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A SURVEY OF SOME IMPORTANT PROBLEMS 

IN ADDITIVE NUMBER THEORY 

by 

R.C. VAUGHAN 

Since many aspects of additive number theory were covered by Halberstam's 

adress [27] to the recent meeting on Additive Number Theory in Bordeaux, I 

shall content myself by adumbrating just two of the principal areas which have in

terested me particularly. These are problems dealing with 

(A) sums of kth powers, 

(B) sums of primes. 

One of the fascinating aspects of these problems is the interplay between them 

and other areas of analytic number theory. 

A. - The typical problem involving sums of kth powers is 

1. - Waring's problem, regarding which there is an excellent survey article by 

Ellison [24]. Let g(k) denote the smallest s such that for every n^l there 
k k 

exist x̂ «>0 such that n=x^ + ...+xg . The problem of evaluating g has been es

sentially solved for all k except k = 4 . It is thought that 

(1) g(k) =2 k+[(|) k]-2 . 

It is classical that tjiis holds whenever k^=4, 5 and 

(2) {(f)k}<l-2-k[(f)k] . 

Mahler [38] has shown that (2) has at most a finite number of exceptions, and 

Stemmler [50] has verified that (2) holds for k£200 000. Incidently, this has 

lead to interesting questions concerning distribution modulo 1 , see Mahler [39]. 
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M o r e recently, Chen [3,4,5] has shown that (1) also holds w h e n k = 5. 

This leaves k = 4 . Here there has been considerable recent progress. The upper 

bound for g(4) has been reduced first to 34, then to 30 and 23 and finally to 22 

by Dress [22], Dress [23], T h o m a s [5l] and T h o m a s [52] respectively. It is 

trivial that g(4) ̂  1 9. 

2. - The m o r e interesting and challenging problem is that of the estimation of 

G(k) , the smallest s such that every sufficiently large integer is the s u m of at 

m o s t s kth powers of positive integers. So far only G(2) and G(4) are known. 

If one defines T(k) to be the least s such that for every q, n the congruence 
k k 

x 1 + . . . + x = n (mod q) is soluble, then one has G ( k ) ^ m a x (k+1 , r(k) ) . O n e 1 s 
might guess that equality occurs. The current of play for small values of k is as 

follows ; 

G(2) = 4 , Lagrange [34], 

G ( 3 ) ^ 7 , Linnik [35], Watson [66], 

G(4) = 1 6 , Davenport [12], 

G(5)S 23 , G(6)£ 36 , Davenport [13, 14 ] , 

G(7)S 53 , Davenport's method (the claim G ( 7 ) ^ 52 of Sambasiva R a o 

[46] is fallacious), 

G(8)S73, Narasimhamurti [43]. 

For larger k , the principle results in the last thirty years have been 

G(k) < k ( 3 1ogk + ll) , Vinogradov [63,64], 

G(k) < k ( 3 1 o g k + 9) ( k = 2 m ) , ) 
m \ Tong [53], 

G(k) <k(3 1ogk + 7) ( k £ 2 ) , J 

G(k)<k(3 1ogk + 5.2), Chen [2], 

G ( k ) < k ( 2 1 o g k + 4 1 o g l o g k + 21ogloglogk + 13), Vinogradov [65]. 

This last result is superior to Chen's only w h e n k > 6 l 0 3 975 350 . M o r e recently, 

the method described in Vaughan [59] gives G(9)£ 91 , G(10)< 107 , G(ll 122 , 

G ( 1 2 ) S 1 3 7 , G ( l 3 ) ^ 1 5 3 , G(14) £ 1 6 8 , G ( 1 5 ) * 1 8 4 , G(l6)£ 200 , G ( 1 7 ) S 2 1 6 and 

G(k)< k(3 1ogk+4.2) . 

3. - H o m o g e n e o u s additive equations. - Davenport and Lewis [15] have shown that 

there is an s(k) such that if s2£s(k), then for every c^,...,c g (with c j c 2 < 0 
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k k 

if k is even) the equation c„x., + ... + c x =0 has a non-trivial solution in inte-
1 1 , 2 

ger s Xj , ... , x g . They showed that it is pos sible to take s(k)Sk +1 when k S 6 
or k ^ ] 8 giving partial verification of Artin's conjecture that any form of odd 

2 
degree represents 0 non-trivially whenever s ^ k +1 . 

2 

Vaughan [59] has partly filled the gap by showing that s(k)^k +1 is permis

sible w h e n H S k < 17. 

4. - Simultaneous homogeneous additive equations. - Davenport and Lewis [17] 

have treated the system 
f k k 

c« ..x* + ... + c, x =0 , 11 1 In n 

' k ' k n c ..x. + ... + c x =0 . rl 1 rn n 
\ 

There are m a n y open questions in connection with this. Earlier [16], they had 

studied pairs of additive cubics 

f 3 3 n C x„ + ... + c x = 0 , 
(2) \ 1 1 

v ] 3 3 d„x., + ... + d x =0 . \ 1 1 n n 

They showed that if n ^ l 8 , then there is a non-trivial solution of (2) , and that 

there exist c. , d , ... , c , d such that (2) with n - 1 5 has only the trivial so-1 J 15 15 
lution. Cook [10] has replaced the 18 by 17 and Vaughan [57] has reduced this 

to 16 , the best possible. 

For related matters see Davenport and Lewis [18]. 

5. - Vinogradov's m e a n value theorem. - Let I(X, s,k) denote the n u m b e r of so

lutions of 

" x 1 + . . . + x g = y 1 + ...+y s 

2 2 2 2 
x 1 + . . . + x s = y 1 + ... +y s 

k k k k x 1 + . . . + x s = y 1 + ...+y s 

with 0 < x . , y. ̂  X . Karatsuba and Korobov [31] have shown that 

i ( x , S ) k ) < c ( k , * ) x 2 s - * ( k + 1 > + 6 
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1 -t 2 with 6 = -^k(k+l) (1 - —) whenever s ̂ k + k £ . F o r an earlier account of this see 

Vinogradov's book [63, 64]. There are a n u m b e r of important applications. 

T h e value of C(k, t) is not usually very important in additive n u m b e r theory, 

but the contrary is true in the applications to multiplicative n u m b e r theory. 

2 It 

Recently Bombieri has shown that it is possible to take 6 = k (1-^) 

whenever s ^ k £ . 

B. - The archetypal problem concerning s u m s of primes is Goldbach's pro

blem. This stems from two letters from Goldbach to Euler in 1742 in which he 

conjectures that every even natural n u m b e r is the s u m of two primes and that 

every integer greater than 2 is the s u m of three primes. H e included unity as a 

prime. There have been three lines of attack on these problems. 

1. - Direct applications of sieve methods. - There are excellent surveys of earlier 

w o r k in Halberstam and Roth [29] and Halberstam and Richert [28] . The m o s t 

recent result is the celebrated theorem of Chen [6, 7] to the effect that for n > n 
o 

either 2 n = p + p or 2n = p+p p . There are shorter proofs by Ding, P a n and 1 1 £ 

W a n g [21] , and Ross [44] . Ross [45] has also shown that the primes can be res

tricted in various w a y s . G r a h a m [26] has m a d e effectively computable. 

2. - Indirect applications of sieve methods. - This stems from Shnirel'man [47,4£[J • 

H e showed that there exists a constant C such that if n > n , then 
o 

n = P j + . . . + p g with sSC . His C is very large, and the method w a s later super

ceded by the m o r e powerful Hardy-Littlewood-Vinogradov method (see below) . 

H o w e v e r , alternative lines of approach are always of interest in connection with 

difficult problems. In recent times Chechuro and Kuzjashev [1], and Siebert [49] 

obtained C = 10 by this method. This is improved to C = 6 in Vaughan [56] . This 

last paper contains a brief survey of previous w o r k via this method. 
Perhaps m o r e interesting is the fact that this method readily yields a C Q 

such that every n > l can be written as the s u m of at m o s t C primes. The m o s t 7 o 
recent w o r k in this direction is 

C q = 6 x 10 9 , Klimov [32] , 

C Q = 115 , Klimov, Pil'tai and Sheptitskaya [ 3 3 ] , 
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C = 75, Deshouillers [19], o 
CQ = 27 , Vaughan [58] . 

This last paper contains two different methods, in one of which the calculations 

are easier. H o w e v e r the m o r e difficult method would permit a smaller C pro-
o 

vided certain calculations could be carried out. Deshouillers [20] has thereby ob
tained C =26. 

o 

3. - The Hardy-Littlewood-Vinogradov method. - By obtaining non-trivial estimates 

for 

(3) L e
2 T T i a p w h e n |a-~/^ q" 2 , (a,q)=l, (log N ) A < q <SN (log N ) " A , 

p S N 3 
Vinogradov [62] gave an unconditional proof that every sufficiently large odd in

teger is the s u m of at most three primes. Linnik [36,37] (see also Chudakov [9]), 

M o n t g o m e r y [40] and Vaughan [60] have given different ways of estimating (3) . 

Immediately following Vinogradov's work, Chudakov [8] , van der Corput [ll] 

and Estermann [25] all showed that if E(x) = | {n x : 2n ^ p + p ' ] | , then 
-A i 1-6 

E(x) = C^(xlog x) . Thix w a s later improved to 0(x exp(-c vlogx)) and 0(x ) 
by Vaughan [54] and M o n t g o m e r y and Vaughan [42] respectively. 

F o r another question connected with Goldbach's problem, see M o n t g o m e r y and 

Vaughan [41], and Vaughan [55]. 

Let m e conclude by emphasizing the interaction between this subject and 

others of analytic n u m b e r theory. Recently the ideas contained in Vaughan [60] 

have been used 

(a) to give (Vaughan [6l]) a n e w and simple proof of Bombieri's prime n u m 

ber theorem, 

(b) by Heath-Brown and Patterson [30] as an aid in their resolution of R u m 

mer's problem concerning cubic Gaussian s u m s , to the effect that the arguments 

are uniformly distributed modulo 2TT . 
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