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Ergodic Theory and Uniform Distribution 
by 

William A. Veech* 

1. Introduction. We shall discuss the applications of ergodic 

theory to two problems in the theory of uniform distribution. The 

first problem concerns uniform distribution in a general compact 

group, the second uniform distribution modulo 1. 

If K is a compact (Hausdorff, topological) group, a sequence 
S = (s I in K is a K-sequence if S generates a dense subgroup of K. n 
S is a K -sequence if it has the additional properties that (I) for 

a 

every n > 0 (s^,...,s n) = (s^+i'•••y s^ + n) f o r infinitely many k, and 

(ii) s"̂ "S = { s ^ s j } generates a dense subgroup of K. Any K-sequence 

may be used to construct a K -sequence. 

We recall that a sequence R = [*n} I s called a uniformly (resp. 

well) distributed sequence generator, (resp. w.d.s.^.), if 

for every compact group K and every K-sequence S Q K, the sequence 

T(R,S) = where 

(1.1) t = n s 

n . i r. 

is uniformly (resp. well) distributed in K ([13], [15], [17]). 

Examples of u.d.s.g.'s are given in [13], [15]. One such is 

r. = 9, r 0 = 2, and in general r = the length of the gap between the 
1 L n 

n t h and ( n + l ) S t f l f in the sequence 123456789101112... . 

At the present time one knows no example of a w.d.s.g. . How­

ever, Losert and Rindler [ 8 ] have proved there exist sequences 

R c z which satisfy a similar condition which we shall not describe 
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here . Any Losert-Rindler sequence serves as a "program 1 1 (like 

(1.1)) for writing down a well distributed sequence in terms of a 

given K-sequence. This is the purpose for which the notion of a 

w.d.s.g. was introduced, and the Losert-Rindler result suffers only 

an aesthetic defect of being nonexplicit. 

In preparation of the statement of the first theorm, let 

X = {\^,\2>•••} be a sequence of integers such that \^ > 2. Also, 

set \ Q = 1. For every k e Z such that k ^ -1 there is a unique in­

teger T = T(k) > 0 such that 

(1.2) k+1 = X 0 X 1 . . . X T ( a x i r f l + b ) 

with a e z and 0 < b < 

Notice in the theorem to follow that the K -sequence begins at 0 
c 

(the definition is analogous). 

1.3 Theorem. With notations as above, assume the sequence \ is  

bounded, and define R = {T(1),T(2),...}. If K Is a compact group, 

and if S = { S Q , S ^ , . . . } i £ a K -sequence in K, then T(R,S) (see (1.1)) 

is well distributed in K. 

Next, let X = R / Z , and let a e X be an irrational. Given an 

"interval 1 1 I c X. whose length is denoted |l|, define S n(x) = 

S n(x,e,I), x e X, n > 0, to be the number of j such that 0 < j < n 

and x+j fi € I. 

A theorem of Kesten [ 7 ] asserts that there exists x e X such 

that S n(x)-n|l| is bounded (in n) only if |l| e Zfi modulo 1. (The 

converse is easy and classical.) A simple proof of Kesten 1s theorem 

is given by Furstenberg-Keynes -Shapiro [ 6 ] (see also [17]). The 

following is a sharpening of Kesten 1s theorem: 

224 



ERGODIC THEORY 

1.4 Theorem. With notations as above, suppose there exist x e X 

and M < co such that 

(1.5) l y x ) = [n| |S n(x)-n|l| | < M} 

has positive upper density. Then modulo 1, |l| e Z G . 

2. Monothetic groups. In this section X denotes an infinite 

compact monothetic group and 8 e X an element which generates a dense 

subgroup. X will be written additively. Let u be normalized Haar 

measure on X. 

Fix a finite set E c X such that E contains a coset of no sub­

group of X other than {0}. Let K be a compact group, and let there 

be given a continuous map cp:E -> K such that cp does not extend to be 

continuous on X. 

Define X' = E + Z 8 , and define a map X' -» K by *nx(n) = cp(x-hift), 

x e X', n e Z. The closure, M, of the image of X' is invariant under 

the left shift, a(ani(n) = m(n+l)). In addition one has from [16], 

Section 2, that (a) ( a,M) is minimal (every a-orbit in M is dense in 

M ) , (b) (a,M) is uniquely ergodic (there is a unique normalized 

a-invariant Borel measure on M) , and (c) the map Ttmx = x, x e X', is 

well defined and extends to a continuous map M X such that rrom = 

rrm+a, m e M; moreover, TT is one-to-one on TT"""SC'. Because of (b) and 

(c), we shall write u also for the normalized Invariant measure on M. 

Next, let N = MxK, and define T:N -> N by 

(2.1) T(m,k) = (am,m(0)k) . 

Let v be normalized Haar measure on K, and set u) = uXv. Clearly, ( W 

Is T-invariant. 
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If (T,N) Is uniquely ergodic, a theorem of Oxtoby [9 ] implies 

that for each z e N the sequence {Tz, n >1} is fl)-well distributed 

in N. In particular, the sequence of "second coordinates" is well 

distributed in K. When z = (m x , e ) , x e X', the second coordinate 

of Tz, n > 0, is 

(2.2) cp ( n )(x) = cp(x+(n-l)e)cp(x+(ti-2)fl)...o(x) . 

It is Furstenberg 1s observation that (T,N) is uniquely ergodic 

if ,o is ergodic for T (if A c N is measurable, and if T~"^A = A , then 

OJ(A) = 0 or w ( A ) = 0 ) ( [ 5 ])• The necessary and sufficient condition 

that u) fail to be ergodic is that there exist a nontrivial continuous 

irreducible unitary representation p:K -> U(d) and a nonconstant mea­

surable function F:X -» such that 

(2.3) F(x+e) = p(cp(x))F(x) (a.e. u ) . 

(See [ 5 ], [14].) 

3. Proof of Theorem 1.3. Let X be as in the introduction, and 

define A N = 0 and /v = \-X 0.. . \ , n > 0. We set X = lim" 1 zl h Z and 
u n l z n n n 

view X as the set of sequences, x = ( x ^ ^ ^ , . . . ) ^ such that 0 < = 

x (x) < A and x - x e A Z for all n > 0. Letting 9 = (1,1,...), 
n n n+i n n 

the subgroup Z 0 is dense in X. u. denotes normalized Haar measure 

on X. 

Let E = {-9). If x 4 E, define T(X) = ¿-1, where I is the least 

integer such that x ^ / v - 1 . T ( * ) 1 S continuous on E C , and 

lim T ( X ) = co. In terms of the function f(k), k ^ defined in 

x-^-9 

(1.2), one has (a) T(ke) = T(k), k + -1, and (b) T ( X ) = T(x n(x)) for 

any n such that x

n (
x ) ^ 
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Define partitions = {P n kl 0 < k < /v̂ } by setting p = 

fxlx (x) = k}. The function T (x) = A -1-x (x) assumes the constant 
1 1 n n n n 
value K -1-k on P for each k. Remark (b) of the preceding para-n nk 
graph implies T(x+jq) is constant on P ^ if j + /v^-l-k. As for the 

exceptional value of j, define P ^ k = {x e P jj T ( X + ( j^-l-k) 8) = n+-M> 
^n— 1 

I > 0. An easy counting argument shows n ( P n k ) = ( Xn-K~^A " u ^ Pnk^ 
n+t 

holds for I > 0. If in particular X is bounded (by Q ) , the last 

inequality implies 

(3.1) ^ P ^ ) > Q - ( " + 1 V ( P n k ) • 

If x e X, write P^ = ? n(x) for the element of P which contains 

x. Given an L^( u) function F:X -> c^, the martingale theorem, toge­

ther with a standard argument, shows 

(3.2) lim - J ^ T - J |F(y)-F(x)| u(dy) = 0 

n 

Next, suppose K ^ [e] is a compact group, and let 

S = fY(0),v(1),...) be a K -sequence in K. Using T and S, we define 
L a 

cp(x) = Y ( T ( X ) ) , x G E c . The facts K ^ fe*| and S is a K -sequence 
( A „ ) 

easily imply cp has no limit at - 0 . We shall be interested in cp 

which we denote by co^. Our earlier discussion implies there exist 

A n k , B n k € K, 0 < k < A n , such that 
(3.3) cp n(x) - A N K Y ( n ^ ) B n k (x e ^ . 

Indeed, of the A n factors determining cpn, all but one are constant 

on P n k , and that factor is constantly Y ( N + ^ ) = <s (r(x+T n(x)e)) on 

nk 

Suppose now that p is a nontrivial continuous irreducible uni­

tary representation of K on , and suppose also that (2.3) has a 

nontrivial measurable solution. We replace K by p(K) ^ {e}, and 

reletter, so that (2.3) becomes 
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(2.3') F(x+e) = cp(x)F(x) . 

Now cp(x) G U(d), and (2.3') implies |F(-)I *-s invariant under 

translation by 9, hence constant a.e. As F is assumed to be nontri­

vial, we may and shall assume that |F(x)| = 1 a.e. This will lead 

us to a contradiction, assumming \ is bounded (by Q ) . 

Iterating (2.3'), one finds F(x4m9) = c p ^ ( x ) F ( x ) , and this, 

plus the continuity of translation in L^(u), implies 

(3.4) lim ||cp(m)F-Fl| = 0 . 
mo->0 

3.5 Lemma. With notations as above, there exists for every pair 

e,q > 0 a vector v = v(e,q), |v| = 1, such that |Y(i)v-Y(j)v| < 2e, 

0 < i, j < q. 

Proof: S is a K -sequence, and therefore there exists an infinite 
a 

set r such that Y ( n + j ) = Y ( j ) , 0 < j < q , n G T\ Apply (3.4) ( m = A n , n G T ) , 

and (3.2) to conclude that if n e r is large there exist P ^ G P^, 

such that (P^ k)° = {y e P n k l Icp^(y)F(x)-F (x) | > e] has measure less 

than Q " ^ q + 1 ^ u ( P n k ) • F r o ^ (3.1) one concludes P^k ° P n k ^ ^> 0 < ^ ^ q . 

Finally, (3.3), the definition of P ^ , and the facts n G r and 
A , ,B , G U(d) imply that if v = B ,F(x), then Ivi = 1 and nk nk nk 
1 Y(i)v-Y(j)v| < 2e, 0 < i, j < q. The lemma is proved. 

Notice in the above that also |Y(i)" 1Y(j)v-v| < 2e, 0 < i, j < q, 

v = v(e,q). If we let e -> 0, q -» 00 in such a way that v(e,q) -> V Q , 

then |v Q| = 1, and Y ( i ) " \ ( j ) v Q = v^, i,j > 0. As S is a K^-sequence 

k v Q = V Q , k G K . Irreducibility then implies d = 1, K = {e}, a con­

tradiction. We conclude that (2.3) cannot have a nontrivial measura­

ble solution. The discussion of Section 2 now implies Theorem 1.3. (The 
second coordinate of T n(9,e) is co ( n^ (9) = Y(T(n))Y( T(n-l)) ...Y(T(1)) , 
where T(k) is defined by (1.2)). 
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Remark on the case d = 1. Let x be as in Section 1, possibly un­

bounded, and let S = ( Y ( N ) I ^ Q b e a sequence of complex numbers of ab­

solute value 1. Define K to be the closed subgroup of U(l) generated 

by the terms of S. Form X * X ( \ ) , and set cp(x) = Y ( T ( X ) ) , x ^ - 9 . We 

wish to allow for the possibility that co has a limit at -9; this 

means that M = M ( \ , Y ) , rather than having X(x) for a "factor," may in 

fact itself be a "factor" of X(\) (more precisely, the quotient of 

X(\) by the periods of the extended function cp) . Let N = N ( \ , Y ) = 

MxK and T = T(X,Y) be as in Section 2. Also, set UJ = uo(X,Y) = uxv, as 

in Section 2. Using the above, one may prove 

3.6 Theorem. With notations as above, suppose § |Y(n+1)-Y(n)| 
n=0 

= co. Then (T,N) _is uniquely ergodic. Moreover, the point spectrum  

of T, relative to m, is contained in r(X) = {x(9) | x a continuous char­

acter on X(X) }. 

If X is a second sequence, we write X i X if (/\ ,7 ) = 1 for all n. 
n n 

When X I X, the Chinese Remainder Theorem implies z(9,9) is dense in 

X(x) xX(x), and this in turn implies axa is uniquely ergodic on MxM 

for any given Y . Suppose now that both Y and Y satisfy the hypothe­

sis of Theorem 3.6. As r(x) 0T(x) = {1}, the point spectra of T,T, 

relative to uo,u), have trivial Intersection ({1}), and so by a well 

known result in ergodic theory, T*T is ergodic relative to wxl. But 

OJXUJ may be viewed as (uxu)x(vxv), vxv = Haar measure on KxK, and so 

Furstenberg's princple (Section 2 ) , plus the unique ergodicity of 

axa, implies T x T i n uniquely ergodic. 
The sequences c p ^ ( O ) , c p ^ ( O ) are "q-muliplicative sequences" 
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(see [3] for definition and references). An immediate consequence 

of the above is that when \ i X and Y , Y satisfy the hypothesis of 

Theorem 3.6, one has 

lim i S c o ( n ) ( 0 ) $ ( n ) ( 0 ) = 0 . 
N->» n=l 

It would be interesting to know whether other known (and unknown) 

properties of q-multiplicative sequences can be obtained from such 

considerations. 

4. Irregularities of distribution modulo 1. In this section we 

suppose X = */z, and we fix 9 e X irrational. If I c X is an In­

terval and a , B € R, define cp = (a-B)x T - BX . We regard cp as having 
1 1° 

values in K = K(a,B), the closed subgroup of X generated by a and B 

(modulo 1 ) . We note that c p ^ ( x ) = S n(x) a-nB, where S^(x) = 

S (x,9,I) is defined in Section 1. 
P n Q 

Let {—} be the sequence of convergents to A, and define F (fi) 
q n co 

c X to be the set of t which admit a representation t = D b q 9 ., n n n=l (in X) such that b e Z and lim b q IIq 9II = 0. (Any two such repre-v / n n n n M n 11 J 

sentations agree for large n [16].) If a e R, we also define T ^ ( 9 ) 
a 

= {t € r°(9)|lim b a = 0 in X } . As noted in [16], [17] we have (I) 
n *i 

if ft has bounded partial quotients, then T ^ ( 9 ) = ZA, and (ii) if 

t d Z 0 , then for almost all a, t { T ^ ( 9 ) . 
GL 

The theorem below is proved in [16] for a = h* Extension to the 

general case is sketched in [18], [17] and the details are carried 

out by Stewart in [12]. 

4.1 Theorem. Let a,8 e R, a i Z. lf_ for every k such that 

ka ^ 0 (in X) | X| 4 r ^ ( 0 ) modulo 1, then (T,N) (Section 2) is uni­

quely ergodic. 
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4.2 Corollary. ([17],[12]) If |l| 4 Zfi modulo 1, then for almost  

all a e R the sequence {Sn(x)a-nB} i£ well distributed modulo 1 for  

any choice of x e X and B e R. 

The corollary may be used to prove Theorem 1.4. To this end, 

suppose |l| i Z9 modulo 1 but for some x e X and M < co the set 

E^(x) (Section 1) has upper density 2e > 0. Corollary 4.2 implies 

there exists a, 0 < a < -T&T such that fS (x) -nB ] is well distributed 
ZM n 

modulo 1 for all 8. Set 8 = | l|'a, and note for this choice that 

||S (x)a-n|l|a|| < |Sn(x)a-n|l|a| < f if n e EN(x) . Well distribution 

implies the set of n such that ||S (x)ct-n|l|aU < % has upper density 
n z 

*2 + *2 ~ c < an<* ™e nave a contradiction. That is, E
M ( X ) h a s 

upper density 0, and the theorem is proved. 
When co = (a-B)xT-BX is regarded as taking values In R, it is 

1 I C 

natural to prevent "drift" by requiring cp to have integral 0. But 

for a change of scale, this is tantamount to requiring co = (1-11| )X^-

|I|X • In what follows, G = G(I) is the closed subgroup of R gen-
I C 

erated by |l| and l-|l|. We assume 0 < |l| < 1. 

Define T:XxG -> XxG by T(x,y) = (x+e,y-kp(x)) . T preserves Haar 

measure on XxG, which of course is infinite. Using a topological 

analogue of K. Schmidt's notion of an "essential value" of a cocycle 

([11]), it is not difficult to prove 

4.3 Proposition. Assume |l| is rational or else 1,9, and |l| 

are rationally independent. Then T has a residual set of points with 

dense orbits. In particular, for a residual set of x e X the se­

quence Sn(x)-n|l| is dense in G(I). 
One conjectures the conclusion of the proposition holds with 
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residual set of x replaced by 'measure 1 set of x.' (It does not 

hold for 'all x'. See Dupain [4].) One way to prove this is to 

prove T is ergodic (relative to Haar measure). This is so for |l|=% 

(K. Schmidt [ 1 0 ] ; Conze-Keane [ 2 ] ) and also for almost all values of 

|l| (Conze [1 ] ) . In [17] the question was raised whether |l| { T^(9) 

implies ergodicity. This is proved by M. Stewart [12] when e has 

bounded partial quotients, and Stewart now claims a proof for gene­

ral 9 (oral communication). It is open whether any condition on |l| 

is necessary for ergodicity (save |l| € (I) or l,9,|l| rationally in­

dependent) . 

Stewart's work relies heavily on the work of Schmidt and Conze. 

The most important ingredients are Schmidt's notion of essential 

value, the Denjoy-Koksma lemma (used by Conze), and the following 

4.4 Theorem (M. Stewart [12] ) . Assume 9 has bounded partial quo­

tients. If t 4 zc\ modulo 1, then 

lim sup (llq^ll-^qjq^l) > 0 . 

n->oo 

It would be of interest to have a formulation and proof of a 

nonabelian analogue of Theorem 4.1. At the present time one knows 

only that if 9 has bounded partial quotients, if |l| i Z9 modulo 1, 

and if K Is a finite group with generators a,B, the homeomorphism 

(T,N) corresponding to cp(x) = a,B as x e I, I is uniquely ergodic 

[ 1 4 ] . 
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