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SOME RECENT RESUL TS IN TRANSCENDENCE THEORY

by
David W. MASSER

INTRODUCTION

This article is divided into parts I, I, and Ill, dealing respectively with
elliptic functions, gamma functions, and Siegel E-functions. In each part we

describe some recent results and mention a humber of open problems,

1 - ELLIPTIC FUNCTIONS

M. Anderson [ 1], [2] has proved several elliptic analooues of A, Faker's
inequalities [3] for linear forms in logarithms of algebraic numbers. Let Kj(z)
be a Weierstrass elliptic function with algebraic invariants 9, and 93
There is a canonical way of choosing a basis Wy wz for the period lattice of
P(z) (see, e.g. [6] p. 421), and we denote by T the fundamental parallel-
ogram consisting of all points of the form 61 w, + 92 Wy for real 91, 92
with 0= Gl, 02< 1 «For n=1 let Upseeey U be non-zero points of 1l
such that Z’(ul), oy P(uh) are algebraic humbers of heights at most. A= 4
and generate over the rational field @ and algebraic humber field F of degree
at most d=2 , Let BO’ ...,Bn be algebraic humbers of heights at most
B = 4 which generate over F an algebraic number field of degree at most
D=2 (over Q). Put

A =BO+B] UI +* oo +Bn Un

and assume A#0 ,

All Anderson's results need the additional hypothesis of complex
multiplication ; thus throughout this section we shall assume that ¥ (z) has
complex multiplication over a complex quadratic field K , The main results

take the form :
A o K
log |A| > -cD" (log A)* log B (log log B)

where C> 0 is effectively computable in terms of 9p 93 N and the choice
of K, X\, 4 « There are three possibilities for this latter choice ;
unconditionally we can take any values satisfying either

K>n+1, \>4n2+n+3, u>n+n
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or

K>n+2, )\>n2+4n+6, p>n2+n-l H

while if n=2 andone of U,;eee,U is a half-period we can suppose merely
1 n
that :

K>n+1,)\>n2+2n+3, p>n2-n-l .

Already this presents us with two apparently very difficult problems ;
firstly to remove the term (log log E’..)K from these estimates, and secondly to
relax the conditionon | to u>n . Both of these (and much more) have been
solved in the case of linear forms in logarithms of algebraic numbers,

Next, suppose that 1, Uprooey Un are linearly dependent over the field of
algebraic humbers, It has been known for some time that then Ujreses un
must be linearly dependent over K . Anderson shows in fact that there exist
integers Pyresesly of K , not all zero, with absolute values at most

(enZd* (log o) 100 A)‘/Z (n-1) ,

such that

Ppuytees tp U =0 .

Here c> 0 is effectively computable in terms of 9, and 93
For the rest of this section we shall discuss an interesting feature in the
proof of this second result, First we consider the exponential case, due to
J.H. Loxton and A.J. Van der Foorten [8] « One approach, not quite theirs,
leads to the following problem, Let F be an algebraic humber field of degree
d=1 , and for any non-zero o in F define
h (@) = £ log max (1, v (a)) ,

v
where the sum is taken over all normalized valuations v of F , Recall that

there are d archimedean valuations v such that v (a) is the absolute value
of one of the conjugates of a , and every other valuation is associated with a
prime ideal :F of F . In the latter case v (q) = (N"P)_'< where k is the
exact power of ‘F dividing the principal ideal generatedby o in F , and
N is the norm of R,

Now, it is not too hard to prove that h (a) =0 if and only if o is a root
of unity ; this is essentially Kronecker's Theorem about algebraic integers on
the unit circle, The problem referred to above is to find a good positive lower
bound for h (a) , dependingonly on d , as g runs over all non-zero

elements of F that are not roots of unity.
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This is solved as follows, If o is not an algebraic integer then v (a)> 1
for some non-archimedean valuation v , and this implies v (a) =2 , so that
we have the lower bound h (o) =log 2 . On the other hand, if a is an
algebraic integer, then, assuming for the moment that a is of exact degree d
with conjugates Qyseeerdy » WE see that
d
exph (o) = T max (1, \ai\) .
i=1
It is a classical problem to find good lower bounds for the right-hand side of
this equation, and until recently the best estimate was due to F,E, Dlanksby
and H.L. Montgomery |'4] .

They showed that if o is not a root of unity, then

Hao

max (1, |a,|)> 1 +(52d log 6d)”! .
=1

We deduce that if d= 2 then
h(a)>c(dlog d)" ()

for some absolute constant ¢> 0 , and it is easy to check that this remains
valid even when o has degree less than d . It follows that (%) is valid for
any non-zero o in F that is not a root of unity,

In 1977 C.L. Stewart found a new proof of (%) , with a slichtly smaller
value of ¢ , by applying techniques from transcendence theory (see [12]) N
Recently, E. Dobrowolski used similar methods to obtain a significant improve-
ment on these estimates, in which the order of magnitude (d log d)—' is
replaced by (log log d / log d)3 .

To explain the elliptic analogue, we note that h is a natural height function
associated with the multiplicative group Cx of hon-zero complex numbers,
This group can be identified with the curve C of points (x,y) satisfying
xy =1 , for example, Then h is defined on the subgroup C (F) = = of
points (a, B) on C with coordinates o, B in F .

Moreover h vanishes exactly at the torsion points of C (F) . Now let &
denote the elliptic curve associated with ¥ (z) , consisting of points (x, y)
satisfying y2 = 4x3 - gpX - 93 together with the point at infinity o« ,

This curve has an additive group structure, and, provided 9, and 95 lie in
the algebraic number field F , so has the subset & (F) of points P = (a, B)
on & with coordinates o, B in F (together with P =),

There is a natural height function h on & (F) which vanishes exactly at the

torsion points of & (F) ; this is the Tate height, defined in the following way.
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For a finite point P =(qa, B) of & (F) let
h (P) = £ log max (1, v(a), v(B)) ,
v
where the sum is as before, and put h (®) =0 , Then for any P in & (F)
the limit
AP) = 1im m2h (mP)
m= oo
can be shown to exist and have the required vanishing properties.

The problem we have to solve for this height function h is the same as
before ; to find a good positive lower bound for h (P) , depending only on the
degree d of F , as P runs over all non-torsion points of 4 (F) . The
solution seems difficult if the approach of Blanksby-Montgomery is adopted.
But by modifying the methods introduced by Stewart, Anderson was able to
establish the following result, When ‘f(z) has complex multiplication, there
is a constant ¢> 0 , effectively computable in terms of 9, and 93 » such
that for any algebraic number field F of degree at most d= 2 containing 9,

and 94 we have
A (P)> c (d log d)™3

for any non-torsion point P in & (F) .

It is an interesting problem to extend this result to elliptic curves without
complex multiplication. An easy argument shows that always h (P)> exp(—cdz)
for some c independent of d , but it seems hard to prove h (P)> cd"K for
some absolute constant K , One might even ask whether h (P) is bounded
below independently of d . The analogous question for h (a) was asked some

time ago by D.H. Lehmer, but it remains unanswered to this day.

11 = GAMMA FUNCTIONS

G.V. Chudnovsky's proof [5] of the transcendence of T (1/4) shows in
fact that the numbers m, T (1/4) are algebraically independent over Q (see
also [14]) . A similar remark applies to T (1/3) . By easy calculations we
deduce that T (x) is transcendental for the following values of x with
0<x<1 ;

1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6 .
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Naturally, the next problem is to complete the Farey series of order 6 by
adding the values 1/5, 2/5, 3/5, 4/5 to the list. This problem seems intimately
connected, via the Chowla~Selberg relations, to the perhaps no more difficult
question of the algebraic independence of periods of abelian varieties with
complex multiplication. Recently P, Deligne found an extensive family of new
algebraic relations between these periods, thereby substantially reducing the
upper bound for the transcendence degree of the field they generate.
Chudnovsky in his talk at the Helsinki Congress conjectured that the reduced
upper bound is the correct value of the transcendence degree ; this amounts to
saying that there are essentially no more algebraic relations, All that is known
so far is that the transcendence degree is always at least 2 . This implies,
for example, that at least two of the humbers m, T (1/5), T (2/5) are
algebraically independent over Q .

On a less exciting level, one can consider linear independence, In [9]
| asked if the values B (m/5, n/5) of the classical beta function span over
the field of algebraic numbers a vector space of dimension 6 as m and n
run over all positive integers, Recently | proved that this is so ; writing
6=T(1/5), &=T (2/5) we deduce that the humbers

1, m, 62/8, ma/62, o0& /m, n2/0a2

are linearly independent over the field of algebraic numbers,

Finally let us mention an interesting quantitative sharpening of Chudnovsky's
results, A subfield F of C that is finitely generated over Q is said to be of
finite transcendence type if for any 91, coey Sn in F there exist C>0,

T >0 with the following property, For any polynomial P in Z [x], ...,xn]
with degree at most d> 1 and coefficients at most H>= 2 in absolute value
such that P (6', evey Gn) #0 , we have (+)

log | P (8,,400,8) [>=-C(d+logH) . (3¢)
(it suffices to check this for a single transcendence basis 61, eeey 0 of F

over Q) .,

(+)

It is probably too late to change the nomenclature now, but it would have
been nice to define the transcendence. type of F as the infimum To of all
numbers T such that (%) holds. If then (%) happens to hold for T =T, we
could have said that F has strict transcendence type To (cf. the order of an

entire function),
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Classical results show that @ (e) , Q (1) , @ (e") are all of finite
transcendence type (and much more) ; but until recently no such field of
transcendence degree 2 was known. The work of Chudnovsky provides several
examples, including Q (m, T (1/4)) and Q (m, T (1/3)) .

1l - E-FUNCTIONS

)

Recall that f(z) = z ) zk/k ! is defined to be an E-function if there
is an algebraic number k=0 field F and a constant c¢> 0 such that, for
each m=1 , there exists a positive integer dm <c™ such that
dm Qgreses drn a, are algebraic integers of F with all their conjugates of
absolute values at most cm « The fundamental theorem of Siegel-Shidlovsky
[11] is as follows, For n=1 let f, (2)y 000, fn (z) be E-functions,
algebraically independent over C (z) , that satisfy a system of linear
differential equations
£ (2) = q,4 (2) +j§]qij(2)fj(2) (1<i<n)
with rational functions %G; (z) in C(z) . Then for any non-zero algebraic
number g distinct from the poles of the % (z) , the values f (a)yones fn(a)
are algebraically independent over Q .

In 1962, S, Lang obtained a quantitative version of this (see [7]) . For
brevity put ei =T (a) (1<i=<n) . He proved that for any d= 1 there
exist constants ¢>0 , C>0 , depending only on d, o, and the functions
f (2), ooty (z) , with c independent of d , having the following property.,
For any non-zero polynomial P in Z [xl, ...,xn] of degree at most d and
coefficients with absolute values at most H=2 , we have

P (6, 0ee,8)] > cHo

Since C may depend on d , this does not show that the field
Q (61, ooy Gn) has finite transcendence type ; and indeed this has not been
proved even for the simple example Q (e, e\r2 ) .
Recently, Ju, V. Nesterenko [10] published a proof that we can take

c! = exp exp (c! a?n log d)

for some c' depending only on o and f, (z),...,fn (z) .
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This relatively weak estimate reflects the fact that Siegel's method is designed
to operate with linear independence of power products rather than directly
with algebraic independence itself, Incidentally, it does not seem clear from
Nesterenko's proof that c¢' is in fact effectively computable in all cases, and
it would be an interesting exercise to verify this point,

The main part of Nesterenko's paper is concerned with estimates for zeroes
of functions that are polynomials in f, (z))000, fn (z) . The arguments are
algebraic in nature rather than analytic, and the paper contains techniques
from commutative algebra that should be applicable elsewhere in transcendence
theory. Recently, Dale Brownawell and myself have obtained similar zero-
estimates for solutions of certain non-linear differential equations, Among
other things these lead to a quantitative version of the Schneider-Lang Theorem
(7], [13] .

Let us first recall this result. Let f, (2); 000, f (z) be meromorphic
functions of finite growth order p . Suppose they satisfy differential equations

of the form

fi (2) = P, (f, (2), 00, f, (2) (1<i<n) ,

where Pl, eo ey F’n are polynomials with coefficients in an algebraic number
field F of degree at most d=1 , Suppose further that at least two of
f, (2), 000, f (z) are algebraically independent over F ., Then if m> 2p d

and W,,eeey, W are anhy distinct points at whic Z))eee z are
d w, m distinct points at which f, (2), ) f,, (2)

analytic, not all the values f, (Wj) (1<is=n, 1<j=m) canliein F .
Thus, if Bij (1<iSh, 1<j<m) areelements of F with heights at
most B=1 , the expression

U = max ‘fi (Wj) -8B

\

never vanishes, and we can ask for a positive lower bound for % as a function

i

of B .In fact, a further hypothesis is needed before we can give a satisfactory
answer,

For, if A 1o )‘n are complex numbers algebraically independent over Q ,
the constant functions (z) = A (1<i1=<n) satisfy all the conditions of

the theorem, and, if also )\ preees )‘n are arbitrarily well approxi mated by

numbers of F , then U can be an equally arbitrarily small function of B .
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However, let us exclude this possibility by assuming that there exists an
additional point w, , at which f, (2), eeerfy (z) are analytic, such that
f, (wo), TETAN (wo) lie in F . Then we can show that given any ¢>0 |,
there is a constant ¢> 0 , depending in a simple way on n and ¢ , such

that if m>cp d and Wirese, W are points as above, then

»Y> C exp (-B®)

for some C>0 depending only on f, (z),...,fn (2), Woreee s Wp 5 €

and F .

m
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