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THE LOCAL TIME OF THE BROWNIAN SHEET 

by 

John B. WALSH 

The Brownian sheet, {w s t» s >_ 0, t j> 0}, is a Gaussian process with mean 
zero and covariance E{W W } = (u A S)(VA t), It has continuous paths, and it 

u v s t \ * ' \ n ' 
also has a local time which, as was shown in (l) , is continuous in all variables. 
We will refer to this as the local time in the plane. We will also use a second 

local time, the local time on lines. Consider, for instance, the line S = S
Q i n 

2 
R +. {Wg , t >_ 0} is a one-parameter Brownian motion, and it therefore has a local 

o 
time at any point x, which we call the local time along the line s~ s

0« 

Our approach is quite different from that of (l). We will start with the 

local time on lines, and get the local time in the plane> L(x;s,t), by integrating. 

L(x;s,t) is not exactly the same as the local time of (l), but it is closely 

related to it. Our basic results, Theorems 1.2 and 2.1, state that L(x;s,t) is 

continuous in x and is continuously differentiable in s and t, except at the 

boundary. Its partial derivatives are exactly the local times on lines, as one 

would expect. (This was mentioned in (l), but the delicate part, which is to show 

that the local time on lines changes continuously when the line is changed, 

eluded us). 

We are also able to get some estimates on the moduli of continuity of 

L(x;s,t) and its partials. It turns out that L(x;s,t) is much smoother 

in all its variables than is the usual Brownian local time, while t -> — L(x;s,t) 
and s -> — L(x;s,t) are much rougher. 
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1 - LOCAL TIMES ON LINES 

Let {W , s, t > 0} be the Brownian sheet. If we fix t, s -> W is a st — s t 

Brownian motion, and its local time at x up to s is given by Tanakafs 
formula : 

(1.1) L (x;s,t) = \ [(W s t-x) + - * " - [ " I { w > x } 3 , w j 
J o ut J 

where the stochastic integral is an Ito integral with respect to u -> We 

use "3jW" instead of "dW" to emphasize that this is a line integral, not an area 

integral. The particular normalization chosen above assures us that for a bounded 

Borel f, 

f(W )du-
o J -

(1.2) I f(W^)du = I L (x;s,t) f(x)dx a.s. 

Similarly, the local time along the line s = constant is 

(1.3) L2(x;s,t) = I [(W s t-x) + - x" - I > 3 2 WsJ. 

We can get the absolute distribution of Lj and L^ by a scaling argument. 
-1/2 -1/2 Both {s W t > 0} and {t W , s > 0} are standard Brownian motions, st — st — 

so their local times at x are standard Brownian local times. If, say, 4>(x,s) 
-1/2 is the local time of t W ̂  at x, then, for a bounded Borel f st 

f ( t " 1 / 2 W J d u ut o 
<J> (x, s)dx. 

Compare this with (1.2) to see that (|>(x,s) = Vt Lj (x ̂ t;s,t). Thus we 

have 
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BROWNIAN SHEET 

PROPOSITION 1.1 
For each s,t > 0, { Vt Lj (x \ft ; s,t), s >_ 0} and 

{ V̂ T L^(x V̂ s ; s,t), t ̂  0} have the same distribution as standard Brownian  

local time at x. 

Notice that Lj(0,s,t) has the same distribution as -^=. <{> (0,s), so that 

as t 0, Lj(0,s,t) + °° in probability, and L^COjSjt) -* « in probability as 

s -> 0. Thus, Lj and are badly-behaved at the points x = t = 0 and 

x = s = 0 respectively. Elsewhere, though, they are quite respectable, as the 

following theorem shows. 

THEOREM 1.2 
There exist versions of Lj and which are a.s. jointly continuous in 

2 
(x;s,t) rn Ex K + except at x = t = 0 and x = s =0 respectively. 

Before proving this, we need a lemma which is not new, but which we will 

prove for the sake of completeness. 

LEMMA 1.3 

Let {Bg, s 21 0} be a standard Brownian motion from zero and let p >_ 1 . 

For each x e ~R and s > 0 
1 f S 

(1.3) sup E{(y-
e > 0 z e 

x € P. 

^ i B - x l < e } d " ) P > < » 

Proof : the integral above is bounded by s, so if e 1 the whole expres

sion is bounded by (|)P. Thus, suppose 0 < e < 1. Note first that, by a familiar 

argument, (1.3) is maximized over x by taking x=0. Let f be a function whose 
e 

second derivative is (2e) ̂  I / \ • By Itofs formula applied to f : 

(1.4) £ 1 '
s 

,du = f (B ) - f (B ) -
1 e s e o 

fJ(BjdB„. 
o 

Now 0 <_ f ̂ <_ 1 and 0 <_f £ (t) <_ | t+e | <_ 111 + 1, so 
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(1.5) E{(fe(Bs) - f£(BQ))P} < E{(|Bs| + 1)P} < 

The stochastic integral on the right hand side of (1.4) is a continuous 

martingale with an increasing process 
A = s 

S (f!(Bu))2du < s. 
O 

By BurkholderTs inequality, there is a constant c^3 • 
•s 

(1.6) E{( ff(B )dB ) P}<c E{(A ) P / 2} < c S P / 2 . e x u u' — p sy — p 

The result follows from the fact that the bounds in (1.5) and (1.6) do not 

depend on E . q e d 

We can now prove Theorem 1.2. 

Proof : let S j S 1 , t and t1 be positive, and let x and xf be real. 

Write 

j(x,;s,,tl) - J(x;s,t) = (J(xl;s,,tt) - J(x;sl,tT)) 

+ (J(x;sf,tf) - J(x,s,tT)) + (J(x;s,tf) - J(x;s,t)). 

di f
 + . 2 + j 3. 

We will estimate E{|j^|P} separately for each i. The plan is the same in 

all three cases:represent as a stochastic integral, then use Burkholderfs 

inequality to bound its LP-norm by the LP^2-norm of its increasing process. Once 

this is done, the theorem is a consequence of a general theorem of Kolmogorov. 

We will treat Jj and first since they are relatively straightforward 

to handle. is a bit tricky. 

Let p > 1. Now either x < x 1 or x 1 <̂ x. Suppose the former, for instance. 

Write 

Jl = 
J_/t' 

I{x<W . <x f} 31 Wut f ' o ut — 
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-1 /2 
If we define B^ = (tf) W

u t ' B is a standard Brownian motion from zero, 
and 

E{ l - r i— ' x - x 
J1|P} = (1)/t' P E{ 

Vt' 
x T - x 

s' 

i 
I 

{ 
X 

Vt < B < u — 
x T 

Vt 
} 
dB 
u 

l p } -

By Lemma 1.3, there is a constant c , such that this is 
J ST) 

— t s p 
Thus 

(1.7) E { | J , | P } — s p 1 

x ' - x 
t* 

p 

Moving on to J«, suppose s < s1 and write 

J2 » 1 
V77 

s1 

s I{Bu> X , dB . 
} u 

This is a martingale whose associated increasing process is 

A = s 
1 
t1 

sT 

s I{Bu> X 

\Tt< 
} du < s

f-s 
t' 

By Burkholder's inequality 

(1.8) E{(J2)P} < c p 
s'-s 
t' 

,P/2 

This brings us to Ĵ . Assume that t < t 1. We can write 

J3 • 
1 
tf 

S 

O 
I{Wut,>x} 31 Wut 1 

t 
S 

o 
I{W u t> x} 91 W t  ut 

= 1/t' 
s 
o 1 { v > x 91 (W .-W J 

ut ut 
1 
t o I l W u f < x < W » t ) 1 ut 

+ 1 
tT - 1, 

t 
s 
o I { W u t ' > x } 

91 w _ ut + 1 t 
s 

a 
I{Wu> < x < W u t J 91 W _ ut 

def Kj(s) + K'(s) + Kg (s) + K3(s). 

We will just consider K1,K2 and K3, for K' is obtained from K3 by 
simply interchanging t and t'. Now K1, and K3 are martingales 
with increasing processes A 1 , A2, and A^ respectively 
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Aj(s) - 1 
t' 

2 s 
o ̂ " u f > x } 

(tf-t)du <_ t'-t 
( f ) 2 

s 

A2(s) = ,t'-t 
t f 

2 s 

o 
I [W u t,>x} t du < ( f - t ) 2 

t ( f ) z 

s 
and 

A3(s) = 1 
t 2 

s 

o W _ < x ut < W u f } 

t du 

Just as above, we apply Burkholder's inequality: 

(1.9) E{KP) < c p 
t'-t 
f 2 

S 
p/2 

; :={Kp} < C 
- P 

.t'-t. 
t' 

P (s/t) p/2 9 
and 

(1.10) E{RP} < 
c 
P_ 

tp/2 E{( 
S 

o 
I{ ut < X <̂  Wut< } 

du) 
P/2 

} 

We must bound the expectation on the right hand side of (1.10). Write 

tf=t+h and put 
B 1 = 
S 

1 
Vt 

W _ st and B 2 = s 1 
Vh 

(Ws,t+h – Wst). 

1 2 
Then B and B are independent standard Brownian motions from zero, and 

W . < x < W _ . st — s,t+h iff B1  

s < x/ Vt , B1s +Vh/t B 2 

S 
> X Vt 

or, iff (BI.B 2) 
S S 6 Rxth 

def {a ,n) : Ç < x \Tt n > 
X 

Vh -if » 
Thus,put B g = ( B ^ . B 2 ) . 

S S 
This is a standard planar Brownian motion, and we 

are finally led to look at 

1 
Vh 

a 

o l Rxth 
(B ) u du. 
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Note that as h -> 0 this tends to a local time along the half-line 

fn > 0, E, = — { . We don't need to show quite that much ; the following rather crude 
Vt 

estimate is enough for our purposes. We claim that 
rs 

E{ 1 
Vh 

I (B )du) p / 2} K. u o xth 
is bounded in x,t and h. It is clearly bounded for h >̂  1, so we may assume 

h < 1. Let M = max 
0 < u < s 

|B I. Then for u < s, I„ (B ) 4 I . 
" Rxth U " { - ^ - M / h < B 1 < - ^ : } , 

so that 

Ef ( 4 r I R (Bn)du)p/}< E { ( M - L -
1 Vh Jo xth u ' M VK 

I , 
o { — - M \ Z h < B ' < — } S 

V t u / t 

du)P/2, 

But M VTi is independent of B , so this is 

1 E{MP/2}supE{(-
s 

G>0 R X _,1 X -1 

o { e < B < } 
Vt u Vt 

du) p / 2} 

Now E { M P ^ 2 } < C ° » while the expectation is bounded by Lemma 1.3. If the bound 

for this expression is D(t,s,p), we have shown 

(1.11) E ^ i C p ^ ( t ' " t ) P / 4 -

Denote Ax = xf-x, As = sf-s, At = tf-t. Collecting (1.7),(1.8), (1.9) and 

(1.11), we have 

E{|J,|P}= 0(|Ax|P), E{|J2|P> = 0(|As| p / 2), E{|J3|P} = 0(|At| p M), 

and this is uniform in x,s, and t for t > e > 0 and s < s . It follows 
— — o 

2 2 2 1/2 
that if A(x,s,t) = (Ax +As +At ) , that there is a constant o( such that 
for t >_ e, s <_ s , and x £ H, 

E{fJtx'js 1^ 1) - J(x;s,t)|P> < a A<x,s,t) p M. 

If p = 12+4e, this is 
• a A(x# s,t) 

Thus Kolmogorovfs theorem applies, proving that there exists a version of 

j(x;s,t) which is a.s. jointly continuous in the three variables on t > 0. In 

fact, if x^O, we can extend this continuity to t=0, since as W HO, 
so 
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Lj(x,s,t) = 0 for all small enough t if x^O. q e d 

Remark : the behavior of Lj(x;s,t) for fixed t has been well-studied, 

since it is then a Brownian local time. It is interesting to consider its behavior 

as t varies for fixed x and s. We can show that it has a modulus of continue 

ty which is 0(1111^4 £) for any e > 0. Indeed, (1.9).and (1.11) imply that for 

6 > 0, there is a constant K depending on s and p such that if 

t,tf>_ 6 , |tf-t| <_ 1, t h e n 

E{|L1(x;s,tl) - Ljtos.t)!1*} < K|t'-t|1/4 

If we set y(t) = |t|p and p(t) = t1/4 in the theorem of Garsia, 

Rodemich, and Rumsey (2), we see that 

rl+6 rl+6 
E{ 

J6 J6 

Ljtas.t') - Lj(x;s,t) 

i f - t i I / 4 

P 
dt dtT} < K. 

l f - t L _ . l / p 

If B is the value of the double integral above, it is a.s. finite, and the 

theorem tells us that for all t, tf in (5,1+6) : 

^ ( x ^ t 1 ) - Lj(x;s,t)| < 2 (-̂ ] 
' o Vy / V 

dy 
3/4 

This is finite if p > 8. If we set e = 2/p (which can be made as small 

as we please since p is arbitrary) this is 
8 B 1 / p , , 

-TTj- |t'-t| 1/4-E 

While the above does not prove it, it suggests that t -> Lj(x,s,t) is much 

rougher than, say, a Brownian path which would have a modulus of continuity of 

0(\/x log x). We conjecture, for instance, that its quadratic variation is infinite 

but that its fourth-power variation is finite. (This might be interesting to check. 

It could give us a process which is not a semi-martingale). 
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2 ~ LOCAL TIME IN THE PLANE 

Let us define local time in the plane by 

(x;s,t) = i 
' o 

(2.1) L(x;s,t) = ] LJ(x;s,v)dv 

The integral exists, for if x^O, Lj is continuous in v, and if x^O, 

E{ L¡(0;s,v)dv} = f E{Lj(0;s,v)} dv, 
o •'o 

where the application of Fubini is justified since the integrand is positive. By 

-1 /2 
Proposition 1.1, Lj(0;s,v)has the same distribution as v Lj(0;s,l) so this 

dv 
= E{L1 (0;S,1)}[*"

 < 

1 Jo \H 

It follows that L(0;s,t) exists and is integrable (but not square^integrable ! ) . 

This gives us a local time in the following sense : if we integrate (1.2) we 

get 
s ft 

L(x;s, t)dx 
•s r 

(2.2) f(Wuv)du dv = 
«'o •'o 

for each bounded Borel f. We can do the same with L̂  replaced by L^. Since 

(2.2) remains true, we conclude that for each s,t 

ft 
(x;s,t) = (2.3) L(x;s,t) = I L1(x;s,v)dv= L2(x;u,t)du, 

for a.e. x, hence, by continuity, for all x. Since Lj and are continuous, 

L is continuously differentiable in s and t. In fact, we have the following. 

THEOREM 2.1 

L(x;s,t) is a.s. continuous in the three variables (x,s,t) and, for fixed 

x, continuously differentiable in s and t, with 

j£ L(x;s,t) = L2(x;s,t) and -^L(x;s,t) =Lj(x;s,t). 

Moreover, for each s,t > 0, & > 0 and N < 0 0 , there is a finite random 
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variable B such that 

(2.4) |L(y;s,t) - L(x;s,t) | £ B|y-x| " e if e <_ |x| , |y| < N. 

We srhould point out that L(x;s,t) is not the same as the local time 

(J>(x;s,t) introduced in [l,§6j, although they are closely related. Indeed, <}> 

satisfied 

(2.5) 
•s 

о 

•t 

о 
f (W )uv du dv uv' <\> (x;s, t)dx. 

If we compare this with (2.2), we see that 
rs ft 

<j>(x;s,t) 
o * o 

uv L(x;du,dv) 

The factor uv makes <f> better-behaved at the origin than L, while L 

is perhaps a more natural quantity, since it is the occupation-time density. 

We have proved all but (2.4) of this theorem, but we can't prove that yet. 

It will follow from theorem 2.4 below. 

We will need to establish a number of results before we are ready to prove 

this theorem. Because of the singular behavior of L near the origin, we will 

first consider the local time in a region bounded away from the axes, which we may 

as well take to be s >_ 1, t >_ 1. Let 

Lj(x;s,t) = Lj(x;s,t) - Lj(x;l,t) 

L2(x;s,t) - L2(x;s,t) - L2(x;s,l), 

and put 

L(x;s,t) = 
t 

1 
Lj(x;s,v)dv 

s 
1 
L2(x;u,t)du. 

Note that s Lj(x;s,t) is increasing ; instead of writing dgLj(x;s,t) 
A 

we will write Lj(x;ds,t). Equation (1.2) can be generalized easily to include 

functions varying with time : if f(x,t) is bounded and Borel measurable : 
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(2.6) 
s 

о 
f (W ut 

.00 /»s 
,u)du = f(x,u) Lj(x;du,t)dx 

J -co J o 

(To see this, note that is is clearly true if f(x,u) = g(x) Ij-y (u), and apply 

a monotone class argument). 

Let R = fb,s] x [0>tl, with the obvious convention in case either s or st u "* u J 

t is infinite. We recall a few facts about stochastic integrals. 

If {<(> , s > 0, t > 0} is measurable and adapted to the fields st — — 

3" 35 a{W , u < s, v < t}, and if E { st uv — — <J> (u,v)du dv} < », one can define the 
st 

stochastic area integral 

(J) d W . uv uv 
st 

We can also do this if <j> is only weakly adapted, i.e adapted to the fields 

$ (l) . Furthermore, one can write line integrals in this form, e.g. if 
{p , s > 0} is adapted to J-4 , then s — st 

p 3, W *u 1 ut P Ir t dW Hu {v<_t}u u,v 
s°° 

This brings us to another formula for L. 

PROPOSITION 2.2 
If s _> 1 , t _> 1 
(2.7) L(x;s,t) = 2 ((Wc -x) + - (W-x) +) ll 

ST IT 1 

- 2 
R -R. Jx st 11 

L2(y;s,dT) - dy) dW u v 

Proof : we begin with Tanaka's formula (1.1), writing the line integral as an 

area integral with respect to a weakly adapted integrand. 

Lj(x;s,t) = - (W s t-x) +-( W ] t-x) + 

„ „ X{W > x} T{0<v< t} d Wuv 
Rst"Rlt u t 
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By the definition of L 

L(x;s,t) = 2 (W s t-x)
+-(W i rx)

+ ¿1-2 

R -Rt st It 

I,TT I, ,dW — 
{ W U T > X } <0<V<T} UV T 

Interchange the order 

= 2 
G 

D 

(W -x) + 

ST 
- (W l T-x)

+ dT 

T 
- 2 

st 11 

t 

v/1 
I{W 

UT 
>x] 

dx 
T 

dW 
uv 

By (2.6) with Lj replaced by : 

dx 

,{W > x} T 

V * 1 UT 

t 

W l 
L2(y;u,dx) j dy-

Substituting this above gives (2.6) q e d 

Let us see how L(x;s,t) varies with x. From (2.7) we can write 

L(x;s,t) - M(x) + N(x). 

Now |M(y) - M(x)| <_ 2(t-l)|y-x|, so M is Lipschitz continuous, and it remains 

to investigate N. Let x < y and define : 

XXys 
= N(y)-N(x) = -2 

R . — K fc 'x 
st 11 

L_(z;s,dr) - dz)dW 
2 x uv 

vtf 

This expression will be more transparent if we set 

<{>(u,v) = 
1 
- L2(z;u,dx)dz. 

v vl 

Now L 2 has moments of all orders, hence so does <j> , and <f>(s,v) is 

J1 ^-measurable, so that v st 

X X y = -2 4>(u,v)dW 
R r R u st 11 

is an integral with respect to a weakly adapted integrand. Moreover, 

{XX^, ^ S

g t :> s >_ 0} is a continuous martingale whose increasing process is 

< X X y > = 4 <|> (u,v)du dv 
R -R. st 11 
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rt rS •y 
= 4 ( 

о J 
1 J x J 

1 * 2 - L0(z;u;dx)dz) du dv T z 

ft rS •У 
1 4 ( 

о J I J X 

2 ? L2(z;u,t) dz) z du dv 

By Holder, if p > 1 

< X X y > P < 4? (t (s-l))p-s — 
- 1 

t 

о 

s 

1 
( 

v a . 2p 
L2(z;u,t)dz) F du dv. 

x 
Applying Holder again 

(2.8) <X X?> P < fc ( S" 1 ) >' ' <y"x>' 
t rs r y A 2 

L (z;u;t) p dz du dv 
1 h Jx 

Let us estimate this. Since Vs L^ (x /s*, s,.) has the same distribution as 

L^Cxjl,.), (proposition 1.1) then if u >̂  1, certainly 

E{L2(z;u,t)2p} < E{L2(z;u,t)2p} <_ E{L2(0; 1,t)2p}. 

But standard Brownian local time at zero has the same distribution as the Brownian 
maximum process, so, by the reflection principle 

E{L2(0,.,t)2P}= E{ W
2 p} = S2&L (|)P 

(This last can be easily calculated from the characteristic function, for 

instance). It follows from (2.8) that 

(2.9) E{ <X Xy>P} < 4 P ( f 2 (s-1) ) P SMI (y-^P. 

By BurkholderTs inequality 

(2.10) E{(X X y) P} £ (p+l)P E { < X X y > p / 2 } ( 

where we have used Klincsek's bound on the constant (3). 

If we combine (2.9) and (2.10), we have proved 
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THEOREM 2.3 

For each p > 1, s > 1 and t > 1 there is a constant K such that for  — — pst 

each x,y 
E{|L(y;s,t) - L(x;s,t)|p} < K p g t |y-x|P 

This theorem immediately grvesus a modulus of continuity for L, thanks to 
the theorem of Garsia, Rodemich, and Rumsey (2). 

THEOREM 2.4 

Fix s _> 1, t _> 1 . For all e > 0, and any N, there exists a random varia 

ble B such that for all |x|, |y| <_ N, 

(2.11) |L(y;s,t) -L(x,s,t)| < B|y-x|1_£. 

Proof : let ¥(x) = |x|P and p(x) = x in the Garsia-Rodemich-Rumsey 
theorem. Now 

I P ' f 
E{ 

1 r l 1 L(y;s,t)- L(x;s,t) 
y-x dy dx} < K 

— pst 

by theorem 2.3. If D ( u ) ) is the double integral above, D(OJ) < 00 a.s. so that 
for all 0 < x, y < 1 

|Lt(y) " Lt(x)| < 8 
|y-x| 

о 
D(w) 
t 2 

I/P 
dt = 

8p D1/p 
p-2 

|y-x| 1-2/p 

This can be extended from [p,l] to any finite interval. Since p can be taken 
2 

as large as we please, we can assume - < e , and we are done. q e d 

Theorem 2.1 now follows easily. We have already proved all but (2.A). 

To prove this, note first that if Le(x;s,t) is the local time in s >̂  e, t >_ e 

(so that L =L) then theorem 2.4 remains true with L replaced by L . But now 

if IxI , |y| >_ 6 > 0 there exists some e > 0, depending on w , such that 
|w I < 6 if either s < e , t < N or t < £ , s < N . But 1 st1 _ _ _ — 
L(x;s,t,o>) = L*"(x;s, t,o)) and L(y;s,t,a)) = L6, (y ;s, t,a)) for all x,y such that 

l xl > |y| — ̂» a n d w e a r e done, since L G satisfies (2.11). 
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The modulus of continuity in theorem 2.1 is tantalizingly close to 
0(|y-x|), which leads us to end the article with a question : is x->L(x;s,t) 
Lipschitz continuous ?. 
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