Astérisque

Krystyna MaŁgorzata Ziemian

On topological and measure entropies of semigroups

Astérisque, tome 51 (1978), p. 457-472
http://www.numdam.org/item?id=AST_1978__51__457_0
© Société mathématique de France, 1978, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On topological and measure entropies of semigroups by

Krystyna Małgorzata Ziemim

The presentet paper contains a generalization of the theory of topological and measure entropies to the case of an action of an arbitrary subsemigroup of $z^{I I}$. Some ideas were suggested to the author by M. Misiurewics.

1. Definitions of the topological and measure entropies.
Λ subset $\tilde{\sim} \subset \mathbb{R}^{I I}$ will be called a cone in $\mathbb{R}^{I I}$ if $\forall x \in \Lambda \forall_{t}>0 \quad t \cdot x \in \Lambda$ and $\tilde{\Lambda} \cap B(0,1)$ is of positive Jordan measure, where $B(0,1)$ is the unit-ball in $\boldsymbol{a}^{\mathrm{N}}$. The set Λ of the form $\Lambda=\tilde{\Omega} \cap z^{I I}$, where $\tilde{\Lambda}$ is a cone in \mathbf{a}^{N}, will be called a cone in \mathbf{z}^{N}.

If G is a semigroup in Z^{N} then G generates a subgroup of Z^{N} isomorphic to $Z^{K^{\circ}}$ for some $N^{\circ} \in N / N$ as usually denotes the set of positive integers /. Thus without loss of generality, we can restrict ourselves to the study of these semigroups in Z^{N} which generate z^{N}. It is easy to prove the following.

Proposition 1. A semigroup $G \subset Z^{\text {II }}$ generates $z^{\text {N }}$ ifs G contains a cone in z^{N}.

Commencing from now G is a fixed semigroup in Z^{N} containing a cone Λ in z^{N}.

We introduce the following notations
For $\quad r_{1}=\left(r_{1}^{1}, \ldots, r_{1}^{H}\right), \quad r_{2}=\left(r_{2}^{1}, \ldots, r_{2}^{H}\right) \in \mathbb{R}^{N}$ the relation $\quad r_{1}<r_{2} / r_{1} \leqslant r_{2} /$ means that $r_{1}^{1}<r_{2}^{1} / 1_{1}^{1}<r_{2}^{1} /$ for $1=1, \ldots$. $\mathrm{H}_{\text {。 }}$
$\mathbb{R}_{t}^{I I} \underset{(f)}{ }\left\{x \dot{\epsilon} \boldsymbol{R}^{I I}: x \geqslant 0\right\}$.

$s \in \mathbb{R}^{H}$, will be called a rectangle in \mathbb{R}^{N}.
$z_{+}^{\mathrm{N}} \mathrm{d}=\left\{\varepsilon \in \boldsymbol{z}^{\mathrm{N}}: z \geq 0\right\}$.
 g ϵz^{N}, will be called a rectangle in $z^{\text {H. }}$.

X is a non-appty, compact Hausdorff (probability) space. T is an action of G in I (it is not assumed that $I^{0}=1 d_{X}$). Of denotes an open cover (a finite measurable partition) of $I_{\text {. }}$
 H(\mathbb{O} B) stands for the topological (measure) entropy of the cover (partition) S_{B}.
For $n \in \mathbb{N}$ we set $\Lambda^{n} d f(\cap B(0, n)$, where $B(0, n)$ is the ball with center 0 and radius n.
 depend on the choice of $\Lambda \subset G$.

Lemma 1. Let δ be an arbitrary positive number. If Λ is a cone in Z^{N} and $\left(n_{1}\right)$ is a sequence of positive
integers such that $\lim _{1} n_{1}=+\infty$ then there exist
(i) positive integers $I_{1}, \ldots, I_{k}, t_{1}, \ldots, t_{k}$
(ii) $\quad \varpi \in Z_{+}^{N}$
(iii) $z_{i, j} \in I_{w} \quad j=1, \ldots, t_{i}, \quad i=1, \ldots, k$
such that $I_{w}=\bigcup_{j=1}^{t_{1}}\left(\Lambda^{n_{1}}+z_{1, j}\right) U \ldots U$ $\bigcup_{j=1}^{t_{k}}\left(\Lambda^{n_{k}}+z_{k, j}\right) \cup I_{w}^{\prime} \quad \quad$ where all the sets in the above sum are pairwise disjoint and $\frac{c a r d I_{\mathbf{w}}^{\prime}}{c \operatorname{card} I_{w}}<\delta$.

Proof: By assumption, $\quad \Lambda=\tilde{\Lambda} \cap z^{N}, \Lambda^{n_{l}}=\Lambda \cap B\left(0, n_{1}\right)=$
 Pix $\varepsilon>0$. If \mid. \mid denotes the Jordan measure on $\mathbb{R}^{\text {If }}$ then

$$
\text { (1) } \quad \lim _{l} \quad \frac{\operatorname{card}\left(\tilde{\Lambda}^{n_{L}} \cap z^{W}\right)}{\left|\tilde{\Lambda}^{n_{l}}\right|}=1
$$

by definition of Jordan measure.
Let $J \subset \mathbb{R}$ be a rectangle with vertices belonging to \mathbf{z}^{N} such that $\tilde{\Lambda}^{\wedge} \subset J_{0}$ Denote.
(2) $\beta \frac{d p}{z} \frac{\left|\tilde{\Lambda}^{\wedge}\right|}{|J|}$
$I_{\text {w }}$ can be constructed inductively. The idea is the following. We chose $I_{1} \in \mathbb{U}$ such that $n_{I_{1}} J \backslash \tilde{\Lambda}^{n_{1}}$ can be covered by pairwise disjoint translates of $n_{1} \cdot J$ by vectors with integer coordinates so precisely that if we denote the covered part of $n_{1} ; J$ by $\left(n_{1} ; J\right)_{c}$ then
(3) $\frac{\left|\left\{_{n_{1}} \cdot J\right)_{c}\right|}{\left|n_{1_{1}} \cdot J\right| \Lambda^{n_{1}} \mid}>1-\varepsilon$.

Then, $n_{1_{1}} j$ contains both $\tilde{\Lambda}^{n_{1}}$ and the translates of $\tilde{\Lambda}^{n_{1}}$ - Now, if $\left(n_{1} ; J\right) \tilde{\Lambda}$ denotes the sum of and these translates then, in virtue of (2) and (3),
(4) $\frac{\left|\left(n_{1} ; J\right) \tilde{\Lambda}\right|}{\left|n_{1} ; J\right|}>\beta+(1-\varepsilon)(1-\beta) \cdot \beta$.

Now, we chose $I_{2} \in \mathbb{\text { such that }} n_{1_{2}} \cdot J \backslash \tilde{\Lambda}^{n_{L_{2}}}$ can be converted pairwise disjoint translates of n_{1}; J by vectors with integer coordinates, so precisely that if we denote the covered part of $n_{1}: J$ by $\left(n_{1} ; J\right)_{c}$ then
(5) $\frac{\left|\left(n_{1} \times J\right)_{2}\right|}{\left|n_{1_{2}} \cdot J \backslash \tilde{\Lambda}^{n_{l_{2}}}\right|}>1-\varepsilon$.

Then, $n_{1_{2}} \cdot \sqrt{ }$ contains both $\tilde{\Lambda}^{n_{L_{2}}}$ and the translates of $\tilde{\Lambda}^{n_{1}} \tilde{\Lambda}_{n_{1}}$ and $\tilde{\Lambda}^{n_{1}}$. Now, if $\left(n_{1_{2}}, J\right) \tilde{\Lambda}$ denotes the sum of $\tilde{\Lambda}^{n_{1}}$ and these translates then by (2), (4) and
(5) we have
(6)

Continuing this procedure, after the k-th step we have $J_{n_{1}}$ which contains both $\tilde{\Lambda}^{n_{L_{k}}}$ and the translates of
$\tilde{\Lambda}^{n_{1}}, \tilde{\Lambda}^{n_{1}}, \ldots . \tilde{\Lambda}^{n_{L_{k-1}}}$ by vectors with integer coordinates,
and if $\quad\left(n_{I_{k}}, J\right)_{\Lambda} \quad$ denotes the sum of $\hat{\Lambda}^{n_{l_{k}}}$ and these translates then
(7) $\left.\frac{\mid\left(n_{1_{k}} \cdot J\right) ~}{} \frac{n^{\prime} \mid}{\left|n_{1_{k}} \cdot J\right|}\right\rangle$
$\beta+(1-\varepsilon)(1-\beta) \cdot \frac{\left|{ }^{\left(n_{1_{k-1}} \cdot J\right)}\right|}{\left|{ }^{n_{I_{k-1}}} \cdot J\right|}$
where $\quad\left(n_{l_{k-1}} \cdot J\right) \tilde{\Lambda}$ is the sum of $\tilde{\Lambda}^{n_{l-1}}$ and the translatoes of $\tilde{\Lambda}^{n_{4}}, \tilde{\Lambda}^{n_{4}}, \ldots, \tilde{\Lambda}^{n_{l k-2}}$ covering $J_{n_{l_{k-1}}} \quad$ after ($k-1$)-th step.

$$
\begin{aligned}
& \text { Denote } r_{a} \stackrel{d f}{=} \beta, r_{1} \frac{d f}{m} \frac{\mid\left(n_{1_{1}} \cdot J\right)}{\left|n_{1}\right|} \\
& \left|n_{1_{1}} \cdot J\right|
\end{aligned}, \ldots
$$

By (7) $1 \geqslant r_{k} \geqslant \beta+(1-\varepsilon)(1-\beta) r_{k-1}$ for $k \in N_{0}$. It is easy to prove that the sequence $\left(r_{k}\right)$ satisfying the above condition tends to $f(\varepsilon)$ while k tends to infinity, where $\lim _{\varepsilon \rightarrow 0} f(\varepsilon)=1$. This fact together with (1) ends the proof.

Proof of Theorem 18 Suppose that $\Lambda_{1}, \Lambda_{2} \subset G$ are cones in z^{N}. Denote $\eta_{1} \frac{d P}{z} \lim \inf \frac{1}{\operatorname{card} \Lambda_{1}^{n}} H\left(A_{\Lambda_{1}^{n}}\right)$, $\eta_{2} \frac{d f}{=} \lim \sup \frac{1}{\operatorname{card} \Lambda_{2}^{n}} H\left(A_{\Lambda_{2}^{n}}\right)$. Fix $\varepsilon>0$.

There exist a sequence $\left(n_{1}\right)_{1=1}$ of positive integers such that
(8)
$\frac{1}{\operatorname{cord} \Lambda_{1}^{n_{1}}}{ }^{H}\left(\mathcal{A}_{1}^{n_{1}}\right) \leqslant \eta_{1}+\varepsilon \quad$ for $1 \in \mathbb{N}$.
If I_{m} is a rectangle from Lemma 1 constructed for (n_{1}) and ε, then for sufficiently large $n \in \mathbb{N}$
(9) $\quad \Lambda_{2}^{n}=\bigcup_{i=1}^{t}\left(I_{w}+Y\right) v\left(\Lambda_{2}^{n}\right)^{\prime}$
where $\quad\{\in G, i=1, \ldots, t$, the sets in the above sum are pairwise disjoint and $\frac{\operatorname{card}\left(\Lambda_{2}^{n}\right)^{\prime}}{\operatorname{card} \Lambda_{2}^{n}}<\varepsilon \quad$.

By (8), (9) and Lemma 1 we have
$\frac{1}{\operatorname{card} \Lambda_{2}^{n}} H\left(A \Lambda_{2}^{n}\right) \leqslant \eta_{1}+\varepsilon+2 \varepsilon H(A)$, so $\eta_{2} \leqslant \eta_{1}$.
Definition 1. (a) The topological (measure) entropy of a cover (partition) \mathbb{A} with respect to an action T of the semigroup G is the number

$$
h(T, A) \neq \lim \frac{1}{c a r d \Lambda^{n}} H\left(A_{\Lambda^{n}}\right) \text {. }
$$

(b) The topological (measure) entropy of an action T of the semigroup G is the number $h(T) \frac{d p}{\equiv} \sup _{A} h(T, f)$.

Example. Let $H \neq Z^{N}$ be a semigroup in Z^{N} containing 0 and a cone in z^{N}. Equip the set $\{0,1\}$ with the discrete topology and put X di $\{0,1\}$ 甘 with the product topology. We define an action T of H as a shift on $X:\left(T^{h}(X)\right)_{g}=X_{h+g}$ for $x \in I, h, g \in H$. It is easy to prove that T cannot be extended to an action of a semigroup $H^{\prime}, H \in H^{\circ} \subset z^{N}$.

This example shows that the above definition is a substantial generalisation of classical one.

It can be easily proved that the above defined notions of entropy possess all the basic properties of entropy which can be found e.g. in $[1]$ and $[3]$.
2. The relation between the entropy of a semigroup and the entropy of its subsemigroup.
For $A \subset Z^{I N}$, $\langle A\rangle$ will denote the additive group generated by A.

Let P be a subsemigroup of G. We know that for some $K \in \mathbb{N} \quad$ there exists an isomorphism $\varphi: Z^{R} \rightarrow\langle P\rangle$. φ induces a linear mapping $\tilde{\varphi}: R^{K} \longrightarrow \mathbb{R}^{N}$. Let $\nabla \underset{z}{d i} \tilde{\varphi}\left(J_{(1, \ldots, 1)}\right) \cap z^{N}$. G contains a cone in z^{N}, thus there exists $\quad h \in G \quad$ such that $\quad V+h \subset G$. We set $\quad A^{\nabla}=d f \quad A \quad$ and $p \frac{d f}{\approx}$ card V.

Theorem $2 /$ cf [3] 2.1/. If $K=N$ then $h\left(T_{p}, A^{\nabla}\right)=p \cdot h(T, A)$.

Proof : I. $h\left(T_{p}, A^{\nabla}\right) \geqslant p \cdot h(T, \mathcal{A})$.
By assumption $\varphi^{-1}(P)$ generates z^{N}, thus there is a cone Λ_{p} in $z^{N}, \quad \varphi\left(\Lambda_{p}\right) \subset P_{0}$

Fix $\varepsilon>0$. We set $\quad \eta$ d if $h(T, A), \eta_{p}{ }^{d f} h\left(T_{p}, \mathbb{A}^{\nabla}\right)$. For some $n_{0} \in I I$ we have
(10) $\frac{1}{\operatorname{card} \Lambda_{p}^{n}} H\left(A_{\varphi\left(\Lambda_{p}^{n}\right)}\right) \leqslant \eta_{p}+\varepsilon$ for $n \geqslant n_{0}$

Let I_{w} be a rectangle in Z^{N} from Lemma 1, constructed for the sequence $\left(\Lambda^{n}\right)_{n a n}^{\infty}$ and ε. For some $k \in G, \varphi\left(I_{w}\right)+\nabla+k \subset G$, because G contains a cone in Z^{N}. For sufficiently large a we can find $s \in N, \quad \lambda_{j} \in G, j=1, \ldots, s$ such that

$$
\begin{equation*}
\Lambda^{n}=\bigcup_{j=1}^{s}\left(\varphi\left(I_{w}^{\prime}\right)+V+h+k+\lambda_{j}\right) \cup\left(\Lambda^{n}\right)^{\prime}, \tag{11}
\end{equation*}
$$

Where the sets appearing in this sum are pairwise disjoint and $\frac{\operatorname{card}\left(\Lambda^{n}\right)^{\prime}}{\Lambda^{n}}<\varepsilon$.
card Λ^{n}
From (12) , (13) and Lemma 1 we get
$\underset{\operatorname{card} \Lambda^{n}}{1} H\left(A \Lambda^{n}\right) \leqslant \operatorname{card} \Lambda^{n} \sum_{j=1}^{s} H\left(\mathcal{A}_{\varphi\left(I_{w}\right)+V+h+k+\lambda_{j}}\right)+$
$\left.+\varepsilon \cdot H(\mathscr{M}) \leqslant \varepsilon \cdot H(\mathscr{M})+\frac{1}{\operatorname{card}\left(\varphi\left(I_{w}\right)+V\right)} \cdot H_{\varphi\left(I_{w}\right)+k}^{V}\right)$ but
$\operatorname{card}\left(\varphi\left(I_{W}\right)+V\right)=p \operatorname{cardI}_{W}$ and in virtue of (12) and
Lemma 1 , and $\underset{\text { card } I_{w}}{1} H\left(A V\left(I_{w}\right)+k\right) \leqslant \eta_{p}+\varepsilon+\varepsilon \cdot H(A V)$.
Hence $\left.\quad-\frac{1}{\operatorname{card} \Lambda^{n}} H\left(\mathcal{H}_{\Lambda^{n}}\right) \leqslant \frac{1}{p} \cdot \eta_{P}+\varepsilon \cdot H(\notin)+\frac{1}{p}+\frac{1}{p} H\left(\mathcal{A}^{\bar{V}}\right)\right)$
which implies $p \cdot q \leqslant \eta_{p}$.
II. $\mathbf{p} \cdot \mathbf{h}(\mathrm{T}, \mathscr{A}) \geqslant \mathbf{h}\left(\mathbf{T}_{\mathrm{p}}, \mathcal{A V}^{V}\right)$

Pix $\varepsilon>0$. There exists $n_{0} \in \mathbb{N u c h}$ that
(12) $\quad-\frac{1}{\operatorname{card} \Lambda^{n}} H\left(\Lambda^{n}\right) \leqslant R+\varepsilon \quad$ for $\quad n \geqslant n_{0}$.

Let I_{W} be a rectangle in $z^{1 H}$ from Lemma 1, constructed for $\left(\Lambda^{n}\right)_{n=n_{0}}^{\infty}$ and ε. There exists $t \in \mathbb{N}$, $z_{0}, z_{i} \in z^{N}, i=1, \ldots, t$, such that

$$
\begin{equation*}
\varphi\left(I_{z_{0}}\right)+V=\bigcup_{i=1}^{t}\left(I_{w}+z_{i}\right) \cup\left(\varphi\left(I_{z_{0}}\right)+V\right)^{\prime} \tag{13}
\end{equation*}
$$

the sets appearing in this sum are pairwise disjoint and

$$
\frac{\operatorname{card}\left(\varphi\left(I_{z_{0}}\right)+V\right)^{\prime}}{\operatorname{card}\left(\varphi\left(I_{z_{0}}\right)+V\right.}<\varepsilon
$$

For $n \in \mathbb{N}$ sufficiently large we can find $I \in \mathbb{N}$,
$\lambda_{i} \in \Lambda_{P}^{n}, i=1, \ldots, 1$, such that

$$
\begin{equation*}
\Lambda_{p}^{n}=\bigcup_{i=1}^{l}\left(I_{z_{0}}+\lambda_{i}\right) \cup\left(\Lambda_{p}^{n}\right)^{\prime} \tag{14}
\end{equation*}
$$

all the sets in the above sum are pairwise disjoint and $\frac{\operatorname{card}\left(\Lambda_{p}^{n}\right)}{\operatorname{card}} \Lambda_{p}^{n}<\varepsilon$.
By (14) , (15) and (16) we have $\frac{1}{\operatorname{card} \varphi\left(\Lambda_{p}^{n}\right)} H\left(\Lambda_{\varphi}^{V} \varphi\left(\Lambda_{p}^{n}\right)\right) \leqslant$ $\leqslant \varepsilon \cdot H\left(A^{V}\right)+\bar{c} \overline{a r} \bar{d}^{1} \Lambda_{p}^{n-} \sum_{i=1}^{l} H\left(H^{\prime} \varphi\left(I_{z_{0}}\right)+V+h+\varphi\left(\lambda_{i}\right) \leqslant \varepsilon \cdot H\left(H^{V}\right)\right.$ $+\frac{-1}{\operatorname{card} \Lambda_{p}^{n}} \sum_{i=1}^{i}\left(\sum_{j=1}^{t} H\left(A_{I_{w}+z_{j}+h+\varphi\left(\lambda_{i}\right)}\right)+H\left(A_{\left.\left(\varphi\left(I_{z_{0}}\right)+V\right)^{\prime}+h+\varphi\left(\lambda_{i}\right)\right)}\right)\right.$ $\leqslant p \cdot \eta+\varepsilon(p \cdot H(A)+p+H(\mathscr{H}))$ which gives the inequaPity

$$
\eta_{p} \leqslant p \cdot \eta
$$

Corollary 1 (cf [3] 2. 3) , If $K=N$ then $h\left(T_{p}\right)=p \cdot h(T)$.

Theorem 3 (of [3] 2.5) . If $K<N$ and $h(T)>0$ then $h\left(T_{p}\right)=+\infty$.

Proof: Recall that $\langle P\rangle \simeq Z^{K}, \varphi: Z^{K} \rightarrow\langle P\rangle$ is an isomorphism , $K<N$. We extend φ to an isomorphism of z^{N} into z^{N}. In the sequel this extention is denoted also by φ. Let p^{3} denotes the index of subsemigroup $\varphi\left(z^{\mathbb{N}}\right)$ in z^{N} and $p^{N} \stackrel{d f}{=} \varphi\left(z^{N}\right) \cap G$. By The-
 sen in such a way that $p^{\mathbf{m}}$ is arbitrarily large. Thus it suprices to prove that $h\left(T_{p}\right) \leqslant h\left(T_{p}\right)$. $\varphi^{-1}(P)$ contains a cone Λ_{p} in $z^{K} \cdot \varphi^{-1}\left(P^{K}\right)$
contains a cone Λ_{*} in z^{N}. Fix $\varepsilon>0$. There exists $n_{0} \in N$ such that for $n \geqslant n_{0}$
(15) $\frac{1}{\operatorname{card} \Lambda_{p}^{n}} \mathrm{H}\left(\mathcal{A}^{n} \varphi\left(\Lambda_{p}^{n}\right)\right) \leqslant \mathrm{n}\left(\mathrm{I}_{\mathrm{p}}, \notin\right)+\varepsilon$.

Let I_{W} be a rectangle from Lemma 1 , constructed for $\left(\Lambda_{P}^{n}\right)_{n=n_{0}}^{\infty}$ and ε. For $n \in$ sufficiently large we can cover Λ^{n} by pairwise disjoint translates of I_{W} so precisely, that by a standard estimation we obtain the desired inequality.

Corollary 2. /of $[3] 2.6 .1$. If $K<N, h\left(T_{p}\right)<+\infty$, then $h(T)=0$.

Note that everything that was proved in part 2 is also valid for measure entropy (proofs without modifications) •
3. Theorem of Dinaburg - Goodwin - Goodman.

We introduce the following notations $:$
$2 K$ (\mathbf{X}) - the space of all Bored, normalised measures on X
with weak - topology.
$\operatorname{Z2F}(X, T)$ - the subspace of all T-invariant measures in 2 RE (X).

W - the set of all neighbourhoods of the diagonal in $X \times X$ directed by the inclusion.

Let $\quad \delta \in W \cdot \delta_{G} \stackrel{d f}{=} \bigcap_{g \in G}\left(T^{g} \times T^{g}\right)^{-1} \delta$ for arbitrary CC 6

A finite subset e of X is called a/ ($C, \delta)$ - separated, if for all $x, y \in e, \quad x \neq y$ we have $(x, y) \notin \delta_{C}$; b/ (c, δ) - spanning, if for all $x \in X$ there exists $y \in e$ such that $(x, y) \in \delta_{C}$.

Let $r(C, \delta) \stackrel{\text { af. }}{=} \min \{$ card $e: e$ is (C, δ)-spanming $\}$, $s(C, \delta)=\max \{$ card $e: e$ is (C, δ) - separated \} . We define

$$
\begin{aligned}
& \bar{\tau}_{T}(\Lambda, \delta) \stackrel{d E}{=} \lim _{n} \sup \frac{1}{\operatorname{card} \Lambda^{n}} \log r\left(\Lambda^{n}, \delta\right) \\
& \bar{S}_{T}(\Lambda, \delta) \stackrel{d f}{=} \lim _{n} \sup -\frac{1}{\operatorname{card} \Lambda^{n}} \log s\left(\Lambda^{n}, \delta\right)
\end{aligned}
$$

By an argument analogous to the one applied in $[3]$ the following definition makes sense,

Definition 3. $\quad \mathrm{h}_{\mathrm{T}}(\Lambda)=\lim \overline{\mathbf{s}}_{\mathrm{T}}(\Lambda, \delta)=\lim _{\delta} \bar{r}_{T}(\Lambda, \delta)=$ $=\sup _{\delta}{\overline{s_{T}}}_{T}(\Lambda, \delta)=\sup _{\delta} \bar{r}_{T}(\dot{\Lambda}, \delta)$.

Theorem 4. For all $\quad \Lambda \subset \quad G \quad h_{T}(\Lambda)=h(T)$.
The proof of this theorem is a translation of the proof [3] 4.8 to the language of the form structure W on X.

The following lemma will be used in the proof of Dinaburg-Goodwyn-Goodman theorem.

Lemma 2. Assume that $\mu \in 2 \hat{k}(X, T)$ and \mathcal{H} is a μ - measurable finite partition of $X \quad$ Let $p_{i} \in Z_{+}^{\text {II }}$ for $i \in \mathbb{N}$ and $\lim p_{i}=+\infty$. Chose $g_{i} \in G$ such that $I_{p}+g_{i} \subset G$ for it \mathbb{N}. Then

$$
h_{\mu}(T, \mathscr{\theta})=\lim _{i} \underset{\operatorname{card} I_{p_{i}}}{ } H_{\mu}\left(\mathcal{N}_{I_{p}+g_{i}}\right)
$$

Proof : I $\quad \lim$ sup $\underset{i}{\text { card }} I_{p_{i}} H_{\mu}\left(\mathcal{H}_{I_{p_{i}}}+g_{i} \leq n_{\mu}(T, \phi)\right.$.
There exists a sequence of positive integers $\left(n_{l}\right)$ such

For i sufficiently large we cover $I_{p_{i}}+g_{i}$ by pairwise disjoint translates of a rectangle I_{W} from Lemma 1 , constructed for $\left(\Lambda^{n_{l}}\right)$ and ε.

A standard estimation yealds the desired inequality.
II. $\quad h_{\mu}(T, U) \leqslant \lim _{i}^{\inf } \underset{\operatorname{card} I_{p_{i}}}{ } \quad \frac{1}{H_{\mu}}\left(\mathcal{H}_{I_{p_{i}}+g_{i}}\right)$.

If $i \in \mathbb{N}$ then for sufficiently large $n \in \mathbb{N}$ we can find $k \in \mathbb{N}, \lambda_{l} \in \Lambda^{n}, 1=1, \ldots, k$, such that $\Lambda^{n}=\bigcup_{l=1}^{k}\left(I_{p_{i}}+\lambda_{l}\right) \cup\left(\Lambda^{n}\right)^{\prime}$, where the sets appearing in this sum are pairwise disjoint and $\frac{\text { card }\left(\Lambda^{n}\right)}{\text { card } \Lambda^{n}}<\varepsilon$. Since for $1=1, \ldots, k, \quad H_{\mu}\left(\mathcal{A}_{I_{p_{i}}+\lambda_{L}}\right)=H_{\mu}\left(\psi_{I_{p_{i}}+\lambda_{L}+g_{i}}\right)=$ $=H_{\mu}\left(\psi_{I_{p_{i}}+g_{i}}\right) \quad$, the following inequality holds : $\underset{\text { card } \Lambda_{n}}{H_{\mu}}\left(H_{\Lambda^{n}}\right) \leqslant \varepsilon \cdot H_{\mu}(C t)+\underset{\text { card } I_{p_{i}}}{ } H_{\mu}\left(H_{I_{P i}+g_{i}}\right)$.This inequality implies II.

Theorem 5. /Dinaburg-Goodwyn-Goodman/.

$$
h(T)=\sup _{\mu \in \mathcal{K} k}(X, T) \quad h_{\mu}(T)
$$

Proof: I . sup

$$
\sup _{\mu \in \mathbb{R}(X, T)}
$$

$h_{\mu}(T) \leqslant h(T) / G o o d w y n /$.
The proof is analogous to the proof of Theorem 4.1 in $[4]$.
II. $h(T) \leq \sup _{\mu \in \operatorname{L2k}(X, T)} h_{\mu}(T) \quad / c P[5] /$. Pix $\quad \sigma>0$ and $\delta \in W$. Let for all $n \in \mathbb{N}$ e_{n} be a set $\quad\left(\Lambda_{1}^{n}, \delta\right)$ - separated of maximal cardinality.

For some sequence (n_{k}) of positive integers there exists $\lim _{k}-\frac{1}{\text { card }} \Lambda^{n_{k}} \log$ card $e_{n_{k}}=h_{T}(\Lambda, \delta)$.

We construct a measure $\mu \in \operatorname{Niz}(X, T)$ in the way indicated in $[5]: \quad \sigma_{n}(\{y\})=\frac{-1}{\text { card } e_{n}}$ for $y \in e_{n}$,
 in [5] /. In virtue of the theorem of Alaoglu there exists a cluster point $\quad \mu \in \mathcal{L Z}(x)$ of the sequence $\left(\mu_{n_{k}}\right)$. As in $[5]$ one proves that $\mu \in \operatorname{RZ}(\mathrm{x}, \mathrm{T})$.

Let \mathcal{A} be a finite Botel partition of I such that $a \times a \subset \delta$ for $a \in \mathcal{A}$. Then for $a \in \forall_{\Lambda^{n}} a \times a \subset \delta \Lambda^{n}$ thus $\forall a \in \mathcal{H}_{\Lambda^{n}} \quad \operatorname{card}\left(e_{n} \cap a\right) \leqslant 1$, so
$H_{\sigma_{n}}\left(\mathcal{H}_{\Lambda^{n}}\right)=-\sum_{y \in e_{n}} \sigma_{n}(\{y\}) \log \sigma_{n}(\{y\})=\log \operatorname{card} e_{n} \cdot$
Let $\left(I_{p_{i}}+g_{i}\right)^{y \in e_{n}}$ be a sequence from Lemma 2.
We can assume that $g_{i} \in \mathrm{z}_{+}^{\mathrm{N}}$ for $i \in \mathbb{N}$.
Fix $m \in \mathbb{N}$ and $\varepsilon, 0<\varepsilon<\underset{2 l o g c a r d}{ } \mathcal{A}$. There exists $l_{0} \in \mathbb{N}$ such that for $l_{1} \geqslant l_{0} p_{1}-g_{m}-p_{m} \in z_{+}^{N}$ and

If $\quad l \geqslant l_{0}$, $l \in \mathbb{W}$, then for n sufficiently large we can find $t \in \mathbb{N}, \lambda_{i} \in \Lambda^{n}, \quad i=1, \ldots, t$, such that $\Lambda^{n}=\bigcup_{i=1}^{t}\left(I_{p_{1}}+\lambda_{i}\right) \cup\left(\Lambda^{n}\right)^{\prime} ; \quad$ the sets appearing
in this sum are pairvise disjoint and $\frac{\operatorname{card}\left(\Lambda^{n}\right)^{\prime}}{\operatorname{card} \Lambda^{n}} \leqslant \varepsilon$,
Now, let $q \in I_{p_{m}}$. We define

$$
s(q)=\left(\left[\frac{p_{1}^{1}-g_{m}^{1}-q^{1}}{p_{m}^{1}}\right], \ldots,\left[\frac{p_{l}^{N}-g_{m}^{N}-q^{N}}{p_{m}^{N}}\right]\right)
$$

Observe that $I_{p_{l}}=\bigcup_{r \in I_{S(q)}}\left(I_{p}+g_{m}+q+10 \cdot p_{m}\right) \cup\left(I_{p_{L}}\right)^{\prime}$, where the sets appearing in this sum are pairwise disjoint and card $\left(I_{p_{l}}\right)^{\prime} \leqslant \operatorname{card} I_{p_{l}}-\operatorname{card} I_{p_{l}-g_{m}}-\rho_{m} \leqslant \varepsilon \cdot \operatorname{card} I_{p_{l}}$ /by (16) / So, finally we can represent Λ^{n} as a sum of pairwise disjoint sets as follows $\Lambda^{n}=\bigcup_{i=1}^{t}\left(\bigcup_{T \in I_{S(g)}}\left(I_{p_{m}}+\lambda_{i}+g_{m}+\right.\right.$ $\left.\left.+q+r \cdot p_{m}\right) \cup\left(I_{p_{i}}^{\prime}+\lambda_{i}\right)\right) \cup\left(\Lambda^{n}\right)^{\prime}$. Thus, for all $q \in I_{p_{m}}$ $\left(17_{q}\right) \quad H_{\sigma_{n}}\left(A_{\Lambda^{n}}\right) \leq \operatorname{card}\left(\Lambda^{n}\right)^{\prime} \cdot \log \operatorname{card} A+$

Adding the inequalities $(17 q), q \in I_{p} \quad$, by sides we obtain
(18) card $I_{p_{m}} \cdot \log$ card $e_{n} \leqslant$ card $_{p} \cdot \log$ card \mathcal{A}.

$$
\cdot\left(\operatorname{card}\left(\Lambda^{n}\right)^{\prime}+t \quad \operatorname{card} I_{p_{l}}^{\prime}\right)+
$$

$$
+\sum_{i=1}^{t}\left(\sum_{q \in I_{\rho m}} \sum_{r \in I_{s(q)}} H_{\sigma_{n}}\left(\left(T^{\lambda_{i}+q+r \cdot \rho m}\right)^{-1} \mathcal{H}_{I_{\rho_{m}}+g_{m}}\right)\right) \leqslant
$$

$$
\leqslant \quad{ }^{\operatorname{card}} I_{p_{m}} \cdot \log \operatorname{card} \notin\left(\operatorname{card}\left(\Lambda^{n}\right)^{\prime}+t \cdot \operatorname{card} I_{p_{L}}^{\prime}\right)+
$$

$$
+\sum_{g \in \Lambda^{n}} H_{\sigma_{n}}\left(\left(T^{g}\right)^{-1} \not A_{I_{p_{m}}}+g_{m}\right)
$$

Dividing the inequality (18) by card $I_{p} \cdot \operatorname{card} \Lambda^{n}$ and applying the inequalities
$-\frac{1}{\operatorname{card} \Lambda^{n}} \sum_{g_{G} \in \Lambda^{n}} H_{\sigma_{n}}\left(\left(\mathrm{~T}^{\mathrm{g}}\right)^{-1} \not A_{\mathrm{IP}_{m}+g_{m}}\right) \leqslant H_{\mu}\left(\mathcal{A}_{I_{\mathrm{Pm}}+g_{m}}\right)$ and $\frac{t \cdot \operatorname{card} I_{p_{c}}^{\prime}}{\text { card } \Lambda^{n}} \leqslant \frac{t \cdot \text { card } I_{p_{1}} \cdot \varepsilon}{\text { card } \Lambda^{n}} \leqslant \varepsilon \quad$, we obtain

$$
+\frac{1}{\operatorname{card} I_{P_{m}}} \cdot H_{\mu_{n}}\left(\psi_{I_{P_{m}}+g_{m}}\right) \text {. }
$$

Inequality (19) is true for all $n \in \mathbb{N}$ sufficiently large and of can be chosen in such a way that the boundaries of the elements of of have measure μ zero, hence taking the limit with respect to n /or with respect to a subsequence $\left(n_{k}\right)$ if necessary / we get $h_{T}(\Lambda, \delta) \leqslant 2 \cdot \varepsilon$ log card $\psi+$

$$
+\frac{-1}{\text { card } I_{P m}} H_{\mu}\left(\psi_{I_{P m}}+g_{m}\right) \leqslant \sigma+\frac{1}{\text { card } I_{P m}} \cdot H_{\mu}\left(A_{I_{P m}}+g_{m}\right)
$$

for all $\delta \in \mathbb{W}$ and $m \in \mathbb{N}$. Passing to the limit with δ and m, owing to the arbitraryness of σ, we obtain finallg $\quad h(T) \leq h_{\mu}(T)$.

Corollary 3. If $T \Omega$ denotes on action of G onthe set of nonwandering points Ω defined by $\mathrm{T}^{\mathrm{g}}(\mathrm{x})=\mathrm{T}^{\mathrm{g}}(\mathrm{x})$ for $x \in \Omega$, then $h(T \Omega)=h(T) \quad \Omega$

Bibliography

[1] Adler R.L., Konheim A.G., Mc Andrew M.H. : Topological entropy. Trans. Amer. Math. Soc., 114 /1965/, 309-319.
[2] Conze J.P.: Entropie d'un group abélien de transformations. Zeitschr . Wahr. verw. Geb., 25/1973/, 11-30.
[3] Eberlein E. : On topological entropy of semigroups of commuting transformations. Asterisque, $40 / 1976 /$, 17-62.
[4] Misiurewicz M. : Topological conditional entropy. Stud. Math., 55/1976/, 177-200.
[5] Misiurewicz M. : A short proof of the variational principle for a Z_{+}^{N} action on a compact space. Bull. Acad. Polon. Sci., Série des sciences math., astr. et phys., 24/1976/, 1069-1075.

