William A. Veech
Ergodic theory and uniform distribution

Astérisque, tome 61 (1979), p. 223-234
http://www.numdam.org/item?id=AST_1979__61__223_0
© Société mathématique de France, 1979, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

Société Mathématique de France
Astérisque 61 (1979) p. 223-234
Ergodic Theory and Uniform Distribution
William A. Veech*

1. Introduction. We shall discuss the applications of ergodic theory to two problems in the theory of uniform distribution. The first problem concerns uniform distribution in a general compact group, the second uniform distribution modulo 1.

If K is a compact (Hausdorff, topological) group, a sequence $S=\left\{s_{n}\right\}$ in K is a K-sequence if S generates a dense subgroup of K. S is a K_{σ}-sequence if it has the additional properties that (i) for every $n>0\left(s_{1}, \ldots, s_{n}\right)=\left(s_{k+1}, \ldots, s_{k+n}\right)$ for infinitely many k, and (ii) $S^{-1} S=\left\{s_{i}^{-1} s_{j}\right\}$ generates a dense subgroup of K. Any K-sequence may be used to construct a K_{σ}-sequence.

We recall that a sequence $R=\left\{r_{n}\right\}$ is called a uniformly (resp. well) distributed sequence generator, u.d.s.g. (resp. w.d.s.g.), if for every compact group K and every K-sequence $S \subseteq K$, the sequence $T(R, S)=\left\{t_{n}\right\}$, where

$$
\begin{equation*}
t_{n}=\prod_{j=1}^{n} s_{r_{j}} \tag{1.1}
\end{equation*}
$$

is uniformly (resp. wel1) distributed in K ([13], [15], [17]).
Examples of u.d.s.g.'s are given in [13], [15]. One such is $r_{1}=9, r_{2}=2$, and in general $r_{n}=$ the length of the gap between the $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}+1)^{\text {st }}$ ' 1 ' in the sequence $123456789101112 \ldots$.

At the present time one knows no example of a w.d.s.g. . However, Losert and Rindler [8] have proved there exist sequences $R \subseteq \mathbb{Z}$ which satisfy a similar condition which we shall not describe

[^0]here . Any Losert-Rindler sequence serves as a "program" (like (1.1)) for writing down a well distributed sequence in terms of a given K-sequence. This is the purpose for which the notion of a w.d.s.g. was introduced, and the Losert-Rindler result suffers only an aesthetic defect of being nonexplicit.

In preparation of the statement of the first theorm, let $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ be a sequence of integers such that $\lambda_{n} \geq 2$. Also, set $\lambda_{0}=1$. For every $k \in z$ such that $k \neq-1$ there is a unique integer $\tau=\tau(k) \geq 0$ such that

$$
\begin{equation*}
\mathrm{k}+1=\lambda_{0} \lambda_{1} \cdots \lambda_{\tau}\left(a \lambda_{\tau+1}+b\right) \tag{1.2}
\end{equation*}
$$

with $a \in z$ and $0<b<\lambda_{\tau+1}$.
Notice in the theorem to follow that the K_{σ}-sequence begins at 0 (the definition is analogous).
1.3 Theorem. With notations as above, assume the sequence λ is bounded, and define $R=\{\tau(1), \tau(2), \ldots\}$. If K is a compact group, and if $S=\left\{s_{0}, s_{1}, \ldots\right\}$ is a K_{σ}-sequence in K, then $T(R, S)$ (see (1.1)) is well distributed in K.

Next, let $X=R / Z$, and let $A \in X$ be an irrational. Given an "interval" $I \subseteq X$. whose length is denoted $|I|$, define $S_{n}(x)=$ $S_{n}(x, \theta, I), x \in X, n>0$, to be the number of j such that $0 \leq j<n$ and $x+j \theta \in I$.

A theorem of Kesten [7] asserts that there exists $x \in X$ such that $S_{n}(x)-n|I|$ is bounded (in n) only if $|I| \in \mathbb{Z} \theta$ modulo 1 . (The converse is easy and classical.) A simple proof of Kesten's theorem is given by Furstenberg-Keynes -Shapiro [6] (see also [17]). The following is a sharpening of Kesten's theorem:
1.4 Theorem. With notations as above, suppose there exist $\mathrm{x} \in \mathrm{X}$ and $M<\infty$ such that

$$
\begin{equation*}
E_{M}(x)=\left\{n|\quad| S_{n}(x)-n|I| \mid \leq M\right\} \tag{1.5}
\end{equation*}
$$

has positive upper density. Then modulo $1,|I| \in \mathbb{Z} A$.
2. Monothetic groups. In this section X denotes an infinite compact monothetic group and $\theta \in X$ an element which generates a dense subgroup. X will be written additively. Let u be normalized Haar measure on X .

Fix a finite set $\mathrm{E} \subseteq \mathrm{X}$ such that E contains a coset of no subgroup of X other than $\{0\}$. Let K be a compact group, and let there be given a continuous map $\varphi: E^{c} \rightarrow K$ such that φ does not extend to be continuous on X .

Define $X^{\prime}=E+\mathbb{Z} \theta$, and define a map $X^{\prime} \rightarrow K^{\mathbb{Z}}$ by $m_{x}(n)=\varphi(x+n A)$, $x \in X^{\prime}, n \in \mathbb{Z}$. The closure, M, of the image of X^{\prime} is invariant under the left shift, $\sigma(\sigma m(n)=m(n+1))$. In addition one has from [16], Section 2, that (a) (σ, M) is minimal (every σ-orbit in M is dense in M), (b) (σ, M) is uniquely ergodic (there is a unique normalized σ-invariant Borel measure on M), and (c) the map $\pi m_{x}=x, x \in X^{\prime}$, is we11 defined and extends to a continuous map $M \xrightarrow{\pi} X$ such that $\pi \sigma_{0}=$ $\pi m+\theta, m \in M$; moreover, π is one-to-one on $\pi^{-1} X^{\prime}$. Because of (b) and (c), we shall write u also for the normalized invariant measure on M.

Next, let $N=M \times K$, and define $T: N \rightarrow N$ by

$$
\begin{equation*}
T(m, k)=(\sigma m, m(0) k) \tag{2.1}
\end{equation*}
$$

Let v be normalized Haar measure on K, and set $\omega=u \times v$. Clearly, ω is T-invariant.

If (T, N) is uniquely ergodic, a theorem of Oxtoby [9] implies that for each $z \in N$ the sequence $\{T \mathrm{Z}, \mathrm{n} \geq 1\}$ is ω-well distributed in N. In particular, the sequence of "second coordinates" is well distributed in K. When $z=\left(m_{x}, e\right), x \in X^{\prime}$, the second coordinate of $T \mathrm{Z}, \mathrm{n}>0$, is

$$
\begin{equation*}
\varphi^{(n)}(x)=\varphi(x+(n-1) \theta) \varphi(x+(n-2) \theta) \ldots \varphi(x) . \tag{2.2}
\end{equation*}
$$

It is Furstenberg's observation that (T, N) is uniquely ergodic if w is ergodic for T (if $A \subseteq N$ is measurable, and if $T^{-1} A=A$, then $\omega(A)=0$ or $\left.\omega\left(A^{c}\right)=0\right)([5])$. The necessary and sufficient condition that w fail to be ergodic is that there exist a nontrivial continuous irreducible unitary representation $\rho: K \rightarrow U(d)$ and a nonconstant measurable function $F: X \rightarrow C^{d}$ such that

$$
\begin{equation*}
F(x+\theta)=\rho(\varphi(x)) F(x) \quad(\text { a.e. } \mu) \tag{2.3}
\end{equation*}
$$

(See [5], [14].)
3. Proof of Theorem 1.3. Let λ be as in the introduction, and define $\Lambda_{0}=0$ and $\Lambda_{n}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}, n>0$. We set $X=\lim _{n}{ }^{-1} \mathbb{Z} / \Lambda_{n} \mathbb{Z}$ and view X as the set of sequences, $x=\left(x_{1}, x_{2}, \ldots\right)$, such that $0 \leq x_{n}=$ $x_{n}(x)<\Lambda_{n}$ and $x_{n+1}-x_{n} \in \Lambda_{n} \mathbb{Z}$ for all $n>0$. Letting $\theta=(1,1, \ldots)$, the subgroup $\mathbb{Z} \theta$ is dense in X. μ denotes normalized Haar measure on X .

Let $E=\{-\theta\}$. If $x \notin E$, define $\tau(x)=\ell-1$, where l is the least integer such that $x_{l} \neq \Lambda_{l}-1 . \quad \tau(\cdot)$ is continuous on E^{c}, and $\lim \tau(x)=\infty$. In terms of the function $\tau(k), k \neq-1$, defined in $x \rightarrow-\theta$
(1.2), one has (a) $\tau(k \theta)=\tau(k), k \neq-1$, and (b) $\tau(x)=\tau\left(x_{n}(x)\right.$) for any n such that $x_{n}(x) \neq \Lambda_{n}-1$.

Define partitions $P_{n}=\left\{P_{n k} \mid 0 \leq k<n_{n}\right\}$ by setting $P_{n k}=$ $\left\{x \mid x_{n}(x)=k\right\}$. The function $T_{n}(x)=\Lambda_{n}-1-x_{n}(x)$ assumes the constant value $\Lambda_{n}-1-k$ on $P_{n k}$ for each k. Remark (b) of the preceding paragraph implies $\tau(x+j A)$ is constant on $P_{n k}$ if $j \neq \Lambda_{n}-1-k$. As for the exceptional value of j, define $P_{n k}^{\ell}=\left\{x \in P_{n k} \mid \tau\left(x+\left(\Lambda_{n}-1-k\right) \theta\right)=n+\ell\right\}$, $\ell \geq 0$. An easy counting argument shows $\mu\left(P_{n k}^{\ell}\right)=\left(\lambda_{n+\ell}-1\right) \frac{\Lambda_{n-1}}{\Lambda_{n+\ell}} \mu\left(P_{n k}\right)$ holds for $\ell \geq 0$. If in particular λ is bounded (by Q), the last inequality implies

$$
\begin{equation*}
\mu\left(P_{n k}^{\ell}\right) \geq Q^{-(\ell+1)} \mu\left(P_{\mathrm{nk}}\right) . \tag{3.1}
\end{equation*}
$$

If $x \in X$, write $P_{n}=P_{n}(x)$ for the element of P which contains x. Given an $L^{1}(\mu)$ function $F: X \rightarrow C^{d}$, the martingale theorem, together with a standard argument, shows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{u\left(P_{n}\right)} \int_{P_{n}}|F(y)-F(x)|_{u}(d y)=0 \tag{3.2}
\end{equation*}
$$

Next, suppose $K \neq\{e\}$ is a compact group, and let $S=\{\psi(0), w(1), \ldots\}$ be a K_{σ}-sequence in K. Using τ and S, we define $\varphi(x)=\psi(\tau(x)), x \in E^{c}$. The facts $K \neq\{e\}$ and S is a K_{σ}-sequence easily imply φ has no limit at $-\theta$. We shall be interested in φ (Λ_{n}) which we denote by φ_{n}. Our earlier discussion implies there exist $A_{n k}, B_{n k} \in K, 0 \leq k \leq \Lambda_{n}$, such that

$$
\begin{equation*}
\varphi_{n}(x)=A_{n k} \psi(n+\ell) B_{n k} \quad\left(x \in P_{n k}^{\ell}\right) . \tag{3.3}
\end{equation*}
$$

Indeed, of the Λ_{n} factors determining φ_{n} : all but one are constant on $P_{n k}$, and that factor is constantly $\psi(n+\ell)=\omega\left(\tau\left(x+T_{n}(x)_{\theta}\right)\right)$ on $\mathrm{P}_{\mathrm{nk}}^{\ell}$.

Suppose now that ρ is a nontrivial continuous irreducible unitary representation of K on C, and suppose also that (2.3) has a nontrivial measurable solution. We replace K by $\rho(K) \neq\{e\}$, and reletter, so that (2.3) becomes

$$
\begin{equation*}
F(x+\theta)=\varphi(x) F(x) . \tag{2.3'}
\end{equation*}
$$

Now $\varphi(x) \in U(d)$, and (2.3') implies $|F(\cdot)|$ is invariant under translation by θ, hence constant a.e. As F is assumed to be nontrivial, we may and shall assume that $|F(x)|=1$ a.e. This will lead us to a contradiction, assumming λ is bounded (by Q).

Iterating (2.3'), one finds $F(x+m A)=\varphi^{(m)}(x) F(x)$, and this, plus the continuity of translation in $L^{1}(\mu)$, implies

$$
\begin{equation*}
\lim _{m \rightarrow 0}\left\|\varphi^{(m)} F-F\right\|_{1}=0 \tag{3.4}
\end{equation*}
$$

3.5 Lemma. With notations as above, there exists for every pair $\varepsilon, q>0$ a vector $v=v(\varepsilon, q),|v|=1$, such that $|\Psi(i) v-\psi(j) v|<2 \varepsilon$, $0 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{q}$.

Proof: S is a K_{σ}-sequence, and therefore there exists an infinite set Γ such that $\psi(n+j)=\psi(j), 0 \leq j \leq q, n \in \Gamma$. Apply (3.4) ($m=\Lambda_{n}, n \in \Gamma$), and (3.2) to conclude that if $n \in \Gamma$ is large there exist $P_{n k} \in \mathbb{P}_{n}$, such that $\left(P_{n k}^{\varepsilon}\right)^{c}=\left\{y \in P_{n k}| | \varphi_{n}(y) F(x)-F(x) \mid \geq \varepsilon\right\}$ has measure less than $Q^{-(q+1)}{ }_{\mu}\left(\mathrm{P}_{\mathrm{nk}}\right)$. From (3.1) one concludes $\mathrm{P}_{\mathrm{nk}}^{\varepsilon} \cap \mathrm{P}_{\mathrm{nk}}^{\ell} \neq \emptyset, 0 \leq \ell \leq \mathrm{q}$. Finally, (3.3), the definition of $P_{n k}^{\epsilon}$, and the facts $n \in \Gamma$ and $A_{n k}, B_{n k} \in U(d)$ imply that if $v=B_{n k} F(x)$, then $|v|=1$ and $|\Psi(i) v-\Psi(j) v|<2 \varepsilon, 0 \leq i, j \leq q$. The lemma is proved.

Notice in the above that also $\left|\Psi(i)^{-1} \Psi(j) v-v\right|<2 \epsilon, 0 \leq i, j \leq q$, $v=v(\varepsilon, q)$. If we let $\epsilon \rightarrow 0, q \rightarrow \infty$ in such a way that $v(\varepsilon, q) \rightarrow v_{0}$, then $\left|v_{0}\right|=1$, and $\psi(i)^{-1} \Psi(j) v_{0}=v_{0}, i, j \geq 0$. As S is a K_{σ}-sequence $\mathrm{kv}_{0}=\mathrm{v}_{0}, \mathrm{k} \in \mathrm{K}$. Irreducibility then implies $\mathrm{d}=1, \mathrm{~K}=\{\mathrm{e}\}$, a contradiction. We conclude that (2.3) cannot have a nontrivial measurable solution. The discussion of Section 2 now implies Theorem 1.3. (The second coordinate of $T^{n}(\theta, \varepsilon)$ is $\varphi^{(n)}(\theta)=\psi(\tau(n)) \Psi(\tau(n-1)) \ldots \psi(\tau(1))$, where $\tau(k)$ is defined by (1.2)).

Remark on the case $d=1$. Let λ be as in Section 1 , possibly unbounded, and let $S=\{\Psi(n)\}_{n \geq 0}$ be a sequence of complex numbers of absolute value 1. Define K to be the closed subgroup of $U(1)$ generated by the terms of S. Form $X=X(\lambda)$, and set $\varphi(x)=\Psi(\tau(x)), x \neq-\theta$. We wish to allow for the possibility that ∞ has a limit at $-\theta$; this means that $M=M(\lambda, \psi)$, rather than having $X(\lambda)$ for a "factor," may in fact itself be a "factor" of $X(\lambda)$ (more precisely, the quotient of $X(\lambda)$ by the periods of the extended function $\varphi)$. Let $N=N(\lambda, \psi)=$ $M \times K$ and $T=T(\lambda, \Psi)$ be as in Section 2. Also, set $\omega=\omega(\lambda, \Psi)=u \times \nu$, as in Section 2. Using the above, one may prove
3.6 Theorem. With notations as above, suppose $\sum_{n=0}^{\infty}|\Psi(n+1)-\Psi(n)|$ $=\infty$. Then (T,N) is uniquely ergodic. Moreover, the point spectrum of $T, \underline{\text { relative to }} \omega$, is contained in $\Gamma(\lambda)=\{x(\theta) \mid x$ a continuous character on $X(\lambda)\}$.

If $\tilde{\lambda}$ is a second sequence, we write $\tilde{\lambda}_{\perp} \tilde{\lambda}$ if $\left(\Lambda_{n}, \tilde{\Lambda}_{n}\right)=1$ for all n. When $\tilde{\lambda}_{\perp} \lambda$, the Chinese Remainder Theorem implies $\mathbb{Z}(\theta, \tilde{\theta})$ is dense in $X(\lambda) \times X(\tilde{\lambda})$, and this in turn implies $\sigma \times \tilde{\sigma}$ is uniquely ergodic on $M \times M$ for any given $\tilde{\Psi}$. Suppose now that both Ψ and $\tilde{\psi}$ satisfy the hypothesis of Theorem 3.6. As $\Gamma(\lambda) \cap \Gamma(\tilde{\lambda})=\{1\}$, the point spectra of T, \tilde{T}, relative to $\omega, \tilde{\omega}$, have trivial intersection ($\{1\}$), and so by a well known result in ergodic theory, $T \times \tilde{T}$ is ergodic relative to $\omega \times \tilde{\omega}$. But $\omega \times \tilde{\omega}$ may be viewed as $(\mu \times \tilde{u}) \times(\nu \times \tilde{\nu}), \nu \times \tilde{\nu}=$ Haar measure on $K \times \tilde{K}$, and so Furstenberg's princple (Section 2), plus the unique ergodicity of $\sigma \times \tilde{\sigma}$, implies $\mathrm{T} \times \tilde{\mathrm{T}}$ 'in uniquely ergodic.

The sequences $\varphi^{(n)}(0), \tilde{\varphi}^{(n)}(0)$ are "q-muliplicative sequences"
(see [3] for definition and references). An immediate consequence of the above is that when $\lambda+\tilde{\lambda}$ and $\psi, \tilde{\psi}$ satisfy the hypothesis of Theorem 3.6, one has

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \varphi^{(n)}(0) \tilde{\varphi}^{(n)}(0)=0
$$

It would be interesting to know whether other known (and unknown) properties of q-multiplicative sequences can be obtained from such considerations.
4. Irregularities of distribution modulo 1 . In this section we suppose $X=R / \mathbb{Z}$, and we fix $\theta \in X$ irrational. If $I \subseteq X$ is an interval and $\alpha, \beta \in R$, define $\varphi=(\alpha-\beta) X_{I}-\beta X_{I}$. We regard φ as having values in $K=K(\alpha, \beta)$, the closed subgroup of X generated by α and β (modulo 1). We note that $\varphi^{(n)}(x)=S_{n}(x) \alpha-n B$, where $S_{n}(x)=$ $S_{n}(x, \theta, I)$ is defined in Section 1.

Let $\left\{\frac{P_{n}}{q_{n}}\right\}$ be the sequence of convergents to A, and define $\Gamma^{0}(\theta)$ $\subseteq x$ to be the set of t which admit a representation $t=\sum_{n=1}^{\infty} b_{n} q_{n} \theta$ (in X) such that $b_{n} \in \mathbb{Z}$ and $\lim _{n} b_{n} q_{n}\left\|q_{n} \theta\right\|=0$. (Any two such representations agree for large n [16].) If $a \in R$, we also define $\Gamma_{\alpha}^{0}(\theta)$ $=\left\{t \in \Gamma^{0}(\theta) \mid \lim _{n} b_{n} a^{2}=0\right.$ in $\left.X\right\}$. As noted in [16], [17] we have (i) if A has bounded partial quotients, then $\Gamma^{0}(\theta)=\mathbb{Z} A$, and (ii) if $t \notin \mathbb{Z} \theta$, then for almost all $\alpha, t \notin \Gamma_{\alpha}^{0}(\theta)$.

The theorem below is proved in [16] for $\alpha=\frac{1}{2}$. Extension to the general case is sketched in [18], [17] and the details are carried out by Stewart in [12].
4.1 Theorem. Let $\alpha, \beta \in R, \alpha \notin \mathbb{Z}$. If for every k such that $k_{\alpha} \neq 0$ (in X) $|I| \notin \Gamma_{k_{\alpha}}^{0}(\theta)$ modulo 1 , then (T, N) (Section 2) is uniquely ergodic.
4.2 Corollary. ([17],[12]) If $|I| \notin \mathbb{Z A}$ modulo 1 , then for almost all $\alpha \in R$ the sequence $\left\{S_{n}(x) \alpha-n \beta\right\}$ is well distributed modulo 1 for any choice of $x \in X$ and $B \in R$.

The corollary may be used to prove Theorem 1.4. To this end, suppose $|I| \notin \mathbb{Z} \theta$ modulo 1 but for some $X \in X$ and $M<\infty$ the set $E_{M}(x)$ (Section 1) has upper density $2 \varepsilon>0$. Corollary 4.2 implies there exists $\alpha, 0<a<\frac{\epsilon}{2 M}$ such that $\left\{S_{n}(x)-n_{B}\right\}$ is we11 distributed modulo 1 for all β. Set $B=|I| \alpha$, and note for this choice that $\left\|S_{n}(x) \alpha-n|I| \alpha\right\| \leq\left|S_{n}(x) \alpha-n\right| I|\alpha|<\frac{\varepsilon}{2}$ if $n \in E_{N}(x)$. We11 distribution implies the set of n such that $\left\|S_{n}(x) \alpha-n|I|_{\alpha}\right\|<\frac{\epsilon}{2}$ has upper density $\frac{\epsilon}{2}+\frac{\varepsilon}{2}=\varepsilon<2 \varepsilon$, and we have a contradiction. That is, $E_{M}(x)$ has upper density 0 , and the theorem is proved.

When $\varphi=(\alpha-\beta) X_{I}-\beta X_{I}$ is regarded as taking values in R, it is natural to prevent "drift" by requiring φ to have integral 0 . But for a change of scale, this is tantamount to requiring $\theta=(1-|I|) X_{I}$ $|I| X_{c}$. In what follows, $G=G(I)$ is the closed subgroup of R generated by $|I|$ and $1-|I|$. We assume $0<|I|<1$.

Define $T: X \times G \rightarrow X \times G$ by $T(x, y)=(x+\theta, y+\varphi(x))$. T preserves Haar measure on $X \times G$, which of course is infinite. Using a topological analogue of K . Schmidt's notion of an "essential value" of a cocycle ([11]), it is not difficult to prove
4.3 Proposition. Assume $|I|$ is rational or else $1, \theta$, and $|I|$ are rationally independent. Then T has a residual set of points with dense orbits. In particular, for a residual set of $x \in X$ the sequence $S_{n}(x)-n|I|$ is dense in $G(I)$.

One conjectures the conclusion of the proposition holds with
residual set of x replaced by 'measure 1 set of $x . '$ (It does not hold for 'all x '. See Dupain [4].) One way to prove this is to prove T is ergodic (relative to Haar measure). This is so for $|I|=\frac{1}{2}$ (K. Schmidt [10]; Conze-Keane [2]) and also for almost all values of $|I|$ (Conze [1]). In [17] the question was raised whether $|I| \notin \Gamma^{0}(\theta)$ implies ergodicity. This is proved by M. Stewart [12] when θ has bounded partial quotients, and Stewart now claims a proof for general θ (oral communication). It is open whether any condition on $|I|$ is necessary for ergodicity (save $|I| \in \mathbb{Q}$ or $1, A,|I|$ rationally independent).

Stewart's work relies heavily on the work of Schmidt and Conze. The most important ingredients are Schmidt's notion of essential value, the Denjoy-Koksma lemma (used by Conze), and the following 4.4 Theorem (M. Stewart [12]). Assume θ has bounded partial quotients. If $t \notin \mathbb{Z}$ modulo 1 , then

$$
\lim _{n \rightarrow \infty} \sup \left(\left\|q_{n} t\right\|-\frac{1}{2} q_{n}\left\|q_{n} Q\right\|\right)>0 .
$$

It would be of interest to have a formulation and proof of a nonabelian analogue of Theorem 4.1. At the present time one knows only that if θ has bounded partial quotients, if $|I| \notin \mathbb{Z} \theta$ modulo 1 , and if K is a finite group with generators α, β, the homeomorphism (T, N) corresponding to $\varphi(x)=\alpha, B$ as $x \in I, I^{C}$ is uniquely ergodic [14].

References

[1] Conze, J. P. "Équirépartition et Ergodicité de Transformations Cylindriques," Preprint, Université de Rennes (1976).
[2] Conze, J. P. and Keane, M. "Ergodicité d'un flot cylindrique," C. R. Acad. Sci. Paris (to appear).
[3] Coquet, J., Kamae, T., and Mendes-France, M. "Sur 1a mesure spectrale de certaines suites arithmétiques," preprint, 1'Université de Bordeaux.
[4] Dupain, Y. "Intervalles à restes majorés pour la suite \{na\}," Acta. Math. Acad. Sci. Hung., 29(1977), 289-303.
[5] Furstenberg, H. "Strict ergodicity and transformations of the torus," Amer. J. Math. 88(1961), 573-601.
[6] Furstenberg, H., Keynes, H. and Shapiro, L., "Prime flows in topological dynamics," Israe1 J. Math. 14(1973), 26-38.
[7] Kesten, H. "On a conjecture of Erdös and Szüsz related to uniform distribution mod 1," Acta. Arith. 12(1966/67), 193-212.
[8] Losert, V. and Rindler, H. "Uniform distribution and the mean ergodic theorem," preprint.
[9] Oxtoby, J. C. "Ergodic sets," Bu11. Amer. Math. Soc. 58(1952) 116-136.
[10] Schmidt, K. "A Cylinder Flow Arising From Irregularity of Distribution," preprint, University of Warwick, 1975.
[11] Schmidt, K. "Cohomology amd Skew Products of Ergodic Transformations," preprint, University of Warwick, 1974.
[12] Stewart, M. "Irregularities of uniform distribution," Ph.D. Thesis, Rice University, 1978.
[13] Veech, W. A. "Applications of ergodic theory to some problems of uniform distribution," Proc. Conf. on Ergodic Theory and Topological Dynamics (Univ. of Kentucky, 1971), Math Dept., Univ. of Kentucky, Lexington, Ky., 26-33.
\qquad , "Finite group extension of irrational rotations, Israe1 J. Math. 21(1975) 240-259.
_(2) "Some questions of uniform distribution," Ann. of Math. (2) 94 (1971), 125-138.
\qquad , "Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2," Trans. Amer. Math. Soc. 140(1969), 1-33.

[^1]
W.A. VEECH

[18] \qquad "We11 distributed sequences of integers," Trans. Amer. Math. Soc. 161(1971), 63-70.

William A. VEECH
Department of Mathematics
Rice University HOUSTON
U.S.A.

[^0]: *Research supported by NSF - MCS 78-01858

[^1]: _, "Topological dynamics," Bull. Amer. Math. Soc., 83 (1977), 775-830.

