Astérisque

WILLIAM A. VEECH Ergodic theory and uniform distribution

Astérisque, tome 61 (1979), p. 223-234

<http://www.numdam.org/item?id=AST_1979_61_223_0>

© Société mathématique de France, 1979, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 61 (1979) p. 223-234

Ergodic Theory and Uniform Distribution by William A. Veech*

1. Introduction. We shall discuss the applications of ergodic theory to two problems in the theory of uniform distribution. The first problem concerns uniform distribution in a general compact group, the second uniform distribution modulo 1.

If K is a compact (Hausdorff, topological) group, a sequence $S = \{s_n\}$ in K is a K-<u>sequence</u> if S generates a dense subgroup of K. S is a K -<u>sequence</u> if it has the additional properties that (i) for every n > 0 $(s_1, \ldots, s_n) = (s_{k+1}, \ldots, s_{k+n})$ for infinitely many k, and (ii) $S^{-1}S = \{s_i^{-1}s_j\}$ generates a dense subgroup of K. Any K-sequence may be used to construct a K -sequence.

We recall that a sequence $R = \{r_n\}$ is called a <u>uniformly</u> (resp. <u>well</u>) distributed <u>sequence generator</u>, <u>u.d.s.g</u>. (resp. <u>w.d.s.g</u>.), if for every compact group K and every K-sequence S \subseteq K, the sequence T(R,S) = $\{t_n\}$, where

(1.1)
$$t_n = \prod_{j=1}^n s_{j=1}$$

is uniformly (resp. well) distributed in K ([13], [15], [17]).

Examples of u.d.s.g.'s are given in [13], [15]. One such is $r_1 = 9$, $r_2 = 2$, and in general $r_n =$ the length of the gap between the n^{th} and $(n+1)^{st}$ '1' in the sequence 123456789101112....

At the present time one knows no example of a w.d.s.g. . However, Losert and Rindler [8] have proved there exist sequences $R \subseteq Z$ which satisfy a similar condition which we shall not describe *Research supported by NSF - MCS 78-01858

here . Any Losert-Rindler sequence serves as a "program" (like (1.1)) for writing down a well distributed sequence in terms of a given K-sequence. This is the purpose for which the notion of a w.d.s.g. was introduced, and the Losert-Rindler result suffers only an aesthetic defect of being nonexplicit.

In preparation of the statement of the first theorm, let $\lambda = \{\lambda_1, \lambda_2, \dots\}$ be a sequence of integers such that $\lambda_n \ge 2$. Also, set $\lambda_0 = 1$. For every $k \in \mathbb{Z}$ such that $k \neq -1$ there is a unique integer $\tau = \tau(k) \ge 0$ such that

(1.2)
$$k+1 = \lambda_0 \lambda_1 \cdots \lambda_{\tau} (a_{\lambda_{\tau}+1}+b)$$

with $\mathbf{a} \in \mathbf{Z}$ and $0 < b < \lambda_{\tau+1}$.

Notice in the theorem to follow that the K -sequence begins at 0 σ (the definition is analogous).

1.3 Theorem. With notations as above, assume the sequence λ is bounded, and define R = { $\tau(1), \tau(2), \ldots$ }. If K is a compact group, and if S = { s_0, s_1, \ldots } is a K_{σ}-sequence in K, then T(R,S) (see (1.1)) is well distributed in K.

Next, let X = R/Z, and let $\theta \in X$ be an irrational. Given an "interval" I $\subseteq X$. whose length is denoted |I|, define $S_n(x) = S_n(x, \theta, I)$, $x \in X$, n > 0, to be the number of j such that $0 \le j < n$ and $x+j\theta \in I$.

A theorem of Kesten [7] asserts that there exists $x \in X$ such that $S_n(x)-n|I|$ is bounded (in n) only if $|I| \in \mathbb{Z} \cap$ modulo 1. (The converse is easy and classical.) A simple proof of Kesten's theorem is given by Furstenberg-Keynes -Shapiro [6] (see also [17]). The following is a sharpening of Kesten's theorem:

1.4 Theorem. With notations as above, suppose there exist $x \in X$ and $M < \infty$ such that

(1.5)
$$E_{M}(x) = \{n \mid |S_{n}(x) - n \mid I \mid | \le M\}$$

has positive upper density. Then modulo 1, $|I| \in \mathbb{Z}A$.

2. Monothetic groups. In this section X denotes an infinite compact monothetic group and $\theta \in X$ an element which generates a dense subgroup. X will be written additively. Let u be normalized Haar measure on X.

Fix a finite set $E \subseteq X$ such that E contains a coset of no subgroup of X other than $\{0\}$. Let K be a compact group, and let there be given a continuous map $\varphi: E^{C} \rightarrow K$ such that φ does not extend to be continuous on X.

Define X' = E + Z0, and define a map X' $\rightarrow K^{\mathbb{Z}}$ by $m_{X}(n) = \phi(x+n\theta)$, x $\in X'$, n $\in \mathbb{Z}$. The closure, M, of the image of X' is invariant under the left shift, $\sigma(\sigma m(n) = m(n+1))$. In addition one has from [16], Section 2, that (a) (σ ,M) is <u>minimal</u> (every σ -orbit in M is dense in M), (b) (σ ,M) is <u>uniquely ergodic</u> (there is a unique normalized σ -invariant Borel measure on M), and (c) the map $\pi m_{X} = x$, $x \in X'$, is well defined and extends to a continuous map M $\xrightarrow{\pi}$ X such that $\pi \sigma m =$ $\pi m + \theta$, m \in M; moreover, π is one-to-one on $\pi^{-1}X'$. Because of (b) and (c), we shall write u also for the normalized invariant measure on M.

Next, let N = M×K, and define $T:N \rightarrow N$ by

(2.1)
$$T(m,k) = (\sigma m, m(0)k)$$
.

Let $_{\nu}$ be normalized Haar measure on K, and set $_{\varpi}$ = $_{u}x_{\nu}.$ Clearly, $_{\varpi}$ is T-invariant.

If (T,N) is uniquely ergodic, a theorem of Oxtoby [9] implies that for each $z \in N$ the sequence $\{T_z^n, n \ge 1\}$ is _w-well distributed in N. In particular, the sequence of "second coordinates" is well distributed in K. When $z = (m_x, e), x \in X'$, the second coordinate of T_z^n , n > 0, is

(2.2)
$$\varphi^{(n)}(x) = \varphi(x+(n-1)\theta)\varphi(x+(n-2)\theta)\ldots\varphi(x)$$

It is Furstenberg's observation that (T,N) is uniquely ergodic if $_{(U)}$ is <u>ergodic</u> for T (if A \subseteq N is measurable, and if $T^{-1}A = A$, then w(A) = 0 or $w(A^{C}) = 0$)([5]). The necessary and sufficient condition that w <u>fail</u> to be ergodic is that there exist a nontrivial continuous irreducible unitary representation $\rho: K \to U(d)$ and a nonconstant measurable function F:X $\rightarrow c^{d}$ such that

(2.3)
$$F(x+\theta) = \rho(\varphi(x))F(x) \quad (a.e. \mu)$$

(See [5], [14].)

3. Proof of Theorem 1.3. Let λ be as in the introduction, and define $\Lambda_0 = 0$ and $\Lambda_n = \lambda_1 \lambda_2 \cdots \lambda_n$, n > 0. We set $X = \lim_n 1 \frac{z}{\Lambda_n z}$ and view X as the set of sequences, $x = (x_1, x_2, \cdots)$, such that $0 \le x_n = x_n(x) < \Lambda_n$ and $x_{n+1} - x_n \in \Lambda_n z$ for all n > 0. Letting $\theta = (1, 1, \cdots)$, the subgroup $z\theta$ is dense in X. μ denotes normalized Haar measure on X.

Let $E = \{-\theta\}$. If $x \notin E$, define $\tau(x) = \ell - 1$, where ℓ is the least integer such that $x_{\ell} \neq \Lambda_{\ell} - 1$. $\tau(\cdot)$ is continuous on E^{C} , and lim $\tau(x) = \infty$. In terms of the function $\tau(k)$, $k \neq -1$, defined in $x \rightarrow -\theta$ (1.2), one has (a) $\tau(k\theta) = \tau(k)$, $k \neq -1$, and (b) $\tau(x) = \tau(x_{n}(x))$ for any n such that $x_{n}(x) \neq \Lambda_{n} - 1$. Define partitions $P_n = \{P_{nk} | 0 \le k < \Lambda_n\}$ by setting $P_{nk} = \{x | x_n(x) = k\}$. The function $T_n(x) = \Lambda_n - 1 - x_n(x)$ assumes the constant value $\Lambda_n - 1 - k$ on P_{nk} for each k. Remark (b) of the preceding paragraph implies $\tau(x+jA)$ is constant on P_{nk} if $j \neq \Lambda_n - 1 - k$. As for the exceptional value of j, define $P_{nk}^{\ell} = \{x \in P_{nk} | \tau(x+(\Lambda_n - 1 - k)\theta) = n + \ell\}, \ell \ge 0$. An easy counting argument shows $\mu(P_{nk}^{\ell}) = (\lambda_{n+\ell} - 1)\frac{\Lambda_{n+\ell}}{\Lambda_{n+\ell}} \mu(P_{nk})$ holds for $\ell \ge 0$. If in particular λ is bounded (by Q), the last inequality implies

(3.1)
$$\mu(P_{nk}^{\ell}) \ge Q^{-(\ell+1)}\mu(P_{nk})$$

If $x \in X$, write $P_n = P_n(x)$ for the element of P which contains x. Given an $L^1(_{U})$ function $F: X \to c^d$, the martingale theorem, together with a standard argument, shows

(3.2)
$$\lim_{n \to \infty} \frac{1}{u(P_n)} \int_{P_n} |F(y) - F(x)|_u (dy) = 0$$

Next, suppose K $\neq \{e\}$ is a compact group, and let $S = \{\psi(0), \psi(1), \ldots\}$ be a K_o-sequence in K. Using τ and S, we define $\varphi(x) = \psi(\tau(x)), x \in E^{C}$. The facts K $\neq \{e\}$ and S is a K_o-sequence easily imply φ has no limit at $-\theta$. We shall be interested in $\varphi^{(\Lambda_{n})}$ which we denote by φ_{n} . Our earlier discussion implies there exist $A_{nk}, B_{nk} \in K, 0 \leq k \leq \Lambda_{n}$, such that

(3.3)
$$\varphi_{n}(\mathbf{x}) = \mathbf{A}_{nk^{\Psi}}(\mathbf{n}+\boldsymbol{\lambda})\mathbf{B}_{nk} \quad (\mathbf{x} \in \mathbf{P}_{nk}^{\boldsymbol{\lambda}})$$

Indeed, of the Λ_n factors determining φ_n , all but one are constant on P_{nk} , and that factor is constantly $\psi(n+\iota) = \varphi(\tau(x+T_n(x)_{\theta}))$ on P_{nk}^{ℓ} .

Suppose now that ρ is a nontrivial continuous irreducible unitary representation of K on c^d , and suppose also that (2.3) has a nontrivial measurable solution. We replace K by $\rho(K) \neq \{e\}$, and reletter, so that (2.3) becomes

Now $\varphi(\mathbf{x}) \in U(d)$, and (2.3') implies $|F(\cdot)|$ is invariant under translation by θ , hence constant a.e. As F is assumed to be nontrivial, we may and shall assume that $|F(\mathbf{x})| = 1$ a.e. This will lead us to a contradiction, assumming λ is <u>bounded</u> (by Q).

Iterating (2.3'), one finds $F(x+m_{\theta}) = \varphi^{(m)}(x)F(x)$, and this, plus the continuity of translation in $L^{1}(u)$, implies

(3.4)
$$\lim_{m \in \to 0} \|\varphi^{(m)}F - F\|_{1} = 0$$

3.5 Lemma. With notations as above, there exists for every pair $\varepsilon,q > 0$ a vector $v = v(\varepsilon,q)$, |v| = 1, such that $|\psi(i)v-\psi(j)v| < 2\varepsilon$, $0 \le i, j \le q$.

Proof: S is a K_o-sequence, and therefore there exists an infinite set Γ such that $\Psi(n+j) = \Psi(j)$, $0 \le j \le q$, $n \in \Gamma$. Apply (3.4) $(m = \Lambda_n, n \in \Gamma)$, and (3.2) to conclude that if $n \in \Gamma$ is large there exist $P_{nk} \in P_n$, such that $(P_{nk}^{\epsilon})^{c} = \{y \in P_{nk} | | \phi_n(y)F(x)-F(x) | \ge \epsilon\}$ has measure less than $Q^{-(q+1)}\mu(P_{nk})$. From (3.1) one concludes $P_{nk}^{\epsilon} \cap P_{nk}^{\ell} \neq \emptyset$, $0 \le \ell \le q$. Finally, (3.3), the definition of P_{nk}^{ϵ} , and the facts $n \in \Gamma$ and $A_{nk}, B_{nk} \in U(d)$ imply that if $v = B_{nk}F(x)$, then |v| = 1 and $|\Psi(i)v-\Psi(j)v| < 2\epsilon$, $0 \le i$, $j \le q$. The lemma is proved.

Notice in the above that also $|\Psi(i)^{-1}\Psi(j)v-v| < 2\varepsilon$, $0 \le i$, $j \le q$, $v = v(\varepsilon,q)$. If we let $\varepsilon \to 0$, $q \to \infty$ in such a way that $v(\varepsilon,q) \to v_0$, then $|v_0| = 1$, and $\Psi(i)^{-1}\Psi(j)v_0 = v_0$, $i,j \ge 0$. As S is a K-sequence $kv_0 = v_0$, $k \in K$. Irreducibility then implies d = 1, $K = \{e\}$, a contradiction. We conclude that (2.3) cannot have a nontrivial measurable solution. The discussion of Section 2 now implies Theorem 1.3. (The second coordinate of $T^n(\theta,\varepsilon)$ is $\omega^{(n)}(\theta) = \Psi(\tau(n))\Psi(\tau(n-1))...\Psi(\tau(1))$, where $\tau(k)$ is defined by (1.2)).

Remark on the case d = 1. Let λ be as in Section 1, possibly unbounded, and let $S = \{\Psi(n)\}_{n \ge 0}$ be a sequence of complex numbers of absolute value 1. Define K to be the closed subgroup of U(1) generated by the terms of S. Form $X = X(\lambda)$, and set $\varphi(x) = \Psi(\tau(x))$, $x \neq -\theta$. We wish to allow for the possibility that φ has a limit at $-\theta$; this means that $M = M(\lambda, \Psi)$, rather than having $X(\lambda)$ for a "factor," may in fact itself be a "factor" of $X(\lambda)$ (more precisely, the quotient of $X(\lambda)$ by the periods of the extended function φ). Let $N = N(\lambda, \Psi) =$ MxK and $T = T(\lambda, \Psi)$ be as in Section 2. Also, set $\omega = \omega(\lambda, \Psi) = u \times \nu$, as in Section 2. Using the above, one may prove

3.6 Theorem. With notations as above, suppose $\sum_{n=0}^{\infty} | \Psi(n+1) - \Psi(n) |$ = ∞ . Then (T,N) is uniquely ergodic. Moreover, the point spectrum of T, relative to ω , is contained in $\Gamma(\lambda) = \{\chi(\theta) | \chi \in Continuous char$ $acter on <math>\chi(\lambda) \}$.

If $\tilde{\lambda}$ is a second sequence, we write $\tilde{\lambda}_{\perp} \tilde{\lambda}_{\perp}$ if $(\Lambda_n, \tilde{\Lambda}_n) = 1$ for all n. When $\tilde{\lambda}_{\perp} \lambda$, the Chinese Remainder Theorem implies $Z(\theta, \tilde{\theta})$ is dense in $X(\lambda) \times X(\tilde{\lambda})$, and this in turn implies $\sigma \times \tilde{\sigma}$ is uniquely ergodic on MxM for any given $\tilde{\Psi}$. Suppose now that both Ψ and $\tilde{\Psi}$ satisfy the hypothesis of Theorem 3.6. As $\Gamma(\lambda) \cap \Gamma(\tilde{\lambda}) = \{1\}$, the point spectra of T,T, relative to $\omega, \tilde{\omega}$, have trivial intersection ({1}), and so by a well known result in ergodic theory, $T \times \tilde{T}$ is ergodic relative to $\omega \times \tilde{\omega}$. But $\omega \times \tilde{\omega}$ may be viewed as $(\omega \times \tilde{\omega}) \times (\nu \times \tilde{\nu})$, $\nu \times \tilde{\nu} =$ Haar measure on KxK, and so Furstenberg's princple (Section 2), plus the unique ergodicity of $\sigma \times \tilde{\sigma}$, implies T $\times \tilde{T}$ in <u>uniquely ergodic</u>.

The sequences $\varphi^{(n)}(0)$, $\tilde{\varphi}^{(n)}(0)$ are "q-muliplicative sequences"

(see [3] for definition and references). An immediate consequence of the above is that when $\chi \perp \tilde{\lambda}$ and $\Psi, \tilde{\Psi}$ satisfy the hypothesis of Theorem 3.6, one has

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \varphi^{(n)}(0) \tilde{\varphi}^{(n)}(0) = 0$$

It would be interesting to know whether other known (and unknown) properties of q-multiplicative sequences can be obtained from such considerations.

4. Irregularities of distribution modulo 1. In this section we suppose $X = R/\mathbb{Z}$, and we fix $\theta \in X$ irrational. If $I \subseteq X$ is an interval and $\alpha, \beta \in R$, define $\varphi = (\alpha - \beta) \times_{I} - \beta \times_{I} c$. We regard φ as having values in $K = K(\alpha, \beta)$, the closed subgroup of X generated by α and β (modulo 1). We note that $\varphi^{(n)}(x) = S_{n}(x)\alpha - n\beta$, where $S_{n}(x) = S_{n}(x, \theta, I)$ is defined in Section 1.

Let $[\frac{r}{q_n}]$ be the sequence of convergents to A, and define $\Gamma^0(A)$ $\leq X$ to be the set of t which admit a representation $t = \sum_{n=1}^{\infty} b_n q_n \theta$ (in X) such that $b_n \in \mathbb{Z}$ and $\lim_n b_n q_n ||q_n \theta|| = 0$. (Any two such representations agree for large n [16].) If $\mathbf{a} \in R$, we also define $\Gamma^0_{\mathbf{a}}(B)$ $= \{t \in \Gamma^0(B) | \lim_n b_n \mathbf{a} = 0 \text{ in } X\}$. As noted in [16], [17] we have (i) if A has bounded partial quotients, then $\Gamma^0(B) = \mathbb{Z}B$, and (ii) if $t \notin \mathbb{Z}B$, then for almost all \mathbf{a} , $t \notin \Gamma^0_{\mathbf{a}}(B)$.

The theorem below is proved in [16] for $\alpha = \frac{1}{2}$. Extension to the general case is sketched in [18], [17] and the details are carried out by Stewart in [12].

4.1 Theorem. Let $\alpha, \beta \in \mathbb{R}$, $\alpha \notin \mathbb{Z}$. If for every k such that $k_{\alpha} \neq 0$ (in X) $|I| \notin \Gamma_{k_{\alpha}}^{0}(\theta)$ modulo 1, then (T,N) (Section 2) is uniquely ergodic. 4.2 Corollary. ([17],[12]) If $|I| \notin \mathbb{Z} \cap \text{ modulo } 1$, then for almost all $\alpha \in \mathbb{R}$ the sequence $\{S_n(x)\alpha - nB\}$ is well distributed modulo 1 for any choice of $x \in X$ and $B \in \mathbb{R}$.

The corollary may be used to prove Theorem 1.4. To this end, suppose $|I| \notin \mathbb{Z}\theta$ modulo 1 but for some $x \in X$ and $M < \infty$ the set $E_M(x)$ (Section 1) has upper density $2\varepsilon > 0$. Corollary 4.2 implies there exists α , $0 < \alpha < \frac{\varepsilon}{2M}$ such that $\{S_n(x) - n\beta\}$ is well distributed modulo 1 for all β . Set $\beta = |I|_{\alpha}$, and note for this choice that $||S_n(x)\alpha - n|I|\alpha|| \le |S_n(x)\alpha - n|I|\alpha|| < \frac{\varepsilon}{2}$ if $n \in E_N(x)$. Well distribution implies the set of n such that $||S_n(x)\alpha - n|I|\alpha|| < \frac{\varepsilon}{2}$ has upper density $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon < 2\varepsilon$, and we have a contradiction. That is, $E_M(x)$ has upper density 0, and the theorem is proved.

When $\varpi = (\alpha - \beta) \chi_{I} - \beta \chi_{I} c$ is regarded as taking values in R, it is natural to prevent "drift" by requiring φ to have integral 0. But for a change of scale, this is tantamount to requiring $\varpi = (1 - |I|) \chi_{I} - |I| \chi_{I} c$. In what follows, G = G(I) is the closed subgroup of R generated by |I| and 1 - |I|. We assume 0 < |I| < 1.

Define $T:X\times G \to X\times G$ by $T(x,y) = (x+\theta, y+\varphi(x))$. T preserves Haar measure on $X\times G$, which of course is infinite. Using a topological analogue of K. Schmidt's notion of an "essential value" of a cocycle ([11]), it is not difficult to prove

4.3 Proposition. Assume |I| is rational or else 1, θ , and |I| are rationally independent. Then T has a residual set of points with dense orbits. In particular, for a residual set of x ϵ X the sequence S_n(x)-n|I| is dense in G(I).

One conjectures the conclusion of the proposition holds with

residual set of x replaced by 'measure 1 set of x.' (It does not hold for 'all x'. See Dupain [4].) One way to prove this is to prove T is <u>ergodic</u> (relative to Haar measure). This is so for $|I| = \frac{1}{2}$ (K. Schmidt [10]; Conze-Keane [2]) and also for almost all values of |I| (Conze [1]). In [17] the question was raised whether $|I| \notin \Gamma^{0}(\theta)$ implies ergodicity. This is proved by M. Stewart [12] when θ has bounded partial quotients, and Stewart now claims a proof for general θ (oral communication). It is open whether <u>any</u> condition on |I|is necessary for ergodicity (save $|I| \in \mathbb{Q}$ or $1, \theta, |I|$ rationally independent).

Stewart's work relies heavily on the work of Schmidt and Conze. The most important ingredients are Schmidt's notion of essential value, the Denjoy-Koksma lemma (used by Conze), and the following

4.4 Theorem (M. Stewart [12]). Assume θ has bounded partial quotients. If t $\notin \mathbb{Z}^{\alpha}$ modulo 1, then

 $\limsup_{n \to \infty} (\|q_n t\| - \frac{1}{2}q_n \|q_n A\|) > 0 .$

It would be of interest to have a formulation and proof of a nonabelian analogue of Theorem 4.1. At the present time one knows only that if θ has bounded partial quotients, if $|I| \notin \mathbb{Z}\theta$ modulo 1, and if K is a <u>finite</u> group with generators α, β , the homeomorphism (T,N) corresponding to $\varphi(x) = \alpha, \beta$ as $x \in I$, I^{C} is uniquely ergodic [14].

References

[1] Conze, J. P. "Équirépartition et Ergodicité de Transformations Cylindriques," Preprint, Université de Rennes (1976).

- [2] Conze, J. P. and Keane, M. "Ergodicité d'un flot cylindrique,"C. R. Acad. Sci. Paris (to appear).
- [3] Coquet, J., Kamae, T., and Mendes-France, M. "Sur la mesure spectrale de certaines suites arithmétiques," preprint, l'Université de Bordeaux.
- [4] Dupain, Y. "Intervalles a restes majores pour la suite {n_a},"
 Acta. Math. Acad. Sci. Hung., 29(1977), 289-303.
- [5] Furstenberg, H. "Strict ergodicity and transformations of the torus," Amer. J. Math. 88(1961), 573-601.
- [6] Furstenberg, H., Keynes, H. and Shapiro, L., "Prime flows in topological dynamics," <u>Israel J. Math. 14</u>(1973), 26-38.
- [7] Kesten, H. "On a conjecture of Erdös and Szüsz related to uniform distribution mod 1," <u>Acta. Arith. 12</u>(1966/67), 193-212.
- [8] Losert, V. and Rindler, H. "Uniform distribution and the mean ergodic theorem," preprint.
- [9] Oxtoby, J. C. "Ergodic sets," <u>Bull. Amer. Math. Soc. 58</u>(1952) 116-136.
- [10] Schmidt, K. "A Cylinder Flow Arising From Irregularity of Distribution," preprint, University of Warwick, 1975.
- [11] Schmidt, K. "Cohomology and Skew Products of Ergodic Transformations," preprint, University of Warwick, 1974.
- [12] Stewart, M. "Irregularities of uniform distribution," Ph.D. Thesis, Rice University, 1978.
- [13] Veech, W. A. "Applications of ergodic theory to some problems of uniform distribution," Proc. Conf. on Ergodic Theory and Topological Dynamics (Univ. of Kentucky, 1971), Math Dept., Univ. of Kentucky, Lexington, Ky., 26-33.
- [14] ____, "Finite group extension of irrational rotations, <u>Israel</u> J. Math. 21(1975) 240-259.
- [15] , "Some questions of uniform distribution," <u>Ann. of Math.</u> (2)94(1971), 125-138.
- [16] _____, "Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2," <u>Trans. Amer.</u> <u>Math. Soc. 140(1969), 1-33.</u>
- [17] _____, "Topological dynamics," <u>Bull. Amer. Math. Soc.</u>, <u>83</u> (1977), 775-830.

[18] ____, "Well distributed sequences of integers," <u>Trans. Amer.</u> <u>Math. Soc. 161</u>(1971), 63-70.

> William A. VEECH Department of Mathematics Rice University HOUSTON U.S.A.