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ON THE LOCAL STRUCTURE OF CONFORMAL MAPPINGS AND 
HOLOMORPHIC VECTOR FIELDS IN C2. 

César Caraacho 

The purpose of this note is to classify under topological con-
jugacy the local holomorphic diffeomorphisms which in a neighborhood 
of 0 £ C have the form 

(1) f ( z ) = Xz + a2z2 + a3z3 + . . . (z £ C, \n = l ) . 

We relate also some implications of this in the topological behavior 
of the solutions of a holomorphic differential equation 

(2) §§- = Z(z) (T € C, z € C2) 

near a singular point 0 £ C under the following hypothesis. If 
\ 2_* ^2 denote the eigenvalues of DZ(o), then 

(3) \ 1 O \^ and "^2-/^2 is a rational number. 

The relation between (l) and (2) is based upon the general fact that 
the topology of the solutions of (2) is intimately connected with the 
holonomy of the invariant manifolds passing through O 6 C . This 
holonomy can be represented by local holomorphic diffeomorphisms 
which in the presence of (3) have the form ( l ) . ^ 

§1. Local Conformai Mappings. 

A conformai mapping with a fixed point at 0 £ C can be 
expressed locally by a power series 

f ( z ) = \z + a2z + SL^Z + . . . . (X ^ 0). 

I t is well known ([ l] p.188) that for |X| ^ 1 there is a holomor­
phic local dif f eomorphism h, h(o) = 0, such that ho foh""^(z) = Xz. 
Our aim here is to determine the topological type of f in the case 
that Xn = 1 for some n ^ 1. This is given in the next theorem 

(1) We are grateful to Paulo Sad for valuable discussions. 
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C. CAMACHO 

Theorem 1 ^ . Let f be a local con formal mapping 

(1) f(z) = \z + a2z2+ a3z3 + . . . (\n = 1 , n * 1 ; \M 9S 1 for 0 < m < n) 

Then either the n-th iterate fn is the identity, or there is a local homeomor-
phism h , h(0) = 0 , and an integer k ^ 1 , such that 

h o f o h"1(z) - f. (z) - \z(l+zkn) k,n 

Clearly f, leaves invariant the union of kn lines in (E : k,n 
r kn ^_* {z : z €1R} 

It is the composition of 

K 1 " Ti<z> = z(l+zkn) kn,1 kn 
(see fig.l) which leaves invariant each of 2 kn angular sectors of angular mea­
sure TT/kn , and the rotation z -> \z over an angle qn/n , in case 
X - exp(2qTTi/n) . 

fig. 1 

Proof. The following proof can best be read first for k = n = 1 , then for 
k ^ n - 1 , then for n ^ k = 1 , and finally for the general case. 

We first obtain a normal form for the initial part of the powerseries (1). 
Let us assume 

(2) f(z) = \«(l+b «"+ b^z"*1 + . . . ) , b ^ O . 
m m+1 m 

We try to get rid of the first non vanishing coefficient b^ by a holomorphic 
change of coordinate 

1) We are grateful to N.H. Huiper who improved the exposition and rewrote the final 
version of the proof. 
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CONFORMAI MAPPINGS 

(3) z = w(l + tfwm) « h_1(w) . 

Neglecting terms of degree greater than 2m , we have the inverse h : 

(4) w = z(l - a,zm) = h(z) mod z 2 m +* 

Thus we obtain 

f o h_1(w) = X[w(l+owm)l (1+b wm) rood wm+2 

m 
and 

h o f o h_1(w) = \w(l+awm)(l+b wm)(l-aXmwm) 
m = Xwfl + [a(l-Xm)+ b >m} = XwU+b'w111) mod wm+2  

u m" m 
We can solve & from b1 = 0 In case m f 0 mod n . We repeat this process Induc-

m 
tively. Suppose we get stuck for the first time at m = kn . Then we may assume 

f(.) = Xz(l + b k n 2

k n

+ b k n + 1 b k n + 1

+ - . . ) 
-kn 

A final change of coordinate z = aw , where a = b^n , yields the (restricted) 
normal form (again written in z) 
(5) f(z) = Xz(l+zkn+ b k n + 1 z k n + 1 + ...) 

In case we never get stuck, then the powerserles f(z) is equivalent in formal 
powerseries to >z , and (fn) (z) is equivalent to the identity, z . But an 
easy calculation shows that then (fn) is the identity from the beginning. This 
takes care of the first part of the theorem. In order to study (5) near z = 0 we 
place the interesting point 0 at »€<EUoobya change of coordinate 

(6) z -» -
z 

For kn > 1 we compose this with the diffeomorphism of <t* = <t \ fO*} onto the 
u Tkn I # 

kn-fold covering <t L J of <C given by the formula 
(7) z -» z k n . 

Each of the angular sectors mentioned above is then represented by one upper or 
lower half-plane. And f Is represented by a map that looks like a translation In 
the coordinate space (C* . We will use the base space (C* as local coordinate space 
(variable w ), but we must always remember the distinction between kn points of 
(t*^ - {P € for each given w £ (C* . We denote 

(8) ( t * ^ - {P € (t*^ - {P € , |w(P)|>r} 
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The composition of (6) and (7) is expressed by 
_ _1_ /ftx -kn ~ kn K9) W = Z , z = w 

It transforms f in (5) into a well defined diffeomorphic embedding 

G : <C*[kn1 -» C*^1 r 

(near oo , that is for large r ) .̂ G is expressed in the C*-coordinate w by a 

multivalued function (because w n̂ is kn-valued) : 

g(w) = [\w ^U+w""1* bw kn + •••)l"kn = w[l-knw_1 +...-) 

kn 
(10) g(w) = w-kn+cw + 
For large |w | , g(w) tends to the translation 

g (w) = w - kn T 

which is covered by a smooth diffeomorphism, the "lifted translation" 

G of <n*Ekri] into <t*£kn3 , T r 

which is unique by being near to G near oo . Also the derivative of g tends to 
the identity for w oo . 

Let CD be the C°°-function 

cp(t) =0 for t ^ 0 

cp(t) = 1 for t 2> 1 

and for 0 < t < 1 

<p(t) = f exP üÁü dt I í exP I ( ¿ T dt 
О • о 

Let rQ, ri»'r2' rl""r0' r2~ rl* r3" r2 be very lar8e positive numbers » (kn)Z . 
We leave the suitable choice (see below) to the reader. 

We glue G , restricted to <t*tkn̂  , to G , restricted to <t*[knA (E*̂ kn̂ , 
to obtain a map G of <L*1 into (t*L J , by defining its expression in 

^ o 
the coordinate w £ <E* as follows : 

g (w) = g (w) + cp/ ——r̂ -
^ T r3"r2 , [g(w) - g (̂w)] 
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CONFORMAI MAPPINGS 

This map is a diffeomorphism if all the above-mentioned numbers are large enough. 
As G and G are equal on jt*PCI0 suffices now to define a conjugacy 

between G and G ,H, such that 
T| T 

(11) H o G o H_1 = G 
T T) 

We will define H on some part called an "exagerated fundamental domain" B U W 
of C*fknJ such that for any point P £ (H*̂ 11] there is a representative 9 r° r° G (P) ^ B U W for some i £7L . Then H is defined everywhere by (11). But we have T 
to check ambiguities. H will be the identity in 

B = <E*rkn] \ <c*rkn3 
\ rl 

Recall that Ĝ  and G are equal there ! For the easiest case k - n = 1 we 
have (E*̂ 11̂  = fl;* . Let L be the imaginary axis {w : real part of w = 0} and 
let W be the closed infinite strip between L and G (̂L) 

(12) {w : -1 * Real(w) £ 0} 

We let the restriction H|L be the identity. Then H|GT(L) is defined by the 
commutativity (see (11)) of the diagram 

G 
L 1 » G (L) 

T 
H 

L * * GV(L) 

We extend the homeomorphism H from B (J L U G (L) to B L)W by an arbitrary 
homeomorphism. Then H is determined by (11) on c'M'̂ n"' and as G is just a 

ro T 
simple translation clearly no ambiguities for the global definition of H arise. 
In case k > n = 1 we take for W the part in <L^1 J of the set of all points 
that cover the set (12) in the coordinate plane. * B U W is then obtained from 
W c (t*̂ lcn"' by attaching 2k half strips going to » . In fig. 3 the case k = 2 ro *R21 * is shown. C L J is cut open along the positive real axis of (C . In each of the 
two components, B has two extensions by pieces of W . The global definition of 
H goes as before. In case n > k = 1 we take for W the part of C*̂ 1-' defined 
by 
(13) {w : -n £ Real(w) * 0} 

but only in one of the connected components into which (C*̂n"̂  is cut by the posi-
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tive real axis. maps this part W into the other covering components for 
i = l,...,n-l . L is again the line and boundary part of W that covers the ima­
ginary axis. H is taken to be the identity there. Then H is uniquely determined 
on the opposite boundary of W by the commutativity in 

Gn 
L 1 > (G ) (L) 

T 
H = id H 

n 
f G | 
L 0 > G (L) 

Tl 
We extend H from B U L U Gn(L) to a homeomorphism defined on the strip B U W . 

n T 
Again because G is a simple lifted translation (over distance n ) then H is 
defined by (11) in all of C*̂ 11"' without ambiguity. See fig. 4. 

The general case is just a little more complicated. For w we take in 
C*£kn ^ a "union of strips" of width n covering 

{w : -n £ Real(w) ^ 0} , 

but only in those components of ((fc*̂ 11] cut open) 

C*£kn̂ \ fP : w(p) is positive real} 

that correspond to 
0 < arg z < rrk/n 

in the z-plane. 
In fig. 5 we have illustrated with the case n = 3 , k = 2 .We take H 

to be the identity on one side of these strips (L c £>W) and we extend as before 
without running into ambiguities. 

For {X = exp 2nqi/n , k} we have found that any two "G's" are conjugate 
near oo to G and so any two "f's" are mutually topologically conjugate. The 

proof of the theorem is complete. 

Remarks 
1) Another proof of Theorem 1 follows from a theorem of Rodrigues-Roussarie [4] 

concerning the embedding of local diffeomorphisms of ]R in flows. 
2) A local mapping f : ((C,0) (<t,0) is said to be stable at 0 £ <D if for each 
neighborhood U of 0 £ <C there is a neighborhood V c U of 0£<t such that 
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fn(V) cU for any n = + 1, + 2,. . . . Then we have (see [1] p.185) that f is 
stable if and only if f is holomorphically conjugate to a linear rotation. On the 
other hand, we say that f is unstable at 0 € <E if there is a neighborhood U of 
0 £ <t such that for each z f 0 in U there is n £Z such that fn(z) £ U . It 
was observed in [1] p.187 that it is not known whether there are unstable f with 
f'(0) a root of unity. From Theorem 1 one obtains that f with f'(0) a root of 
unity is never unstable. 

Exagerated fundamental domains B U W 

I 
z 

n=l, k=l 

fig. 2 

W in both layers 

cut 

1 "2 z 
n=l, k=2 

fig.3 
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W in one layer only 

pi,p3 in other layer 
n=2, k=l 

fig. 4 

W in two of 
the six layers 

1 
;6 

re2TTl/3, n=3, k=2 

Fig. 5 
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3) The i teration properties of conformal mappings near a fixed point 
were studied since long ago by Fatou [ 5] and Julia [ 6] . In par­

t icular Julia gave a description of the asymptotic properties of 
local mappings f (C ,0) -* (C ,0) with f' (o) a root of unity. 

§2, Holomorphic Vector Fields in C . 

Consider a holomorphic vector field Z with a singularity at 
0 £ C2 and such that i t s linear part A = DZ(o) has nonzero eigen­
values X-̂ , X2« We wish to study the topology of the solutions of 
the differential equation 

(2) | f = Z(z) T 6 C 

in a neighborhood of 0 £ C . 
When ^^/^2 "*"S no^ rea-'- ^ e topological structure of the solutions 
of (2) is well known. There is a real flow tangent to the solutions 
of (2) which is attracting at 0 £ C and transverse to a small 
3-sphere centered at 0 £ C • The intersection of the solutions of 
(2) with this sphere is an orientable line field, Morse-Smale type, 
with two periodic orbits linked with linking number one. 
Similarly when Z is linear the situation is easily understood. 
Here we will dwell with the more degenerate case ^1/^2 ^ R and Z 
non linear. To study Z is more convenient to reduce i t to a 
simpler form by means of holomorphic changes of coordinates. In 
fact in many situations Z can be reduced to i t s linear part. This 
is the case for instance when ^±/^2 "*"S irra^ional and positive and 
also for a dense subset of irrational negative numbers, [ 7] > C 8] . 
On the other hand when ^1/^2 ^s a ra^i°nal number the best general 
reduced forms one can get are: 

(12) i f = xizi a i r + (X2Z2 + CTzi> a i r when xi " x2-

(13) 5f • xizi ai^ + <x2z2+azi> a l j when x2 - nXi> n> 1-

(14) dz /. km+1 kn „ / \ \ d — = (XlZl + a z± z2 + Rl(z)) y— + 

U2Z2 + b R z2n+1 + R2(z)) "ô - when + nX2 = 0 

where R and R̂  are of order greater than k(m+n)+l. 
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The relation between the eigenvalues X2 i n (13.) and (l4) are 
called resonances. I t is well known that the nonexistence of reso­
nances implies in formal linearization of Z. 
On a question of Dulac. 
The study of the topology of solutions of holomorphic differential 
equations near a singular point 0 £ C , goes back to H. Dulac, 
In [9] he was interested among other things in finding solutions 
which admit 0 £ C as a limit point. In the presence of resonances 
he succeeded in proving the existence of infinitely many solutions 
with 0 £ C in their closure. By using Theorem 1 one can improve 
his result as follows 

THEOREM 2 - Consider the differential equation 

(2) | § = z(z) (z(o) = o , T e c) 

such that the eigenvalues X^, X^ of DZ(o) do not vanish and their 
quotient X / \ is a rational number. If Z is not linearizable, 
then any solution of (2) has 0 £ C as an accumulation point. 
Proof; Given any nonzero a 6 C we define a real differential 

equation 
(15) f f = a Z(z) (t g R). 
The solutions of (l5) are contained in those of (2). To see this is 
enough to take T = t»a. 
When X-,/XP > 0- the theorem is evident since i t is always possible 
to find a £ C such that a l l solutions of (15) converge to 0 6 C 
as t -» +». In fact, the eigenvalues of the linear part of (l5) are 
aX ^ f a^2' so "*"s enou£n *° take a 6 C such that these numbers 
have negative real part. 
When X1/X2 < °» for anv a 6 C such that Re(X1a) ^ 0 ^ Re(X2a) 
(15) has a saddle structure i , e . Re (X ̂ a)/Re (X 2a) < °» F:*-x a £ C 
with this property. Then the stable and unstable manifolds S_ and 
S9 of 0 £ C give invariant manifolds of (2), They are in fact 
complex curves cutting transversally at 0 £ C . 
We associate to and S2 their holonomy maps induced by the so­
lutions of (2), The holonomy of has the following geometric 
interpretation. Consider in S1 a l i t t l e circle Y around 0 £ 
and above Y a narrow fence T of real dimension three transverse 

2 1 
to the solutions of (2). Clearly T is diffeomorphic to D x S . 
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Then the leaf intersection of (2) with V is a line field X with 
Y has a closed integral. The holonoray of is then represented 
by the germ of a local diffeomorphism f: (C ,0) -4 (C ,0) equivalent 
to a f i r s t return map of X near y. Similarly the holonomy of Ŝ  
is represented by a local map g: (C,0) -4 (C,0). 
An easy computation using (l4) shows that f and g have the 
following expressions 

^ / \ . kn+1 
f(z) = ji^z + A z + . • . 

(A / 0 , U ; L = a t a Л , 
e ) 

/ x ^ km+1 g ( z ) = U 2 z + B z + • • . (B j 0, n., . e 1 2) 

Then since ljn = 1, Theorem 1 applies to f showing that any 
integral of X accumulates on y« Now, since (15) has saddle 
structure, any solution of (2) different than S2 intersects T and 
so accumulates in y» Finally since S_ and Sp accumulate on 

2 
0 £ C the proof is finished. 

A more detailed study of the holonomies f and g and their 
relations allows to prove the following theorem. 

THEOREM ([10] ) - Consider the differential equation 

(*) f§ = Z(z) (z € C2, Z(0) = 0 , T 6 C). 

Let X-̂ , X2 be the eigenvalues of DZ(o) and suppose that 

X̂  ^ 0 jL X2 and ĵ_A2 "*"S a rational number. 

Then (a) For Z linear and X-̂  = X2 the Jordan form of Z is a  
topological invariant of (*). 

(b) For Z nonlinear and X-L/X2 > °« Then X ^ /\ 2 = n or l /n, 
Z has the following normal form 

Z<z) - X1Z1 A~L + <X2Z2 + ^) ^ £2£ *2=n*l 

and n is a topological invariant. 
(c) For Z nonlinear and X A 2 °* Then mX1 + nX 2 = 0, 

m,n £ 0. Let Z be written as 

rr / \ ~ km+1 kn _ / x N ô , km kn+1 _ / x N d Z(z) = (XlZl+aZ;L z2 +Rl(z))— + (X2z2+bZ;L z2 ^ ( z ) ) - ^ -

where k ^ 0 and R ,̂ R2 have order greater than k(m+n)+l. 
Then under nondegeneracy conditions k and X^A2 are topological 
invariants of (*)• 
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The proof of (a) is immediate. The proof of (b) and (c) is 
more elaborate and consists in showing that the topology of Z is 
determined by the holonomies of the invariant manifolds passing 
through thé origin. 
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