number of terms needed in the apparently infinite sum of 

images which defines M' ?) 

To circumvent this difficulty, we will define a larger A^-module M" 

M c M' c M" c p VM r M_ m 
Zdj P 
P 

which will have all the required properties. Let us denote by Kq the fraction  

field of Aq , and by C(KQ) "the completion of the local ring of A^ at the 

prime ideal pA^ . (The notation ^(K ) is to remind us that this is a Cohen 

ring for the field Kq , i.e., a mixed characteristic, complete, discrete, abso­

lutely unramified valuation ring with residue field Kq .) By its construction we 
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see that any derivation of the Aoo into itself, as well as any endomorphism 

£ :^oo h -̂oo lifting the absolute Frobenius, extends by continuity to this 

C(K ) . Because C(K ) is flat over A , we can tensor the chain of inclusions o o 0 0 

between M and M' to obtain 

M T M' r- p~ VM M8 $ 
P 

n n n n 

M0C(K ) c- M'8C(K ) - p"VM8C(K ) ^ (M8C(K ))8„ $ o o o o Z p 
P 

We define M" as the intersection (inside (M8C(K ))8rT7Q )  o 7L p 
P 

M" = (M F 8 C(K ) ) P (M8„ \ ) 
Aoo ° P P 

This description of M n shows that it is both horizontal, and stable under all 

the operators (F^)n
//p'"nA . 

To see that M n - p VM , simply notice that 

(p~VM8C(K0)) 0 (M8^ ffi ) = p~VM 
P 

(this because M is locally free, and C ( K Q ) H (A^®1^) = Aoo ) . Thus we have 

M ̂  M" ̂  p~VM . 

Because A q is noetherian, this shows that M is finitely generated. So it 

remains only to show that M" is flat over A^ . 

Let us admit for the moment the following assertion about M M : 

for any f e A m with f I pA^ , M" 
has no f-torsion, and M"/fM" has no 
p-torsion. 

From it, we easily deduce the flatness of M" , as follows. It suffices to show 

that M n is flat after we extend scalars from A^ to the complete local rings of 

A^ at all closed points of A q . But such a complete local ring A m is of the 
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form W(k')[[T]] , where k' is the residue field at the closed point, and T may 

be chosen as any element in A whose reduction mod p in A is a uniformizing 

parameter at the closed point. Because A^ is flat over A^ , we deduce from the 

admitted assertion that 

M"®W(k')[[T]] has no T-torsion and 

M"8W(kf)[[T]]/(T) has no p-torsion. 

Since M"8W(k')[[T]] is finitely generated, its flatness over W(k')[[T]] follows 

from the local criterion of flatness (SGA 1 , Expose IV, Thm 5 . 6 ) . 

To prove the assertion, notice first that Aoo is a domain (being Z -flat, 

p-adically separated, and having A^/pA^ a domain) , and f ̂  0 . Since 

M" p~VM , and p~ VM is locally free and hence flat over A m , there is no 

f-torsion in M" . Because f £ pA^ , it becomes a unit in C ( K
Q ) •> a n d s o "by "the 

definition of M" we have 

p~VM/M" has no f-torsion 

IT —v 
Therefore the inclusion M cr p M gives an inclusion 

M"/fM" cz p~VM/fp~VM ^"~"> M/fM . 

So to have M"/fM" without p-torsion, it suffices if M/fM has no p-torsion. As 

M is flat over Aoo , being locally free, it suffices if kjfk^ has no p-torsion. 

This follows from the fact that f ̂  pA^ , while A^ is flat over % , 

p-adically separated, and A^/pA^ is a domain. 

Remark. If we allow A to be a domain which is smooth of arbitrary dimension  o 
n over a perfect field k , exactly the same argument shows that M" will be flat 

over the complete local rings A^ of A^ at all points of codimension one in 

Spec(A ) (there A will be of the form C(k')[[T]] with k' the no-longer-o 0 0 

perfect residue field and C(k f) a Cohen ring of k' ) . In other words, the 
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isogeny theorem is true outside a closed set of codimension >_ 2 on any smooth-

over-a-perfect field A q . It would be interesting to know if the isogeny theorem 

is in fact true, without exceptional sets, in this more general case. 

Corollary 2 . 6 . 2 (Newton filtration) 

Let A be an F -algebra which is either a smooth domain of dimension one  o p — ° — 
over a perfect field k , or is k[[T]] . Suppose we are given a qa-F-crystal 

(M,V,F) over A q of rank r which at every point of Spec(A Q) has the same 

first Newton slope A , with the same multiplicity A . Then (M,V,F) is 
a A isogenous to a a -F-crystal (M', V',F') which is divisible by p , and which 

sits in a short exact sequence of qa-F-crystals over A Q 

0 y (NLJ,V ,F' ) • (M' ,V ,F' ) y (M 2,V ,F' ) • 0 

in which 

(,V',F') has rank A , is divisible by 
P A and at each point of Spec(AQ) all its  
Newton slopes are A 

(M'V'jF') has rank r - A , is divisible  

by p and at each point of Spec(AQ) all  
its Newton slopes are > X . 

Proof. By the isogeny theorem, we may suppose (M,V,F) itself to be divisible by 

p A . For any integer n _> 1 such that nA e 22 , the n t h iterate (M,V,Fn) is 

divisible by p n A , i.e., all Hodge slopes of (M,V,Fn) are >_ nA , at each point 

of Spec(AQ) . Since the first Newton slope of (M,V,Fn) is nA , with multi­

plicity A , at each point of Spec(AQ) , we can apply the Newton-Hodge theorem 

(cf 2.h) to (M,V,Fn) and the point (A,AnA) . This produces a short exact 

sequence of a -F-crystals 

0 • (M l 9V,F n) • (M,V,Fn) • (M2,V,Fn) • 0 , 

which for n = 1 (i.e., the case A e % ) completes the proof. In general, we 
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need only observe that in terms of a lifting Z of a:A >• A , the submodule 
o o 

M c: M is simply the intersection 

N>_1 
image of 

nN 

nNX 
P 

: M 
: zaN ; 

M 

and M 1 is therefore F-stable. Then we can take (M l 5V,F) ̂  (M,V,F) as the 

solution to our problem. 

It remains to see why the short exact sequence we have constructed splits 
perf "nerf uniquely over the perfection A^ of A We have proven that, over A^ 

it splits uniquely in the "up-to-isogeny" category i.e., by an F-compatible map 

M_ • M with coefficients in W ( A p 6 r f . We must show this map has coef-

ficients in W(A^ e r^) . But this same map also provides an "up-to-isogeny" 

splitting of the exact sequence of n ^ iterates 

0 > (M^F^) y (M,Fn) • (M 2 >F 2
D) — * 0 . 

But for any n with nX e X , this is just the Newton-Hodge filtration of (M,Fn) 

attached to the point (A,AnX) , which over _/\PeP^ has a unique splitting 

(M 2,F 2
n) ——y (M,Fn) . The underlying map M2 > M of this splitting, which 

has coefficients in W(A^er"^) , must, by uniqueness, coincide with the underlying 

map of our "up-to-isogeny" splitting. 

Corollary 2 . 6 . 3 

Hypotheses as in the previous Corollary 2 . 6 . 2 , suppose in addition that the  

entire Newton polygon of (M,V,F) is constant, i.e., independent of the point in 

Spec(A ) . Let X ,...,X be the distinct Newton slopes, and let A ,...,A be 

their multiplicities. Then (M,V,F) is isogenous to a qa-F-crystal (M',V',F') 

which is divisible by p , and which admits a filtration 

0 cr (M^,V ,F' ) c (M^,V ,F' ) n . . . a (M^,V ,F' ) = (M? ,V ,F' ) 

in which 
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(M^,V',Ff) has rank A 1 +...+ A , and has 
Newton slopes (A^ repeated A.̂  times ,. . . , 
A. repeated A. times) at each point of Spec(A ). 

the quotient (M'/M. , V ' ,F' ) has rank , 
* 1 A.^ 

A^ + 1 +...+ A o , and it is divisible by p 

the associated graded (M./M. ,V,F') has rank \ l l-l 
A i , is divisible by p 1 , and has all Newton slopes = A . 

This filtration splits uniquely when we pass to the perfection of A Q . 

Proof. We proceed by induction on the number s of distinct Newton slopes. For 

s = 1 , the previous Corollary applies. In general, we construct 

(M|,V ?,F t) a (M',V,F') as in the previous Corollary. Then we have 

0 y (MJ,V ,F' ) > (M' , V ,F' ) > (M'/MJ,V ,FT ) > 0 . 

By the induction hypothesis applied to (M'/M ,V',F1) , we get an Isogeny 

((MVM|)' T,V",F") > (M f/M^,V ,F' ) 

whose source satisfies all the conclusions of the Corollary. Taking the "pull-

back" by this map of the above extension of (M'/l/ ,V' ,F1 ) by (M|,Vt,F') , we get 

an extension 

0 > (M^,V ,F' ) y ? y ((M'/M^)",V n,F n) y 0 . 

The middle term, ? , together with the filtration of it defined first by this 

exact sequence, then by the inductively given filtration on ({W/lA ) ,V ,F ) , 

provides a solution to the problem. 

The existence of a unique splitting of the filtration when we pass to the 

perfection of A q follows, by induction, from the previous Corollary. 
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Corollary 2 . 6 .k 

Hypotheses as in the previous Corollary, any (M,V,F) with constant Newton  

polygon is isogenous to an (M*,V,F') with the property that for any integer 

n >_ 1 which is a common denominator for the Newton slopes, the Hodge and Newton  

polygons of the qan-F-crystal (M',V',(F')n) at each point of Spec(AQ) coincide. 

Proof. Indeed, the (M',V,F') given by the previous Corollary has the required 

property. 

( 2 . 7 ) Constancy theorems 

Let k be an algebraically closed field of characteristic p , and let A Q 

be a k-algebra. We say that a aa-F-crystal on A^ is constant if it is (iso­

morphic to) the inverse image of a aa-F-crystal on k , by the given algebra map 

k • A . 
o 

Theorem 2 . 7 . 1 

Let (M,V,F) be a qa-F-crystal of rank r on k[[T]] , with k algebra­ 

ically closed. Suppose that at the two points of Spec(k[[T]]) , the Newton poly­ 

gons coincide, and that this common Newton polygon has only a single slope, say 

A , repeated r times. Then (M,V,F) is isogenous to a constant qa-F-crystal. 

Proof. By the isogeny theorem, we may assume that (M,V,F) is divisible by p X , 

in the sense of 2 . 5 . We will prove it constant. Let N be the denominator of 

A . Then F N is divisible by p N A , and all of its Newton slopes, at each point 

of Spec(k[[T]]) are NA . Therefore (M,V,F N/p N A) is a "unit-root" 

qaN-F-crystal, so equivalent to a representation of Tr^Spec (k[ [T] ] ) in 

GL(r,W(F p aN )) . But iT1(Spec(k[ [T] ]) ir^SpecU)) is trivial, because k is 

algebraically closed. Therefore (M,V,F N/p N A) is trivial as a unit-root 

qaN_F-crystal. In particular, (M,V) is trivial as a crystal, i.e., the W(k)-

module M V of all horizontal sections of (M,V) over A^ = W(k)[[T]] is free of 

rank r , and M V® A " ^ > M . Because F is horizontal, it induces a 
W(k) 
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aa-linear endomorphism of MA , such that F N/p N A induces a aa^-linear auto­

morphism of M V . Then (M,V,F) on k[[T]] is the inverse image of (MV,F) on 

k . 

Remarks• l) The (trivial) representation, of N1 (Spec (k[ [T] ] ) on a free 

W(lF )-module of rank r is provided by the set (M V) of fixed points of a IN i ix 
P 

pNy^NX ac-(:j_ng aaN-Iinearly on M V . In fact, ((M^)^ ,F) provides a descent 

of (M,V,F) to W 
P a 

2) If ve omit the words "isogenous to" from, the statement of the 

theorem, it can become false. The simplest geometric counterexample is due to 

Oort (cf [lO]). He begins with a supersingular elliptic curve E q over k , and 

considers the product E Q(p ) x EQ(p ) of Its p-divisible group with itself. In 

this product, the kernel of F is a x a . Over the projective line TP^~ over 

k , we get a family of a p ' s sitting in x ; over a point in JP"̂  with 

homogeneous coordinates (u,v) sits the image of the closed immersion 

a 4 >• a x a 
P P P 
x • (yx,vx) . 

If we divide the constant group FQ(p j x E Q(p j over P by this variable xp, , 

we get a non-constant p-divisible group over IP̂ " . Restricting to the complete 

local ring at any closed point of IP"*" , we get a non-constant p-divisible group 

over k[[T]] , whose Dieudonné module provides the required counterexample. 

Concretely, this means we begin with the constant a-F-crystal (M,V,F) on 

k[[T]] given by 

M: free W(k) [ [T] ]-module with basis e ^ e ^ e ^ e ^ 

V: the trivial connection with ^^~§f^e±^ ~ ® ^ o r i = 1 ? 2 s 3 , ^ 

F: in terms of the endomorphism E of W(k)[[T]] which is 
a-linear and maps T > T P , the E-linear map F^ : M > M 
is given by 
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F E ( e l } = e2 ' F Z ( e 3 ) = % 

Fz(e2) = p e l 5 Fz(ek) = pe3 

The W(k)[[T]]-submodule M' c M spanned by 

ei + T P e 3 ' e2 9 p e 3 9 ek e4 

is stable under V and F^ , and we have pM ̂  M' r~ M . But (Mf ) = M n M' is 

the free W(k)-module spanned by e2*ek 5 P eq a n (^ P e3 > 3 0 "t^a^ 

(M1)V0W(k)[[T]] p: M' . Therefore (M',V,F) is not constant. Alternately, one 

could observe that the Hodge polygon of (Mf,V,F ) is not constant (its least 

Hodge slope is 1 at the closed point , 0 at the generic point) , and hence 

(M^VjF) cannot be constant. 

Another very recent counterexample is due to Lubin. He constructs a 

a-F-crystal (M,V,F) over k[[T]] of rank 5 5 whose Newton slopes are all 2/5 

and whose Hodge numbers are h^ = 3 , h~̂  = 2 , at both points of Spec (k[ [T] ] ) . 

In Lubin's example, the Hodge polygon of (M,V,F^) is not constant; at the closec 

point, the least Hodge slope of F^ is 2 , but at the generic point it is 1 . 

Therefore (M,V,F^) , and a fortiori (M,V,F) , cannot be constant. 

Here is the actual example. The module M is free on e^,...,e^ over 

W(k)[[T]]. For the endomorphism £ of W(k)[[T]] which is a-linear and sends 
(E) 

T I > T P , F is the linear map M > M with matrix 

0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 p 
"D 0 0 T 0 

The connection V on M is the unique one for which F is horizontal. 

In the positive direction, we do have the following two constancy theorems 
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Theorem 2 . 7 . 2 

Let (M,V,F) be a qa-F-crystal of rank r _> 1 on k[ [T] } , with k alge­

braically closed. Suppose that at both points of Spec(k[[T]]), the Newton slopes  

are all (r-l)/r , and the Hodge numbers h 1 vanish for i > 1 . Then (M,V,F) 

is constant. 

Proof. The Newton and Hodge polygons must be 

^ (r ,r-l) 
Newton ^ 

N Hodge 
—'(1,0) 

at both points of Spec(k[[T]]) (because they start and end together, and the 

Hodge slopes are 0 and 1 ). Therefore H0 = 1 . Applying the sharp slope 

estimate (with X = r-l/r ), we get 

n+1 
F 0 mod p 

-r-1 , . *nj r 

In particular, F is divisible by p R-1 , and hence (M,V,F /p r-1 ) is a unit-

root F-crystal. Just as in the proof of 2.7-l9 this implies that (M,V,F) is 

the inverse image of (MA ,F) on k . ^ED 

Theorem 2.7-3 

Let (M,V,F) be a g
a-F-crystal of rank r >_ 1 on k[[T]], with k alge­ 

braically closed. Suppose that at both points of Spec(k[[T]]), the Newton slopes  

are all l/r . Then (M,V,F) is constant. 

Proof. This time the basic slope estimate shows that (M,V,Fr/p) is a unit-root 

F-crystal, and we conclude as in 2.7-2. 

The theorem 2.7-1 of constancy up to isogeny becomes false as soon as we allow 

the common Newton polygon to have more than one distinct slope, for there can be 

highly non-trivial extensions of constant F-crystals over k[[T]] . The simplest 
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and most important example of such an extension is given by first taking an or­

dinary elliptic curve E q over k , then constructing its equicharacteristic 

universal formal deformation E over k[[T]] , and finally taking the p-divisible 

group E(p ) of E . This p-divisible group over k[[T]] sits an exact sequence 

0 > |U oo y E(p°°) y îft IlL y 0 
D P P 

The Dieudonne crystal (M,V,F) of E(p ) , or equivalently the first crystalline 

cohomology of E/k[[T]] , is a a-F-crystal of rank two, which is an extension of 

two constant a-F-crystals of rank one. Even the underlying crystal (M,V) is 
V t \ t highly non-trivial; indeed, M is free of rank one over W(k) . (For a suitable 

choice of parameter T of W(k)[[T]] , the Serre-Tate or the Dwork theory tells us 

that (M,V) , viewed as a module with connection on W(k)[[T]] , admits a basis 
e

Q*e2_ i-n terms of which the connection is given by 

V(^)(e o) = 0 

V ( A ) ( E ) = E . 
V d T M i ; l+T o 

/ \ v Because the series log(l+T) has unbounded coefficients, the module M of 

horizontal sections consists only of the W(k) multiples of e^ .) 

Theorem 2 .7 - ̂  

Let (M,V,F) be a qa-F-crystal on k[[T]] , with k algebraically closed. 

Suppose that at the two points of Spec(k[[T]]), the Newton polygons coincide. 

Then (M,V,F) is isogenous to a qa-F-crystal (M',V',Fr) whose inverse image on 

(k[[T]]) p e r f is constant. 

Proof. This follows by combining Corollary 2 . 6 . 2 and Theorem 2 . 7 . 1 . 

Remarks. l ) This gives an alternate proof of Berthelot's Theorem U . 7 - 1 in [l]. 

2) B. Gross (cf [h]) attaches to any qa-F-crystal over k ( ( T ) ) p e r f a 

representation of Gal(k((T)) a l g' C l*/k((T)) p e r f') which is trivial if and only if 
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the aa -F-crystal is isogenous to a constant one. Therefore if we begin with a 

aa-F-crystal over k[[T]] with constant Newton polygon, Gross's representation, 

attached to its inverse image on k((T))perf. , is trivial. Is the converse true? 

-:-:-:-:-
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