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PISOT SEQUENCES, PISOT NUMBERS AND SALEM NUMBERS 

by 

DAVID W. BOYD 

1. The sets S and H: The well known set S of Pisot (or Pisot-Vijayaraghavan) 

numbers is the set of algebraic integers 6 > 1 ail of whose other conjugates 

lie strictly within the unit circle. The initial interest in S stems from the 

fact that if X e 2(9) , then (|X9n|| = dist(X6 n , 2 ) + 0 as n -> ». Let us 

dénote by H the set of real 6 > 1 for which there is a X > 0 such that 

||X0n||-> 0. A still unanswered question is whether S = H. This was considered 

by Thue [16] and Hardy [17], who showed that if ||A9n|| = 0(b n) with b < 1, 

then 8 e S. Hardy also pointed out that the only algebraic éléments in H 

are the éléments of S. Generalizations of this resuit were given by Vijayara­

ghavan in [17]. 

Until recently Pisot's resuit [13], that £ | | X e n | P < » implies 0 e S 

was essentially the closest approach to a proof that S = H, but Cantor [7] has 

recently given a substantial improvement of this which is somewhat technical to 

describe here. Salem [14] used Pisot's resuit to prove that the set S is closed 

and hence is nowhere dense in [1,°°). 

An interesting fact about H is that it is a countable set. Thus, if H 

contains any transcendental numbers then it does not do so for trivial reasons. 

We will see Pisot's [13] proof that H is countable in what follows. It should 

be mentioned that Vijayaraghavan [18] proved that the set of 9 for which 

||0n|| -* 0 is countable by a somewhat différent method. 

2. E-sequences: Pisot's method of proof is to examine a certain interesting 

class of séquences of integers, now called E-sequences or Pisot séquences. To see 
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how thèse arise, suppose that a^ = X 9 n + , where X > 0, 6 > 1, e 2 and 

e is bounded. We observe that 
n 

a -a T - a 2 = X9 n~ 1(9 2e , - 29e + e ,) + (e , e , - e 2) , 
n+1 n-1 n v n-1 n n+1' v n+1 n-1 n' ' 

so that 0 0 

lim sup a , - a /a , = lim sup e e - - 26e + e .. = ô ,say. 
F 1 n+1 n n-1 1 v 1 n-1 n n+1 1 ' J 

If 6 < 1/2, then eventually a^ +^ is determined uniquely by a^ and a n ^. 

By deleting some initial terms, we have that 

(1) a n + 1 = N ( a 2 / a n l ) , n = 0,1,... , 

where N(x) = [x + 1/2] = "the nearest integer to x". The formula (1) defines 

the E-sequence E(a^,a^) for arbitrary integers 0 < a^ < a^. Pisot showed that 

the limit a ,/a -> 6 always exists, and this defines a certain set E. 
n+1 n 

Clearly E is countable and contains H, ( 6 = 0 ) , so H is countable. On the 

other hand E is dense in [l,00) so E / S, since S is nowhere dense by Salem's 

resuit. 

One can show that X = lim a / 8 n exists if 8 > 1, and if one defines 

n 
e = a - X 8 n , then the above discussion shows that E is essentially character-
n n J 

ized by the inequality 

(2) lim sup | 8 2 e n - 1 - 28e n + e n + 1 | <_ 1/2 , 

in the sensé that (2) is necessary for a^ to be an E-sequence, while (2) with 

strict inequality is sufficient for {a } , n > n to be an E-sequence for 

n-nQ — u 

some n^. 

In addition to the set S, E also contains the set T of Salem numbers 

which are real algebraic integers 8 > 1 such that ail other conjugates lie 

within the unit circle, with at least one conjugate on the circle. This in fact 

implies that 8 satisfies a reciprocal équation, so its conjugates are 8 * 

and a certain set of numbers of modulus one [15]. To see that E T, just choose 

X e 2(8) so that the other conjugates of X are small enough so that (2) holds. 
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3. Récurrent E-sequences: The interesting question now is whether E = S u T, 

since this would tell us that T is dense in [1,°°) and hence that inf T = 1, 

settling Lehmer's conjecture [12]. It would also imply that H = S, settling 

Pisot's conjecture. 

One notes that the proof that E z> S u T shows somewhat more, namely that 

the corresponding E-sequence satisfies a linear récurrence relation, or equival-

ently that the generating function of the séquence is rational, so 

00 
(3) l a z n = A(z)/Q(z) , 

n=0 

where A and Q are polynomials with integer coefficients, and Q(0) = 1 . In 

[9], Flor shows that if E(a Q,a 1) satisfies (3), then 9 is in S or in T. We 

shall refer to thèse two possibilities as S-recurrence and T-recurrence. 

In fact, in [13], Pisot already shôwed that E(2,a 1) and E ( 3 , a p are 

S-recurrent with deg(Q) <_ a Q. For example E(3,5) = 3, 5, 8, 13, 21, ... has 

degree 2. His proof distinguishes E(a^,a^) according to the congruence class 

2 
a^ (mod a Q ) . Cantor [6] has given the explanation of why this is natural, and 

2 

has studied the families E(a 0,ma^ + b ) , giving conditions on a Q and b in order 

that this séquence is S-recurrent for ail m >_m^. The corresponding generating 

function is of the form A(z)/(Q(z) - mzA(z)). 

However, Cantor and his student Galyean [5], by use of a computer algorithm 

designed for testing for linear récurrences showed that if E(4,13) is récurrent, 

then deg(Q) > 100, suggesting strongly that no such récurrence exists. In his 

thesis [10], Galyean found many examples of E(a^,a^) satisfying no récurrence of 

degree <_ 20, when 4 < a Q < 10. 

4. Non-recurrent E-sequences: I was aware only of the example E(4,13) when I 

proved [1] that indeed there are E-sequences which are non-recurrent, and in fact 

that the set of 9 produced from such séquences is dense in [ (/5~ + l)/2,°°). 

The proof is rather amusing since it concentrâtes its attention on T-recurrence, 

37 



D . W . B O Y D 

which one might expect to be the difficult case. The point is that, although we 

have very little quantitative information about T itself, T-recurrent séquences 

are so distinctive that non-T-recurrence is rather easily detected. In principle, 

S-recurrence causes no difficulty since one can work in intervais disjoint from 

S. However, as we shall see later, for spécifie E-sequences, S-recurrence is 

more difficult to handle because the intervais in the complément of S are extreme-

ly short for even moderately large 0. 

To see how T-recurrence is dealt with, suppose then that E ( a Q , a p is T-

recurrent, then, taking into account the structure of the conjugates of 0, 

(4) a n = X 0 n + U 0 " n + ô n , n > n Q , 

where ô R is a linear combination of powers of numbers of modulus 1 and hence is 

almost periodic. Using (2) and the almost periodicity of , we find that, 

for ail n, including négative n, 

(5) |0 26 . - 206 + ô - | < 1/2 . 
v J 1 n-1 n n+1 1 

Furthermore, (4) can be used to define a^ for n < n^, and since Q is recipro-

cal or antireciprocal, one finds that a^ is an integer for ail n. Combining 

thèse two facts one then obtains a constructive extimate for n Q (and this is 

where the condition 0 > (̂ 5 + l)/2 seems unavoidable). For example, if 0 > 2 

then n^ = 0. Assuming then that n^ = 0 (by shifting the séquence if necessary), 

the conditions that a^ be an integer for n < 0, combined with (5), produce 

various inequalities which must be satisfied by T-recurrent séquences. As a 

simple example, the condition that a ^ is an integer implies that 

H a J / a J < (1 + 20)/(20 2) + 1 / ^ . 

This is an extremely restrictive condition for large 0, and shows that non-recur­

rent E-sequences. produce a s e t of 0 dense in [1 + / ï , °°). 

2 

Applying this inequality to a family E(a Q,ma 0 + b) with b > 0, we 'find 

that | | a 2 / a 1 | | = a 2/a x if m > 2, while on the other hand (1+20)/(20 2) + l/a x 
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is approximately (a^ + l)/a^ . Thus, within such a family, T-recurrence can only 

occur if m = 0 or 1. As another example consider E(2m,7m) with m = 1 

(mod 7). Then H a ^ / a ^ = 3/7 while (1 + 26)/(26 2) + 16/49 < 3/7 as m - ». 

Thus, for sufficiently large m, none of thèse séquences is T-recurrent. Since 

6 -> 7/2 t S as m •> », and since S is closed, it follows that 9 t S for 

sufficiently large m, so E(a^,a^) is not S-recurrent either. 

5. Spécifie cases of non-recurrence: In spite of the ease of producing infinite-

ly many non-recurrent E-sequences, one would still like to be able to answer the 

question of whether any spécifie E(a^,a^) is récurrent or not. In his thesis 

[10], Galyean conjectured that if E C a ^ a p is récurrent, then the degree of the 

récurrence is at most a^. A proof of this would certainly provide the desired 

criterion. A resuit of this type seems reasonable when one considers that, in an 

E-sequence X z a^, and in order to make small enough for (2) to hold, it 

seems necessary to have the other conjugates of X small. This in turn forces 

X to be fairly large since the product of thèse numbers is at least as large 

as l/disc(9). 

However, lacking such a quantitative resuit, we have based our proofs of non-

recurrence for spécifie E-sequences on a différent method. Proofs of non-T-recur-

rence are based on refinements of the ideas discussed above. It seems likely that 

the infinité set of necessary conditions for T-recurrence so obtained are also 

sufficient; this has certainly proved to be the case in practice. To prove non-

S-recurrence we simply have to show that 9 t S, a constructively feasible procé­

dure since S is closed and since we can generate arbitrarily good approximations 

to 9 . The practical difficulties grow with 9 so our success with this method 

is confined to 9 < 2.5 . The main tool is a computer algorithm based on ideas 

of Dufresnoy and Pisot [8] and described in more détail in [3]. It is capable of 

finding ail the éléments in S n (a,3), provided this number is finite. The idea 

is that, if P is the minimal polynomial of 9 , and Q(z) = z ^ e g ^ P ( z _ 1 ) , then 
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(6) f ( z ) = (sgn P(0))P(z)/Q'(z) = u Q + + ... , 

where the are integers and where |f(z)| = 1 on |z| = 1. The are 

characterized by inequalities obtained from Schur's algorithm: 

(7) w n ( V . . . , V l ) < u n < w ; ( u 0 ) , . . , u n l ) . 

If in addition a < 0 < $ , then there are additional inequalities 

W v n ( u O » " " V l ; o ) S U n s V u 0 V l ; B ) ' 

Thèse lead to the search of a finite tree if S n (a,3) is a finite set. 

An instructive example is the séquence E(10,22), with 0 = 2.190327956... 

The criteria for T-recurrence are easily shown to be violated. A search of a 

small interval containing 6 shows that dist(9,S) = .905 x 10" , the closest 

point of S being a root of the following 32nd degree polynomial: 

P = l -2 0 0 - 1 - 2 0 0 -2 0 0 0 - 1 2 0 0 1 2 0 0 2 0 0 0 1 -2 0 0-1-1 0 0 - 1 

k k-1 
(notation: a b c ... means ax + bx + . . . ) . Thus E(10,22) is non-recur-

rent. From Galyean's thesis, we find that E(10,22) is predicted to a 2 1 by the 

2 3 4 
generating function (10 + 2z + 4z + 9z )/(1 - 2z - 2z ) . However the polynomial 

4 3 — 
z - 2z - 2, in addition to a root <f) = 2.190327947, has roots y,y with 

|y| ^ 1.0157 . Hence this is not the generating function of an E-sequence. The 

fact that |y| < 2 makes it clear how this séquence can masquerade as an 

E-sequence for many terms. Intuitively, it appears that E(10,22) is diVerted 

away from nearby S-numbers of small degree by the présence of this "pseudo M-S-

number of degree 4. Since a Q = 10 is apparently too small to allow E(10,22) 

to satisfy a récurrence of high degree, the séquence is unable to satisfy any 

récurrence whatsoever. 

An extremely interesting example of this type, mentioned in [5], is E(6,16) 

5 4 3 
which is connected with the polynomial P ( z ) = z - 3 z + z - z - 1, which has 

roots at <j) = 2.699... and y, y with |y| - 1.007 . This polynomial turns 

out to be a limit point of polynomials with the same properties. Since 

-46 
dist(()),S) < 10 , we have as yet been unable to show E(6,16) is not S-recurrent. 
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There are in addition many other examples of non-recurrence which are not explain-

able by this mechanism. For example, the non-recurrence of E(7,15) seems to be 

explained by our arbitrary choice of "rounding up" in the définition of N(x). 

For détails of this and other examples, the reader may consult [3]. 

6. Concluding Remarks: Space has not permitted a discussion of the new character-

ization of T given in [2], nor the application of the above-mentioned computer 

algorithm to questions concerning the distribution of T in the real line, but 

this is adequately described in [3]. 

As far as applications of E-sequences to finding T-numbers, as suggested in 

[5], it seems that a more fruitful type of séquence to use is given by the 

following non-linear récurrence: 

a 0 = N(a n (a n + a n)/a - a ) , n = 1,2,... 
n+2 v n+l v n+1 n-1' n n' * ' ' 

If one takes a^ = 0, a^ > 0 and a.^ > 2a^+l, then one obtains ail Salem numbers 

as limits of the ratios a ./a . The criterion for T-recurrence is now valid 
n+1 n 

for ail 6 > 1, because the inequality (5) is replaced by a more amenable form. 

Some détails concerning thèse séquences are to be found in [4]. 
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