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EXCURSIONS AND LOCAL TIME 

by 

John B. WALSH 

This article originated with the desire to understand not only Knight and 

Ray's theorems on the Markov property, but David Williams brilliant explanations of 

them as well. We wanted to do this without getting too deeply into the specific 

properties of Bessel processes and conditional Brownian motion. We were aided by 

Jacques Azema's healthy skepticism. "Why", he asked, when we gave him our naive 

explanation of this Markov property, "is it strongly Markov ?". 

Answering that turned the projected short note into a study of excursion 

processes. Hopefully, the resulting article still fills the original aim of a 

simple treatment for the benefit of those generalists who know something about all 

Markov processes but nothing about any one of them. 

Here are the facts at hand. Let X  b e a diffusion on an interval I , let 

L xt be its local time at the point x  an d time t , and let T  b e a terminal time 

for X . Consider the local time up to time T , and let x  vary . This gives a 

process {L xt, x E I]. The theorems of Knight and Ray say that, under the proper 

additional hypotheses, this is a Markov process, usually inhomogeneous, but in 

some cases, even a diffusion process. This is surprising. We start with a diffusion, 

X, which is a Markov process, all right, but the parameter is time. We end up with 

a Markov process in the space variable, and there doesn't seem to be any obvious 

reason that this Markovianity should transfer from time to space. 
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These theorems should really be regarded in three stages : 

(i) {L* , x 6 1} i s a Markov process ; 

(ii) i t is even a strong Markov process ; 

(iii) an d we can calculate its infinitesimal generator. 

The first statement is initially the most surprising, but also the most 

easily explained. The second is already deeper, and the third, which might seem the 

most mundane, has been the object of considerabl e ingenuit y on the part of 

several mathematicians. We will deal with the first two stages-. We will say a few 

words on the subject of the infinitesimal generator, but we will not attempt to 

go deeply into the question. 

Our viewpoint an d methods are most easily introduced by explaining heuris-

• X • z 
tically why i s a Markov process. Suppose x  < y < z. Why should an d 
X y LT b e independent given L £ ? It is basically a property of the excursions from 

y. Since X  i s continuous, each excursion from y  lie s either entirely above y 

or entirely below y . The local time at z depend s only on the excursions above 

y, while that at x  depend s on the excursions below y . But the excursions from 

y ar e all independent, so the distributions of LxT and LzT are independent 

given the total number of excursions, and this number is essentially measured 

by L̂ , the local time at y. 

This explanation is nonsense i f we take it literally, for there are infini-

tely many excursions from y , and it is not at all clear what the "number of 

excursions" and the "independence of the excursions" could mean. Still, it is pos-

sible to define these, using Poisson point processes and especially, Ito's idea of 

the excursion process. 

The machinery to do this takes some time to build, but once it is set up, 

the above argument is easily made completely rigorous (Theorem 2.2). 

When we turn to the strong Markov property of L , we will see that it follows 

from a larger strong Markov propert y of the excursion process (Theorem 3.4). An 
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unexpected (to us) dividend is that Williams1 decomposition of a diffusion into 

pre - and post-minimu m processes falls out as a special case (Theorem 3.5). 

Two other points deserve mention. Since one can kill a diffusion at a termi-

nal time T  an d still have a diffusion, it is sufficient to consider only the case 

in which T =c, the process lifetime. (This would not necessarily be true if we were 

computing infinitesimal generators, since we would presumably like to relate these 

to the original process, not the killed process). 

Secondly, a point which is not apparent from our heuristic explanation is 

that both X  an d X m (or X  i n our case) must be constant. This is not a sim-
o T  c 

plifying assumption, for the Markov property breaks down without it. (This comes 

from the special nature of the initial and final excursions from x) . Ray gets 

this by conditioning the process on the values of Xq and x̂ - * However, a condi-

tioned diffusion i s still a diffusion, so that we may as well assume at the outset 

that X  E a an d X . ~z a.s . o £ 

1 - THE EXCURSION PROCESS 

Let X ^ b e a diffusion on an interval I  CE, with lifetime C £. 00• Let 6 

be the cemetary : X̂ =6 i f t  >_ £. We assume that x  i s regular, so if x, y£ I, 

then PX{ T <  00} > 0 an d Py{ T <  «>} > 0, where T  =inf{t > 0 : X̂  = x}. In y x x t 

particular, each point x  € I i s regular for itself, so there exists a local time 

at x , that is, a continuous additive functional LX , unique up to proportionality 

with fine support {x} . Trotter has shown (9) tha t there is a version such that 

(x,t) -> LX i s a.s. continuous, We will always assume that L X i s continuous in 

(x,t). 

In the following, we will suppose that there exists a£ I an d z£I , (the 

closure of I  i n [-a>,ocJ) such that 

(Al) X  = a o 

(A2) Eithe r X̂ _ does not exist a.s. or X̂ _ = z a.s. 

Fix x , and define the right continuous inverse T X o f L X by 
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T* = inf{s > 0 : LX > t}. t s 

The set {t : X^x} i s a union of disjoint intervals, called excursion  

intervals. Since t -> Lxt increases only when Xt=x , it is constant on each excur-

sion interval. If (u,v) is an excursion interval, and if Lg=t f° r u < s < fc» 
X X • 

then t xt = u and TF C = v, so that all excursion intervals are of the form 

(T*_,T*) as t ranges over [o,<») . 

Now let 8  be a point not in It V 6 , and let W be the set of all right-

continuous functions w from R+ to i / 3 which are continuous as long as 

they are in E., and which are absorbed at 8 and 6. The function identically 

equal to x will be denoted by[x].We provide W wit h the a-fiel d Ĵ generate d 

by the coordinate functions. 
The excursion of X durin g the interval (Tt-,Tt ^ ̂ s ̂ t' ŵ ere* 

if 
? t inf{u>0 : X(Tt-+u")=x} , € (s) -

X(TFC_ + s ) i f 0  <_ s < pfc 

8 i f s >_ P 

Note that Et (.)E. Then the excursion process (E__(t), t >_ 0} is defined 

by : 

zx(t) -
Ct(.) i f Tt_<xt 

a i f Tt- = V 

It is well-known that the set of points of increase of t ->LxT is a.s. 

identical to {t : Xt=x}. This implies that there is exactly one excursion in each 

interval (it_,Tt). On the other hand, it is a priori possible to have more. If, 

for instance, X has a local minimum at time t , and if Xt=x, then L* , being 

continuous, would not increase at s, but there would still be two excursions, one 

ending and the second statting at s. For fixed x , this happens with probability 

zero, but if we fix a>, there will certainly be x for which the above happens. 

In order to take account of this possibility, we agree that if t is such 

that the interval (T*_,T* ) contains two excursions, we will denote the first by 
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TTx(t), the second by Ex (j£) . (We won't need notation to handle the possibility 

of more than two excursions in a single excursion interval : it never happens in 

our situation). 

If there is a positive probability of having more than .one excursion in one 

interval, we will call the excursion process degenerate. 

Notice that the value of ^x(t ) is a function, namely the whole excursion 

of X  durin g the interval CTt-,Tt̂ '  ̂x  *" s recurrent> then 2i x i s a non-

degenerate Poisson point process (which we will abbreviate ppp in the following) 

and in general, 2Tx i s a non-degenerate ppp absorbed in the set D  o f infinite 

excursions, (6) , where 

D = {w € W : w(t)̂  3 , /t}. 

(If s i s a ppp and T  a  stopping time for 2. , the process absorbed at T  is 

defined by 

E' (t) 
^(t) t  <_ T 

3 t  > T. 

If A  £ U^9 let S * b e the first hit of A  b y 2  : 

Sx = inf{t :Tx(t) € A}. 

When there is no danger of confusion, we will write SA  instea d of S* . By 

[6,Theorem 3j , if ~x(t ) i s a ppp absorbed at Ŝ , there exists a true ppp 

^x suc h that ^ x ha s the same distribution as E x̂ absorbed at SD  (the first 
>•» 

hit of D  b y X ) . We can and will assume without loss of generality that .r i s x x 
actually equal to jSfx absorbed at =  Ŝ. 

The process 3 ETX i s useful because the independence relations for a true 

ppp are simpler than those for an absorbed ppp. We will indicate quantities defined 

in terms of £ b y a  "  ~". Thus, if A  C W 

N̂ (t) = #{s £t :  Zx(s) * A} 
and ^ 

IT(t) = #{s 6 t:£ (s) d A}. 
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If NAX (t) is a«s- finite, it is a Poisson process and N^(t)=N^(tAS^) . Let 

nx(A) be the parameter of N^(t) . We call nx(* ) tn e characteristic measure 

of ^  (an d of ^ ) . -x x 

We can generalize this as follows : let f  be a positive functional on 

WU 3 with f(3 ) = 0. We put 

N f(t) = I  f(S^<B)) . 
s < t t 

If f  i s the indicator function of A  £ %J, this reduces to N ^ . We could 

also let f  b e the local time at y  functional , I :  if £  £ W £  (£) is 
J y  »  y 

the total local time at y  o f 5 . Then N  £ (t) = Ly , and N  I (S*) = Ly . 
J x  yv T  x  yv Dy C 

The independence properties of Nx f follo w from those of the ppp 

First, it is a mixture of Poisson processes, and is thus a process of independent increments. It will be finite iff f(£ ) n (d£) < «, in which case its Levy 
Jw X 

measure v wil l be given by v(A ) = nx{ £ : f(£) £ A}. Moreover, we have the fol-

lowing, which we state as a proposition for further reference. 

Proposition 1 .1 . 

If f̂ , i=l,...,n are functionals on W such that f ^CC) fj (C) = 0 for all 

£ £ W i f î j , then the processes {IME^t ) - Nxf ̂(0) , t _> 0} , i=l,. . . ,n 

are independent, and independent of N  f,(0), i=l,...,n. 

This follows from the corresponding fact for the tf\ so we omit the proof. 

Note that we can derive the independence properties of the unhatted processes N  f 
from this, since N  f(t) =N f(t/^Sj, x x  D 

Now let's split our excursion process into two parts. For A  £ defin e 

J3X(0 if -(t)fiA 
"ĵ x(t) = j 3  otherwis e 

Let E * an d E x C W b e the excursions above and below x  respectivel y : 

Ex - {w 6 W : w(t) >_ x, /t < c(w)}; 

E~ » {w £ W : w(t)<x, /t< c(w)} -{ [x] , [9] , [5] } . 
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Then define 

r;(t> -2"*«:) , s;(t> = v < t ) . 
and put 

E+X = a{Z*(t), t >0> (d=fa{Nt(AAEx), t >0, A 6 U^}) 

and Jfx - a{Z.x(t), t > 0}. 

We should logically write &x instea d of EX, but we will be using it 

so often that simplification is called for. 

The initial and final excursions from x  pla y a special role. The initial 

excursion, Hx(0), is simply the process from time zero until it first hits x . The 

final excursion, H (S~) , is the path from the last time it leaves x  on . It is x D 

possible that there is no initial of final excursion. In our notation, this is 

translated by 2̂ (0 ) = 9 or EX (S)D =3"x ̂ ^ j - Because of assumptions (Al ) and (A2), we 

have the following. 

Lemma 1.2 

Let £ ^ and £ ^ be the initial and final excursions from x . Then each  

of the following probabilities are either zero or one : 

Hh € Ex} 9 P { 5 i € V ' P{-x(0) =3}' P{*f€Ex}' Hh€\}9 P{SD=so>}-

Proof : since X  =a, £ . i s in E + o r E  accordin g to whether a  >x  o 1 x  x 

or a  < x, and Si doesn' t exist if a=x . The case of £ ^ i s only slightly 

more complicated. If X̂ _ doesn' t exist in the extended reals, X mus t be recur-

rent, C = » and there is no final excursion. If £  < °o , then X̂ _ exist s and 

necessarily equals z , so £ f i s in E * o r E x accordin g to whether z  > x or 

z <x. If z= x an d if c is the first hit of x  b y X  ,  then £ f £ E+ i f a  > x, 

and £ f € E i f a  < x. In all other cases in which z=x , £ f = [6} <£ E*. 
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2 ~ THE MARKOV PROPERTY OF LOCAL TIME 

We have spent a lot of time setting up our machinery ; it is time to use it. 

Proposition 2.1 

2 * anc* <?x are conditionally independent,given S^ . In particular E +x 

is conditionally independen t of g given S^ . 

Proof : except possibly for the initial values, H" * an d "Sb ar e inde-

pendent. But by Lemma 1.2, either ̂ T*(0 ) =8 a.s . or HL^(0) = 3a.s., so that E+x 

and 3̂ x ar e truly independent. Turning to the final excursion, note that by 

Lemma 1.2, either SD = SD A =S +  a.s . or SD=SDAEX . - a.s . Thus, SD  i s a stopping 
X X 

time for one of the processes E+x or H . ,  and is independent of the other. 

Suppose, for instance, that it is independent of Ex. Then , as H x i s 31 x 

absorbed at S^ , it is conditionally independent of E+ X, hence of E+x — 

given SD . qe d 

Proposition 2.1 gives us the Markov property of the local time. Let th e 

local time functional on W  : ly (E) is tne total local time at y  o f the 

excursion £ . Then N^^Ct ) i s a process of independent increments and 

L^ = N I (S*). But if x  < y, all the local time at y  accrue s during the excur-C x  y D 

sions above x . Thus L y = N+£ (S*) = E £ (H + (s))£ £+. At the same time, if  C x  y D  g  y  x  x 

v < x, LV = E £ (3 (s) )  ̂t •  Thus I? an d {LV , v < x} ar e conditionally — ' C vv~ x x  C s * 
X X  X  X  X 

independent given b y Proposition 2. 1 . But SD=L ^ • (For S D = sup{t : TFC < 00) 
= sup{t : 3 s ?  LX > t} s LX). We have proved : 

s C 
Theorem 2.2 

The process "tL̂ > x € 1} is a Markov process. 

Remarks : the assumptions (Al) and (A2) that Xq an d X ^ _ are deterministic 

are necessary for the above theorem. On the other hand, we did not use the 

continuity of LX . This only comes into play when we talk about the strong Markov 

property. 
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Theorem 2.2 gives the Markov property of the local time, but not its strong 
x .  . 

Markov property. Just as the Markov property of follow s from Proposition 2.1, 

which might be thought of as a simple Markov property of the excursion process, 

its strong Markov property follows from a strong Markov property of the excursion 

process, which we will prove later, in Theorem 3.4. 

We canTt expect L X t o be a time-homogeneous stron g Markov process, for 

we have normalized it rather arbitrarily. Even if we had normalized it carefully, 

it would still not in general be homogeneous. However, it does have the time-depen-

dent strong Markov property. If we replace x  b y an *£ -  stopping time above, 

and apply Theorem 3.4 instead of Proposition 2.2, we get 

Theorem 2.3 

Let M=inf{Xt > t < 5} • Then the process 

{LX, x^M, x 6 1} 

is a time-inhomogeneous strong Markov process. 

Theorems 2.2 and 2.3 are known, and we would like to pass on to some 

refinements. In particular, we would like to look at {L̂ , y ^1} fo r certain 

random times T . We must first look at a rather simple idea ; how to tell time 

in a point process. 

To clarify the issue, letfs consider the relation between the "real time" 

of the diffusion X t an d the "excursion time" of —  x(t)• If t  i s a time 

for which Hx(t) ^ 8, the value of IÊ (t) is a function, say £t(s) . We might 

with equal justice call it —^(t9s), and think of "time" for 3^ t o be a couple 

(t,s), where t  i s the usual parameter of ^ an d s  is the time during 
• •  •  X  X 

the excursion. In real time, the excursion starts at an d ends at T  , so s 

runs between 0  an d TX-TX_ , and H  (t,s) = X .  Thus the couple (t,s ) 
Tt+S 

corresponds to the real time tt_+s . To go back from X  t o ,  remember that 

LX i s the inverse of ?X , so that if ef c is the last exit before t  : 

e =  sup{s ̂_ t : X =x}, then a real time t  correspond s to the couple 
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p(t) =  (L X, t-e t), and we have X t= ^ ( p (t) ) . 

Definition 

A random variable T  >_ 0 i s ^ -identifiable i f both {T=0 } and p (T) 

are f  -measurable. 

Remarks : 

1°). Intuitively, T  i s an instant of real time which we can identify by 

looking just at the excursions below x . A constant is not in general ^-identi -

fiable, but times such as T  , or T  , for y  < x, are. Indeed, L X = 0 = T -e , 

' x  y  '  T  x  t 
J x 

so p(T x) = (0,0) . Similarly , so are the last exit time from x , and the time of 
the process minimum, provided tha t that minimum is below x . So is 

T X_ ={in f s : LX >  t}, since P(T__) = (t,0) . 
t s  — t 

2°). If T  i s ^-identifiabl e an d X t £ x a . s . the n X T i s ^  -measurabl e 

for X T "  -X(
L^> T-e t), an d both (L X, T-et) an d the process 3 x ar e 

C -measurable, x 

3°). I f X T 4  x an d T  i s ^-identifiable , the n T  i s ^-identifiabl e 

for all y  > x. (Thi s is true even without th e condition that X T ^  x, for one 

can show that if T  i s ^-identifiable , the n X T ^  x a.s . on { T > 0}). 

Theorem 2.4 

Let S  <_ T < C b e )? x -identifiable such that X g < _ Xq an d X T < _ Xq a.s. 
o 

on { T > 0}. Then the process {L y-L y, y ^ x} is an inhomogeneous stron g Markov 

process whose transition function does not depend on x, S _o r T . Moreover if 

S, < T, < Sn < ... < T  are ?  -identifiable with X c <  x and X m <  x 
1 — 1  — 2 — —  n  x  '  a . — o  T . — o 

l l a.s. o n {S_^T^} , then the processes 
{ LT." LS.' y -  x } 

T 1 

are conditionally inde-

pendent given their initial values. 

Proof :  if L y-L y=0, then either S= T o r else X fc < y fo r all S < t<T. 

V V 
In either case, L^-L^ O fo r all v ^ y, so the process is absorbed at zero. 

Let x  <  x < y an d let I b e the local time at y  functional . Now o — J y  J 

X S,X T < _ x < y, so that 
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LT"LI = Nx yLT>-Vy<LS> 

Recall that T  < c , so the final excursion from x  doe s not contribute. This 

means that we can replace b y f̂ , where fy (CO = ly (E) if £  6 W-D, f̂ (£)= 0 

otherwise. Furthermore, we can replace N  b y N  , again because, as T  < £ , 

Lx < Sx • LT - SD " 

LT"LS - V y ^ " V y ^ -

But f  i s zero off E+-D , which is disjoint from both D  an d E  , so that y x  J  x 
^ .  -  D 

by Proposition 1 .1 , N̂ f̂ (t) i s independent of both an d 3_x> and hence 

of fc  ̂and SX . Since L X an d L X ar e measurable with respect to these, they 

are independent of Nx̂ y * ̂ ow ̂ x̂ y a  Process °̂  independent increments. Let 
its transition function be p  (t,A) . Then 

rxy 

(2..) P{Nxfy(^)-Sxfy(L^)€A |*x} = Pxy(L^ , A). 

Thus the transition function of (L*-L * ) i s P  (u,A) . 
1 ^  x y 

In order to show the strong Markov property, we replace x  abov e by an 

Ey - stopping time Y , an d remark that by Theorem 3.4, (2.1) still holds on the 

set {Y=x} . 

Finally, the conditional independence of the L ^ -Lg follow s from the fact 
that N  f ha s independent increments : x y r 

p{Vy<>-Sxfy(Ls.)€A' i- i . . . . .n |?x> = .n P xyO<T.-Ls.'A> 
J 1 J 1 1=1 J 1 1 

Theorem 2.5 

Let T  b e ^x -identifiable. Then, on the set {X T <_ the processes 
o 

(i) (L̂ , y >_ Xq} and (ii) {L̂ -L̂ , y _> XQ} are both inhomogeneous strong Markov 

processes. Their transition functions do not depend on T  o r x. 
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Proof : if the initial value a and the final value z of X are below x, 

this reduces to a special case of the previous theorem. Thus we may as well assume 
X 

that a  > x an d z > x . This means thatw L >  0 and o o  T 
X X 
L„°-Lm° > 0 o n the set {X m < x }. Let A C W be the set of excursions with L, T  T  — o 

initial point a , and, as usual, let D be the set of excursions of infinite 

length. If * i s the local time at y functional, define 

f(0 -
A (O i f -A-D 
y ^  x 
0 otherwis e 

and 

g(5) -
a (£ ) i f ^ E + OA -  D y x 

0 otherwis e 

If Xq <_ x < y < z, the final excursion of X from x doesn't contribute to 

L̂ , so that 

- N g(L*) + N f (L*) T x  T  x  v T' 

= Nxg(0) + Nxf(LX), 

this last because Nxg(t) s Nxg(0), for all excursions after the first start from 

x  ̂a. Furthermore, Nxf(0 ) = 0. Now Nxf(t) is independent of £ , while 

Nxg(0) is independent given S* , and, in fact, it is independent of ?x given 

that the initial excursion £  actually reaches x , which is to say, given 

I € A-D. Thus, for BCE, let 

Uxy(B) = P{Nxg(0)€ B |5£A-D} 

= 1 
n (A-D) x A-D 

g(0 nx(dO, 

and let pxy(t,A ) be the transition function of Nxf . Then, evidently 

(2.2) P{L£ £ B | ? x } = Dxy»Pxya?,B) , if xolx<yl a 

where "*" is the convolution operator. 
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The process L̂ ~L̂  i s handled similarly. Let 

h (E) 
* «) i f Z,t\ (\ D - A 

0 otherwis e 

+ x Notice that h( c (t))=0 excep t if t=SD > when it gives the local time of 

the final excursion from x . Let e  b e the last exit time from x  : 

Ly-L£= (Ly-l7 ) + <l/-lZ) =  N h (S*) +N f (e) -Nf (t) . 
£ T ^  e e T x D x x 

Note that e  i s Ti -identifiable and X  =x o n { e > 0}. If, now, x e 
A x 

x <  x < y < z, let v  b e the distribution of N  MS^) : o — J  — x y x  D ' 

Vxy(B) = P{Nxh(Ŝ ) € B | S * >0}. 

Then, since Nx h an d N  f ar e independent. 

(2.3) P{Ly-Ly| E } = v * P 0Z,B). v J Z, T  x  *x y ̂ xy v T' J 

Once again, if we replace x  b y an ̂ -̂stoppin g time Y , (2.2) and (2.3) 

hold on {Y=x} by Theorem 3.4. qe d 

Remarks : in both theorems 2.4 and 2.5 we can replace the fixed point x ^ 

by an £ -stopping time Y . The proofs go through virtually without change. This 

can be of interest ; if we choose T  = inf{t : Xfc=M}, the minimum time of the 

process and let Y=M , we can break the local time into the sum of the local times 

of the pre-and post-minimum processes. This is exactly what David Williams does in 

(ll), and, as he is able to calculate the infinitesimalgenerator of each of these 

separately, he gets the generator of the sum by addition. 

Let us consider the processes {L̂ -L̂ , y >_ x} fo r \ -identifiable S  and 

l b X 

T. We will show that we can renormalize this in such a way that, after a change 

of scale, it becomes a diffusion. We will assume that this process is square-inte-

grable. This is automatic if c < 00 a.s., for then L X i s exponential and has 

moments of all orders. If £ = °° , we can just bound T  suitabl y : T <_ T fo r 
o 

some x  <  x, will do, for instance, o 
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Let S  <_ T <_ U b e ^-identifiable , with X g <_ x, X T <_ x, and XU < x <_ x 

on { U > 0}. 

Let x   ̂y. By the Markov property, there is a function f  suc h that 

E < « | V = F<LT"LS>-

Since the transition function is independent of S  an d T , we also have 

E{LU"LT I V = f < L u - L s > -

But, as L̂ -L g = (L^-L^) + (L^-L^), and the last two both have the same 

transition function, so this is 

= f(L*-L*) + f(L*-L*) 

This implies that for s, t > 0, f(s ) + f(t) = f(s+t), which means that 

there is a constant, say c(x,y) , such that f(t)=c(x,y)t . We can define c(x,y) 

for each x, y €• I ; this is consistent since the transition function is indepen-

dent of x , S  an d T . 

If x  < xf < y, 

c(x,y)(LX-LX)sE{Ly-Ly \^} = E{c(x',y) (LX' - L*'| £x> 

= c(x',y) c(x,x») (LX-LX). 

Thus c(xf,y ) = c^x>y| . Thus, choose x  £ 1 an d define u  b y 

C \X , X j o 
u(x) - C c(x .x)"1 i f X  > X J o —  o 

( c(x,x ) ^ i f X  < X 

v- O O 

and put M y = u(y)(L^-L^), y >_ x. 

Then for x  4 y 

E{My I V = » <*> M (LT-LS} = V 

Thus {M̂ , y >_ x} i s a martingale. 

Let's do the same thing with the variance. There is a function g , indepen-

dent of S,T, U an d x , for which 

Vav{u(y)(Ll-Lys)\ =  g(LX-LX). 
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Now g(t ) i s strictly positive if t  > 0. LyU - LyT and LyT - LyS are independent 

given "£ , so their variances add, and this equals 

= g(LX-L̂ ) + g(LX-LX). 

Just as above, there must be a b(x,y) > 0 suc h that g(t)=b(x,y)t , so 

If x  ¿ x1 ¿. y 

Var{My| £x) = b(x,y) Mx. 

b(x,y) Mx = Ei(My-Mx)2l JCXJ 

= E [ E £ ( M y - M x l ) 2 ( t y } l £ x l + EÍ(MXÍ-V2i^xi 

= b(x',y) E Í M x t l ^ x } + b(xt,x)Mx 

= (b(x',y) + b(x,xf))Mx 

Thus b(x,y ) = b(x,xf) + b(x!,y), so there is a strictly increasing function 

cr(x) s o that b(x,y ) = <r(y)~(r(x). Let s(t ) = inf{y : <r(y) > t} be the 

inverse of ff, Then we have : 

Theorem 2.6 

There is a positive function u  and a  strictly increasing function 3-, 

such that i f x  £  I an d if S  < T ar e ? -identifiabl e with X n < x , 
o —  ̂- x S  — o 

o 
XT — x > then M  =  u(y)(L̂ -L̂ ) is a continuous martingale with associated 

1 o  y  l o -  - .. . 
increasing process 

<M > = 
y 

•y 

x 
o 

M da(x) . x 

Moreover, the process { M , . , t >_ a(x)} is a diffusio n on [0,°°) , 

absorbed at 0 , with infinitesimal generator 6 = f 
dx2 ' 

Proof : we have seen that M  i s a continuous martingale. Now if x ^ < x<y 

EÍ 
y 

x 
Mv da(v)|£ }-

•y 

x 
E{M | * }da(v) 

= (a(y)-a(x))M - E{(M -M )2|̂  }. 

Now {L̂ -L g } is aninhomogeneous stron g Markov process, hence so is My ; 

when we make the deterministic time change, we find that { M ( * , t >_ s(x)} 
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process 
t 

s(x) 
M , Ndv. Let's calculate its infinitesimal generator. This is s(v) 

(2) 
easily done using Ito's formula, for if f  6 C , 

EE-<£(M.(t.h)>-f«Wl W 

= 1/h E ( t+h 

t 
f'(M . N)dM , A £ fA +  — E\ s(v)y s(v ) 1 cs(t) 2 h 

t+h 

t 
f"(M , .)d<M> ,  . s(v)' s(v ) Es (t) ). 

The stochastic integral has expectation zero, and d<M > , = M , Ndu. If we 
s(u) s(u ) 

let h •> 0 , we see that 
«(Ms(t),t) = 1 

2 Ms(t) f"<Ms(t)> 

But € doe s not depend on t, so the process M , N is a continuous time- s(t; 

homogeneous strong Markov process, i.e. a diffusion. qe d 

Remarks : we showed that ̂ sjt j ̂ s time-.homogeneous by calculating its 

infinitesimal generator. In fact, had we shown it was homogeneous in some other 

fashion, we would have found its infinitesimal generator from its stability 

property. For L̂ "L^ and LT~LS are ' after a scale and time-change, both 

martingales and diffusions, and their sum, L̂ -Lg , is the same. The only diffusion 

which is a martingale and which is stable under sums is the one with infinitesimal 
d2 

generator cx— 5- for some c > 0. (See the appendix). 
dxZ 

Continuing in the same vein, note that for y > x we can write 
LJ = L£ + < I £ - L J ) . ( L J - I 7 > . 

X X X X 

where e  i s the last exit time from x.Bot h e  an d T ar e T -identifiable, x x x x 

If x >̂  a, x  >_ z (th e initial and final points of X), the first and last terms 

y y  y 
are zero, hence L = 1/ -L^, is , after the appropriate changes, a diffusion with 

ex x  ̂ 2 
infinitesimal generator €  = ^ —r- .If a > x or z > x, however, Ly C will be 

1 dxZ C 
the sum of several Markov processes/one of which has the generator € . But the 
only diffusion which can be added to this so that the sum is a diffusion is one 

with generator 
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r - x &2 + . d 
a ~ 2 ~ 2 d x dx 

pt th e square 

for some real a . If â n-l , this is the infinitesimal generator/of a Bessel 

process, that is the radial part of an n-dimensiona l Brownian motion. This 

explains why the Bessel process enters into the theorems of Ray, Knight, and 

Williams : it is forced by the stability properties. 

3 - THE STRONG MARKOV PROPERTY OF THE EXCURSION PROCESS 

Let us consider the process (E+x , x E I). Note that the parameter is x, 

rather than t . For a fixed x , the value of E + x is the whole sample path 

(Zf*(t), t >_0}. We can consider E+ as a process taking its values in the 

canonical space W  o f functions from [0,» ) to W u 9 whic h equal 3 at all but 

a countable number of points. 

It might seem that the proces s "Z* takes its values in an immense space, 

but it turns out to be remarkably regular. We will see below that it is right 

continuous in a certain sense. 

Let g  b e a bounded continuous function on K \j 5 and let h  b e continuous 

and of compact support in (0,°°) . Then let f  b e the functional on W  define d by 

(3.1) f( 0 = ( g(J(s) ) h(s)ds, £  £ W. 
J o 

Functionals of this type separate points of W  ; as h  ha s compact support 

in (0,°°) , there is an e  > 0 suc h that f(£ ) = 0 unles s £ ha s a duration of at 

least £ , so that there are a.s. only finitely many s  <_ t fo r which 

f(Z+(s))^ 0. Thus, N f(t) = £  f( E + (s)) i s a.s. finite. We will call a 
X X  X 

s <_ t 

finite sum of finite products of functionals of the type (3.1) simple functionals. 

Let D + = D /1 E+ an d put 
~"x *" x ~" x 
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Define 

Nxf(t) = Z  f(-XX"D(S) ) 
s < t 

Nxf(t) = £  f(H x (s)) . 
s < t 

1 2 Note that N  f = N f + N f. x x x 

Proposition 3.1 

Let f  2l 0 be a simple functional and fix w for which SD(W ) > 0. If_ t is 

3 eithe r t  > Ŝ (w) o r x*_(u) ) = Tt(a)), 

and 

lim N̂ f(t) = N*f(t) 
y+x y  X 

lim ̂ f(sl) -N*f<S*). 
y+x J 

Proof if Tt_(o) ) = T^(OJ), then s  L X i s strictly increasing at s=x* . 

This, along with the continuity of (s,y ) -> L̂  implie s that x ^ •> x* a s y  x . 

Note that only excursions longer than some minimal length, say e  > 0, contribute 

to N  f, and there are at most -  x̂  of these. If ||f|| = sup |f(0|> then y e  t  g 
N̂ f (t) <̂  e  ̂| |f | | x̂, which is bounded as y  4- x. 

Consider an excursion £ X o f X  abov e x , which is completed before 

xX. If y  > x i s close enough to x , there are excursions above y  containe d 
x y y  x  y 

in £  . Let Ey  b e the longest of these. Since T t  ̂Tt a S ^  X ' wil l be 

complete before x ^ i f y  i s close enough to x . But clearly Ey (.) -> £X(.) 

boundedly, hence f(£̂ ) -> f(£X). If y  i s close enough to x , any other excursion 

£T abov e y  whic h is contained in £ X ha s length less than e , so that f(£')=0. 

Summing over all excursions, we conclude that N f̂(t) Nxf(t) . 

1 1  x It follows that li m N  f(t) = N f(t) fo r a dense set of t  < Ŝ . Both y x  D y +x J 

sides are continuous in t  a t S ^ an d are constant on [ŝ , »)> s o they must 

be equal for all t >_ SX. 

Finally, note that Hy(s^) i s the final excursion above y  (i f it exists). 
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The same reasoning shows that 

= f(E+y) (SyD)) = f(E+y) (SyD)) = f(E+y) (SyD)) = f(E+y) (SyD)) q. e. d 

Remark : it is possible to topologize W  i n such a way as to have x  -> E+X 

a.s. right continuous and x  -> !£. a.s . left continuous. For instance, if f  i s a 

simple functional and if k  i s continuous and of compact support on H+, set 

_+ _  + f0 0 lNvf(t ) " Nxf(t)l 
dfk< »y- ~x> "  I l+]Nf(t ) -Nf(t)| k(t)dt 

If we choose a suitable family of f ^ an d k̂ , with | |fn| | <_ 1 , 

Ilk I I < 1, then ii n ii _ 

da,n) = z 2"n df k U,n) 

n n 

is a metric on W , and Proposition 3.1 implies that x  j^L * i s right-continuous 

in this metric. 

Just as important as the a.s. right continuity of E+x i s its right 

continuity in distribution, which is contained in the next result. 

Proposition 3.2 

Let f  be a simple functional. Given that S X > 0, SX is an exponential  

with a parameter A = A (x) , and { N̂ f (t) , t _> 0} is a process of independent  

increments, independent of S X an d of E-x . Furthermore, if ̂ x(u ) is its charac- 

teristic exponent, then 

(i) x  -* SX and x  - > A (x) are continuous ; 

(ii) x  -> ̂ x(u) is right continuous for each u  £ R 

Proof : the fact that i s exponential, given it isnT t zero, is well-

known (6) . (We allow S X H <» as a limiting case of an exponential). Note that 

SX = LX , which is continuous in x , and the continuity of the parameter A(x) 
follows. 

We have already seen that N̂ f i s a process of independent increments. It 
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•^Ex"D . . . -  ~ D 
is defined from "ZL^ , which is independent of Jf ^ 5 ? x anc * °̂  """"x* anC* 

x . .  — D therefore of Ŝ , the first jump time of . D x 

It remains to show that its characteristic exponent is right continuous. 

This will follow from Proposition 3.1, which involves Nxf, not N̂ f. 

iu N*f (t) i u N*f (t ASX) 
E{e X  |S X > 0} = E{E{e X  U |sX} |sX>0} 

t A SX i|; (u) 
= E{e D" X |SX>0} , 

-A J X 

where we have used the independence of N̂ f an d Ŝ . We can calculate this last 

quantity directly, since SX , given it is strictly positive,is exponential A(x). 

It equals (3.2) 
A(x) - 4> (u) expfr (u)-A(x)] 

A(x) - ̂ (u) 

x 1  1 Choose t  > 0 s o that T  i s a.s. continuous at t . Then N  f(t) •> N f(t) t y  x 

a.s. on {sX > o} a s y  x . Since S ^ > 0 fo r y  sufficientl y close to x  by 

y 
continuity of Ŝ , 

iu N]f(t) i u N!f(t) 
E{e y  I  }  —> E{e X  I  } . 

{SD >0} {S D >0} 

From (3.2) we get : 

A(y)+*y(u) + 0 U ' A(x)^x(u) 0( 6 ;' 

Take t  larg e and note that A(y) -> A (x) as y  -> x t o see that 

ŷ(u) -> ^x(u). q  e d 

The fields V? , x £ 1} increas e with x , s o we can talk about x 

Ex-stopping times . If Y  i s an Ex-stopping time, we define the fields Ey 

and Ey+ = A Ey+e ^y+e as usual* (In fact> lE y = Ey+ but we canlt Prove this yet). 

One example of such a time is the process minimum, M : M = inffX̂ , t < . 

This is an -stoppin g time, fo r M  = infix : LX >0} . It plays a distinguished 
x C 
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role in what follows, and we shall need some of its simple properties. Let 

m=inf I. 

Proposition 3.3 

If x  > m, P{M=x}= 0, and, a.s. on { M > m}, there exists a unique t  such  

that Xt=M . 

Proof : if x  £ I an d x  > m, x mus t be regular for (-°°,x) , so 

PX{M <  x}= 1. It follows by the strong Markov property of X  that , 

Pa {T <  00 , M=x} = 0. Now if M= x an d T  =°° , we must have li m inf X =x. 

This can't happen on { J = °°} , for X  woul d then have to be recurrent, so that 

M=m C x. It also can't happen on {c<°°}, since this would require that 

inf{t : Xt_=x}, making it impossible for X  t o ever pass below x , and contra-

dicting th e regularity of x . Thus P{ M = x} = 0. 

If z  > m, the fact that x̂ -= z implie s that M  < z, hence that X  must 

take on its minimum. To see it takes it on exactly once, let M  =  inf X  . Apply 
^ s  < t S 

the above result to the process ̂ xt+s > s >_ 0}. Since Mf c Ji^9 
P {inf X  = M , M >  m}= 0. This being true for all rational t  give s the result, 
s >_ o 

This brings us to the promised strong Markov property. In the interest of 

clarity, we will sacrifice some rigor and speak of conditioning on events whose 

probability may be zero. The sacrifice is small since one can make this kind of 

conditioning rigorous by means of regular conditional probabilities. 

Theorem 3.4 

Let Y  be an s topping time. Then, conditioned on the values of Y  and 
Y +  + 

SD, the process —  Y = { .=. Y(t) , t  ̂0} is an absorbed ppp, independent of 

Ŷ+» and has the following conditiona l distributions. 
Y + 

(i) _0 n {Y > M o r Y=M=m} , given that Y= x and SD=t , is a 
non-degenerate ppp with the same law as that of give n that 

SxD =t. 
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Y + 

(ii) O n {Y < M}, SD=0 and, given that Y=x , :̂ v(0) has the same law 

as ̂ 1̂ (0) , given that S*=0 . 

Y + 

(iii) O n {Y=M > m}, SD~0> and i s degenerate, consisting of two  

non-trivial values, =Z*(0) (the initial excursion) and EL*(0+), 

(the final excursion). Given that Y=x , these are independent and  

have the same distributions as those of (0 ) and 3. (Ŝ ) , given 

that S * > 0. 
Y +  . 

Proof : if Y  >̂  sup Xt, SD=0 an d z  Y s3 , so the result is trivially true, 
so we may assume Y  < sup X . We first consider the case where Y  > M, and 

Y fc consequently S ^ > 0. 
Suppose Y  take s on only the values {x^x^,...} . If A  i s a measurable 
>A +  .  — 

set in W , the path-space of 3. , and if A£cY> then 

P{=l + (.) £ A, A|Y - x., S*} 

- P { S * b « A , A0{Y=x.}|Y=x., S / } I 
1 1 

= P { H ^ SA,AO{Y=X}|S ; } W = X IS*1} * 1 
1 1 

+ X * 
But Aa{Y=X.} € £ ,  while = 1 an d ar e independent given S ^ , 1 x . x . x . D 1 1 1 

so this is 

= P ( S . € A lSD1} *{A|Y=x., 1{Y=X} 
1 1 

= P{H ^ « A I s j } P{A|S^}, 

which proves the theorem in this case. Notice that this also covers the case where 

{Y=M=m}. 

Now suppose Y  > M i s an (  <$v+)"Stopping time and define 

Y =  — i f k2~ n < Y < (k+l)2_n, -co < k < co. 
n 2 n ~ ~ 

Then Y  +Y, and we have just seen that the theorem holds for each Y  . n '  J  n 

If f f ar e simple functionals, i f t t < t0 <... < t , and if 1 ' '  m r  1 2 n 
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A = (X.,) are real, set jk' 

m iXo k Nx fk(0) n_1 lA^(N x fk(ti + l) " Nx fk(V> iAi n Nxfk(SD} H(x,A) = n e  ° k X  k  n  e  ̂ - x  k  j  + I x  k  j  e  j n x  k D 
k=l j= l 

We can simplifiy this expression by setting g . = I A., f , which is again 
J i k k 

a simple functional. Then 
•xt1 t \ i i(N!g.(t . .) - N!g.(t.)) iN2g (SX) lN g (o) n-1 x  j j +1 x6 j 2 xe n D 

H(x,A) = e X  ° ( n e  ) e 
j-l 

We can compute E{H(x,A) |  ̂}  explicitly from Proposition 3.2 and verify 

that there exists a function K(x,t;A ) which is right continuous in x  and 

continuous in t , such that, on {SX > 0}, 
E{H(x,A)| =  K(x,Sx ;A) 

(If n=2 , for example 

K(x,SX,A) = E{e X O |sX >0} E{e x  n D  |  SX > 0} e x  , 

where ij^ is the characteristic exponent of N^gj) . 

We can choose the t . s o that t i s a.s . continuous at each t. . Then 
J t  j 

H(Y ,A) H(Y,A) a.s. by Proposition 3.1 . The convergence is bounded since 
n y 

n Y 
|h| <_ 1 , and • > b y continuity so 

Y Yn 
(3.3) K(Y,S*;A ) =  li m K(Y^ > ,A ) 

n -* 00 

= li m E{H(Yn, A) | Y  > 
n -> °° n 

= E{H(Y,A)| * Y+}, 

where the last step follows by Hunt's lemma (3 p.4l). 

By right continuit y in t , (3.3) holds in fact for any choice of the t . 

But the functionals above completely determine the conditional distribution of 

31 y> so that we have identified the distribution of j£*9 given Y=x and 
Y +  x SD=t, with that of give n SD=t . This completes the proof of (i). 
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Case (ii) is less interesting, so we will omit its proof, and pass on to 

case (iii). 
M 

Suppose, now, that Y= M >m. In that case, 5̂ =0 , and the process X t has 

exactly two excursions above M , the initial excursion £ = H*(0) , which lasts 

until X t reache s M  fo r the first and only time, and the final excursion 

4j, = 3L*(0+), which begins right after. 
Y 

Let Y  +  M b e as above. We may assume that Snn > 0. Let E =  3: „ (0) n J  D  n  Y _ + Y n and n =— v (S ^ ), and notice that £  -> £ an d n -> n •  Thus for any simple n Y D n  n 
n Y 

f, f(0 ) = f(?n) -> f (?) = N^f(0), and f(SDn ) = f(nn) + f (n) = N*f(n). 
n n 
But now, just take n= l t o define H(x ,X) : 

iN'go(0)iNxg(SD) 
H(x,X) = e e  , 

and note that the function K(x,t ,A) = K(x,X) doe s not depend on t  (the distri-
bution of H-+(SX) doe s not depend on the value of S X i f S X > 0 ) . 

Y x  D  r  D  D 

Since Sp1 1 > 0 w e still have : 

K(Y ,A) = E{H(Y , A ) | £ Y } . 

It follows that 

K(M,Y) = E{H(M,X)| ^M+} 

which says that, given M=x , 3Z*(0) and "H.*(CH-) hav e the same joint distribution 

as ~£ +(0) an d "HZ +(SX), given that S X > 0. , x x D ' ° D  qe d 

The case Y= M i s an exceedingly interesting special case of Theorem 3.4 : 

it is exactly David Williams decomposition of a diffusion into a pre-minimum 

and a post-minimum process. 

Indeed, let Q X b e the semigroup of the process X  conditione d on 

{Tx < c) > then killed at Tx > and let R X b e the semigroup of X  conditioned 

on U < Tx>. These are well-known̂ if f(y ) = Py{Tx < O ,  g(y)=l-f(y), 

and if (Pt ) i s the semigroup of X  killed at time Tx > then 

QX(y,dz) = f(y) 1 Pt(y,dz) f(z) 
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and 

RX(y,dz) = g(y) 1 Pt(y,dz) g(z) 

Theorem 3.5 (Williams) 

Let U= inf{t : Xt=M}. Then, given that M= x > m, the process {Xt> t<U} 

and the process {X^+^, t >_ 0} are independent diffusions with semigroups (QX ) 
and (RX ) respectively. 

Proof : the given processes are just ^^(°) an< i —  M^+^ respectively . 

By Theorem 3.4 (iii) given M= x > m, they are independent, with the same distri-

butions as (0 ) and (S^) , given S_. 
x x  D  °  D 

To finish the proof, we need only identify the distribution of these 

excursions. But the initial excursion above x , given that it ever does reach x, 

is easily seen to be a diffusion with semigroup (QX) , while the final excursion 

starts at the last exit time from x . By Theorem/of̂ (7), this is a diffusion with 

semigroup (RX). 

4 - THE EXCURSION FIELDS 

It is interesting to compare the family x  € 1} o f excursion fields 

with the usual fields ̂ t = tf{xg> s <_ t} generate d by the diffusion. In some 

senses, the excursion fields are richer, but they share many properties. 

Proposition 4.1 

The fields {*? , x 6 1} ar e continuous in x.  wx 

Proof : £  3  j . But *l i s generated by :ET , and H =  lim ,  # 
~~~~~ X  1 X  x  x  xi/ n x - -n 

(in the sens e of section 3) so J c V ? j . To prove right continuity, notice 
n x  - -

+ n  x that £x an d <?x + = 0?x+jyn ar e conditionally independent given Ŝ , which 

follows from Theorem 3.4 with Y  = x. Let Y be the class of sets A for which 

P{A|£x} = P(A|?x+}. 
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If A= Aj C\ A2, where A j ^^x> A2^x ' then 

p a | ? x + } = iA]PU2|RX+} = iA]P{A2|s^} 

Thus A  E  Y.  Y i s clearly a monotone class, hence ^  contain s 

*x **x' and in Pa"icular, £x+ C ^ • q  e d 

Remark : let ^x v t> e tne upcrossing field defined in (lo) ,  i.e. the field 

generated by all the upcrossings of (x,y) , and let 1C = V  it • 
y x  : x < y X ^ 

Then £ =  ft = 0  % . 
y y  w:w> y y * 

To see this, recall from (io) that if x  < x1 < y < yf tha t 

11 CU ? c1l .  Furthermore, it is clear that E x Cux'y CEW t Cl? •  Thus 

J C  , y 1 / , = Uy Cw' A>y Uyw' CEw, . Now just let xt y an d w  + y and ux x  :xT <y x  y y  w  > y y w w  1  J J 

note that the £  ar e continuous at y. x 

Davis and Varaiya (2) have defined the notion of the dimension of a family 

of a-fields . This is, very roughly, the number of orthogonal martingales supported 

by the a-fields . If X  i s a Brownian motion, for instance, the fields (  $*t) 

are one-dimensional. This is a consequence of Itofs theorem which says that any 

v̂ j.-martingale can be written as the sum of a constant plus a stochastic integral 

with respect to X . However, we have the following, which shows that the excursion 
/7? 

fields are richer that (  «SP ) . 

Proposition 4.2 
The dimension of the fields ,  x d 1} i s infinite.  ux 

Proof : let a be the initial value of X . Note that there are an infinite 

number of excursions below a , so that SaD > 0. a.s. Let T j < T̂  < ....<£ b e 

^ -identifiabl e such that X ^ =a an d L ^ <  L̂  .  We could, for instance, choose a 1 . 1 . 1 . , 

a 1 a T =  inf{t : L >  (1 - -) L } .  Let u(x ) and a(x ) be the functions of n t  — n  £ 
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Theorem 2.6, and put 

M (x) = u(x)(LX -L * ), x > a. 
n l . , , i. — 

J + l J 

By Theorem 2.4, {M̂ (x), x >_ a}, n=l,2,... are martingales which are 

independent given Ea, and hence are orthogonal. Their increasing processes are 

(4.1) <M > = n x 
X 
M (v) da(v), n a 

We extend the t o all of I  by putting 

M (x) = E{M (a) I Y } if x < a. 

By (4.1), for any m,n , the measures d<HR> x an d d  < >  ̂  ar e equiva-
lent on a < t < T where T = inf{x > a : M (x) = 0 or M (x) = 0}. It follows that 

— n  m 
for any n , there is some (random) interval J  suc h that 

d < M, > ~»d<M0> /v/d< M > for x ̂  J, hence the dimension is at least 1 x 2 x n  x 

n. Since n  is arbitrary, we are done. 

In general there will be at least one totally inaccessible ^-stoppin g 

time. Set 
y f M i f M> m 

100 otherwise, 

where M=inf{X t : t < ç} and m=in f I. Y is clearly totally inaccessible unless 

it is identically infinite, for Y has a diffuse distribution by Proposition 3.3, 

and {M > x} i s an atom of "*LX* We conjecture that Y is the only totally inac-

cessible time. In fact, we conjecture that if 2 is an ^-stopping time and 

P{2=Y < °°} = 0, that Z  i s predictable. 

One might think that something like Mt = inf{X : s < t} would provide 
t s  — 

another totally inaccessible time, but the following shows that that it doesn't. 

Proposition 4.3 

Let 2  be an tx~stoPPinë time such that P{Z=M} = 0. Then 

P{ 3 t : X has a local minimum at t  and =  g } = q. 
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Proof : if X  ha d a local minimum at t , and X  =  2, then t  would be in 
2 2 

the interior of some excursion interval (x g_, Tg) (for t  canf t be a point of 
2 . 

increase of L  ), and this interval would contain at least two excursions, one 
starting and the other ending at t . This would mean that the excursion process 
Elt i s degenerate, which contradicts Theorem 3.4. , 2 q  e d 

There is a line of attack on the conjecture which may be worth mentioning. 

To prove that all stopping times other than M ar e predictable, it would be 

enough to show that all ^-martingales are continuous except possibly at M . In 

case X  i s Brownian motion, the corresponding result for the fields (P follow s 

from Itofs representation theorem : each ̂ » martingal e is a constant plus a 

stochastic integral, and therefore continuous. Is there some type of representation 

theorem here ? It is not out of the question. We have all the martingales of the 

form (u(x)(L̂ -Lg) , x 21 Xq} t o integrate with. Perhaps there is some integral 

representation which involves the local times explicitly. 
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APPENDIX : A STABILITY PROPERTY 

We remarked at the end of section two that the infinitesimal generator of 

the local time is determined by its stability properties. 

This property is doubless known in much greater generality than we will give 

here, but since we don't know the reference, and since it is relevant and not 

difficult, we will prove the two results here that we referred to. 

Proposition Al 

Let € be the infinitesimal generator of a regular diffusion on natural scale  

on fo,00), absorbed at zero. Suppose that whenever X  and Y  are independent 

-̂diffusions then X+ Y is also a ̂ -diffusion. Then there is c  > 0 such that 

€ = 2 CX72 dx 

Proposition A2 

Let €  be as above and let H be the infinitesimal generator of a diffusion  

on |5, .  Suppose that whenever X  is a €-diffusio n and Y  is an independent 

K-diffusion, that X+ Y is a diffusion. Then X+ Y is also an E diffusion, and  

there is a b  > 0 such that 

K = ic x̂  + b i-
2 , 2 d x dx 

Lemma : let A  be an adapted continuous process of locally bounded 

variation, which is locally of the class (D). Suppose that there exist M,J T £ °° 

such that for any stopping time T 

M < _ lim sup i E{AT+t - AT| 0 }̂ <  N. 
t 0 

Then {Afc-Mt } and {Nt-Afc} are increasing processes. 

Proof : we claim the two processes are sub-martingales.The lemma follows 

from this, for each process will then be the sum of an increasing process and a 

continuous martingale. But the processes are both of finite variation, hence the 

martingales must be constant, and the processes themselves increasing. 

Let s  <_ t an d define stopping times T  <_ T. <_ ... by induction as 
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follows : T =0, T ,, i s J*m -measurabl e with the property that T  ,  = T i f o n+1 T  v v j n +1 n n 
Tn=t' Tn+1 > Tn °therwise> Tn+1 - C' and 

(M-e)(Tn+rJn) < E{AT -A T \ < F T } < _ (N+E)(Tn+1-Tn). 
n+1 n  n 

If li m T <  t, define T  =  lim T , and define T  . , T l0,... and so on, n a ) n ' o)+ l u)+2 ' 

thru the countable ordinals. There exists a countable ordinal 3  such that 

Tg = t a.s. 

Now A  -A =  E  A  - A s o 
t S  a< 3 a +1 a 

E{At-Aj^s } = E{ I E{A T -A T |  ̂}  | 
a<3 a +1 a  a 

£ (N+e)(t-s) 

Thus {(N+e)t-At > i s a sub martingale for all e  > 0, hence {Nt-A^} 

is a sub martingale. The fact that A^M t i s a submartingale follows in the same 

way. qe d 

Now let X  b e a G-diffusion . If X  i s on natural scale it is a local mar-

tingale. Let <  X> b e its associated increasing process. If a  < x < b, let 

T= inf{t : Xt=a o r b } an d define 

1 x 
h(x) = li m sup - E { < X > } 

t - 0 C 

g(x) * li m inf 7 EX{ <X > } 
t - 0 t 

Now EX{<X > }  < EX{<X> }  = EX{X2-x2} <(b-a)2, so < X > i s 
t AT T  T — t  /\ T 

integrable. Moreover, recall that 

lim i Px{|X -x| > e} = 0, 
t + 0 t  Z 

so that the definitions of h  an d g  ar e independent of a and b. 

Lemma 2 

Let G  be as in Theorem Al. Then h  is increasing and sub-additive while g 

is increasing and superadditive. Both are finite everywhere. 
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Proof : let X  an d Y  b e independent G-diffusion s with initial values x 

and y  respectively . Then X  an d Y  ar e orthogonal martingales, so 

< X+Y >=<X> + <Y>. Let r  > x+y an d put T = T . Then 

h(x) <_ h(x+y) = lim sup £ EX,y { < X+Y > } 

= lim sup i EX,y{ <X>t + <Y>t) 

<_ lim sup i EX{<X> t> + lim sup jEy{<Y> fc} 

= h(x) + h(y) 

Thus h  i s increasing and sub-additive, and will be finite everywhere if 

h(x) <» fo r any x  > 0. But apply Lemma 1  to A t =  < X > . .I f h(x ) = °° , 

* t  t A T 
we could take M  a s large as we wished, which would imply that A ^ S 0 0 , a 

contradiction. The proof for g  i s similar. , 

q e a 

We are ready to prove Proposition Al. Let a  < x < b, let T b e the first 

exit from [a,b ] , and apply Lemma lt o A

t

S ! S < x >

t A T • S i
n c e 

a <_ y <_ b^h(a)£h(y) <_h(b), lemma 1  implies that h(b) t - < X > t ^  an d 

<X> -  h(a)t ar e increasing processes. In other words, 
t A T 

1 X 
h(a)dt <_d<X> < _ h(b)dt. Then g(x ) = lim inf - E {< X > }  >_ h(a) , so that 

t A T t t AT 

h(a) <_ g(x) <_ h(x). Let a  + x t o see that 

h(x-) <_ g(x) <_ h(x) 

Thus, if h  i s continuous at x,y , and x+y , lemma 2 implies 

h(x+y)£ h(x)+h(y) = g(x)+g(y)£ g(x+y) = h(x+y) 

In other words, h  i s additive, so h(x ) = c x fo r some c  > 0. It follows 

easily that d < X > t =  c Xfc dt. 

(2) 
To calculate G , let f  6 C v ' fs D(G) an d use Ito*s formula : E X {f( X )-f(x)} =E X{ 

t 

o 
V ( X )dX } + ^E X{ 

s s  I 

t 

o 
f"(X )d<X> } 

s s 

= f E X { 
t 

o 
Xf"(X)ds}. 

S S 
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Thus 

€f(x) = li m -£.EX{ 
t + o zt 

t 
X f"(X )ds} =  ̂xf"(x), s s  z o 

which proves Proposition Al. 

We can prove Proposition A2 by similar methods. Let X  b e a G-diffusion 

and Y  a n independent H-diffusion. Y an d X+Y , being diffusions, are 

semi-martingales and can be written uniquely in the form of a martingale plus a 
process of locally bounded variation with initial value zero. 

Let r, y >_ 0, let r  > x+y, and put T = T̂ . Define 

m(y) = lim sup ; Ey{Y -y } 
t + 0 Z CA T 

n(x+y) = lim sup 7 EX,y{(X+Y)_ -x-y } 
t + 0 1 

= lim sup I EX,y{Y -y } = m(y) 
t + 0 Z  ZA T 

where we have used the fact that the above definitions are independent of r . Set-

ting x  an d y  alternatel y equal to zero, we see n(x ) = m(0) = m(y). So m  i s 

constant, say m  s b. 

Now Y , being a diffusion can be written in the form Y=Mt+Vt , where Mf c is 

a martingale, Vt a process of locally bounded variation. The reader can check 

that V" t satisfie s the hypotheses of Lemma 1 . From the lemma we conclude first 

that b  i s finite, then that V"t=bt. 

Next, define <Y > =<M > .  As X  an d M  ar e orthogonal, <X+Y>~ = <X> +<Y>. 

If x  _> 0, set 

j(y) = lim sup i Ey{ <Y > } 
t->0 Z  CA T 

k(x+y) = lim sup ; EX,y{ <X+Y> } 
t -> 0 Z  Z* T 

= lim -  EX{ <X > }  + lim sup | Ey{ <Y >̂  } 

t - o z ZAT t - o z 

- ^ + J (y) 

As in the previous proof, Lemma 1 shows j  an d k  can' t be infinite every_ 

where, so they are everywhere finite, and i f a=j(0) , 
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j (x) = jx+ a =  k(x) , 

and that d<Y> t =  (| Y+a)dt, d<X+Y> = (-(X+Y)+a)dt. We can calculate the infinite-

simal generator as before. Both Y  an d X+ Y hav e the generator 

H = (fx+a) d
2 

dx 2 

+ b d/dx. 

But Y , being positive, can't have a negative drift at zero, so b=m(0 ) >_ 0. 

We claim that a=0 . Suppose not. The origin is either absorbing,reflecting, or 

sticky for Y.  It can't be reflecting, for if it were, we would have m(0 ) = <» . 

It can ft be absorbing, for then we would have d  < X+Y > = (|(X+Y) + a I^y >  0 })dt, 

which is not a function of X+Y . Similarly, if it were sticky, d <X+Y > would 

depend on whether or not Y=0 . Thus a must equal zero, and we are done. 
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