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OSCILLATING GEODESICS ON 2-DIMENSIONAL MANIFOLDS 

Maciej Wojtkowski 

Introduction, The aim of this paper is to study the pheno

menon of oscillating motions in the case of a geodesic flow 

on 2-dimensional open manifolds. 

In I 0 we classify trajectories of an abstract flow into 

bounded, escaping and oscillating, in future and in the past. 

We prove that the sets of trajectories oscillating in future 

and in the past differ merely by a set of an invariant measure 

zero. This theorem completes the theorem of E.Hopf /3/ in 

which the same is stated for escaping trajectories* 

In 2, we tackle the problem of existance of oscillating 

geodesies on a 2-dimensionalf open, finitely connected mani

fold o It turns out that their existance is closely connected 

with the presence of a horn on the manifold, in the sense of 

Cohn-Vossen /6/. We prove the existance of continuum of oscil

lating geodesies by purely topological methods for manifolds 

with a free fundamental group with more than one generator. 

The idea is to characterize a geodesic by an infinite word of 

generators of a fundamental group and it goes back to Hadamard 

/4/ and Morse /5/• Topological methods do not work when the 

fundamental group is commutative or trivial. 

The rest of the paper is aimed at the construction of 

differential symbolic dynamics for a geodesic flow. It allows 

under weak conditions to find continuum of oscillating 
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geodesies, also in the case, when the fundamental group is 

trivial or commutative. 

Also a large family of geodesies with different geometrical 

properties is obtained* We use the results of Alekseev /1/ 

and simplifications made by Moser /2/. 

Special thanks go to Professor V.M.Alekseev who inspired 

me to do this work. 

I. Let X be a locally compact, separable topological 

space and {^t^t^W a continuous flow on X 

Definition. We call x *X 

a) bounded for*t-> + o o ( - t i f f there is a compact set K such 
that < & * * K for * > 0 (4:40) . 

b) escaping for *t —* (t -8) iff for every compact set 

K there is Te fR such that c^x i K for "fc (-fc 4 T ) • 

c) oscillating fort -»+oo(±-*-oo) iff a ) a n £ a r e n o ^ satisfied. 

5y B * ( B ~ ) we denote the set of all bounded elements for 

-fc-»+<»(t-*-o9);by H*(H~) the set of escaping elements and by 0$*(0$~) 

the set of oscillating ones. These sets are invariant under {t}TER 

Suppose v> is a Borel measure on X , invariant under 

t^t^telR suppose i> is finite for every compact subset of 

X • 3y a well known theorem of E.Hopf /3/ 0 ( H + A H " ) = 0 . 

We prove 

Theorem 1. 
0 ( 0 5 + A OS") = 0 

Proof. We shall prove that 0 ( B + A B") = 0 . It is easy to 

see that the set of bounded elements for {^pn^ rveZ 8 ^ ( 8 ^ ) 

coincides with B+(B-). Suppose Kc are compact subsets of X 
eo 

such that Ki CKi+1 for t » yt,^;..^ and U UKi = X 
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Let B f f K i ) = { x « B f | <p„x e K i for ntZ. ,rv>0 (*<0)} 

We see that >(8*(K0) < + o 0 , ( K i ) c 8f CKj„) , i » H, V -

and B* = .0 Bf(K0 . Now cp^BT(Ki)c B^CK^for rve Z + 

and so »(<ft*ftf(K|)A B*(Kj))*0 . It gives 

N>(S>** B* ( K» ) A B*<K t))«0 ' B u t 5 , «*v B «* ( K d c B « ~ * K l ) » 3 0 W e 

have ^ lB*CKi) \ B7 (Kt ) )«0 . 3y symmetry 0 (8*CK t) A B7(K t))*0. 

Because of B>, ^ c \J B/(K0 * B 7 ( K i ) the theorem is 

proved. 

2. Let M be a 2-dimensional manifold with a Riemanian 

metric of class C2 • We suppose M to be complete in this 

metric, open and finitely connected. There is a homeomorphism 

taking M onto X V ^ x i j . , . / * x r v 5 t where X is a compact 

2-dimensional manifold and x ; e X , for i »4 ,2 , . , , j i x . An open 

subset U c M , homeomorphic to an open ring, will be called 

an escaping domain, if it is taken onto a deleted neighbourhood 

of "X£ for some I = 4 ,2 , .» .^ by the homeomorphism above and if the 

closure of V in X contains only one of the points yti , i s V * * j ^ « 

Consider closed, rectifiable, Jordan curves in U which 

cannot be contracted to a point in V .By ^ ( V ) we denote the 

infimum of their lengths. 

17 is called a horn if any sequence of curves which 

realises the infimum <^C^) is not contained in a compact subset 

of M . U is called a cup if it is not a horn /6/. For a cup 

on a surface of rotation we see that geodesies that go far 

enough in the cup, escape to infinity. So as we are interested 

in oscillating geodesies we shall deal with surfaces containing 

horns. 

A horn V is called regular if every escaping domain U1 

such that "U,r\V i s unbounded, is also a horn. A horn V is 
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called sharp if $ ( V ) - 0 . it is easy to see that if for 

an escaping domain V on Ms* (R a , <jCv) * 0 , then U is 

a regular horn. 

Theorem 2. If M contains a regular horn and M is not 
homeomorphic to a plane, a cylinder or a projective plane 
without a point, then for every point me M there is continuum 
of oscillating geodesies beginning in m • 

The sketch of the proof. For simplicity we consider the case 
of M homeomorphic to S a without three points. We represent M 

as the half cylinder S 4 * ( R + with two points of S* x {o} taken 
away and appropriate identificationsc We assume that S 4 x { l R \ { o } ) 

is a horn (this assumption is possible because M contains 
a regular horn). Consider the fundamental group 7tA (Mjirvv) 

Let a. be an element of 3X^(^1,**,) represented by a loop 
homotopic to 30-"' . We choose h , another generator of 

Jt^(M ; m) , represented by a loop connecting *v\. and S 4 x { o } 

For a sequence of natural numbers rLA)nX).„ we consider 
C 4 )c X )... elements of TC^ C W , ^ ) : 

C1=an1 
C2=an1b an2 
. 
Ci=an1ban2...bani 
. 
ci = an12z bai 

We choose to be the shortest geodesic with m. as a begin

ning and an end such that the homotopy class of ^ is equal to 

CL , for t-'f/X.,,.. . Consider one of the limitary geodesic 

rays - ^ , It begins in rv\- and has the property to be the 

shortest connection between two points in its homotopy class. 

Roughly speaking it loops nA times around the cylinder S^*flV*, 

then it intersects S1 * {0} , then it loops nx times around 
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S 1 x [R^ and so on. So for different sequences fiA)Yix) • • *• w e 

get different geodesic rays y . 

For an arbitrary compact subset K ^ M a curve connecting 

two points of S1 *{o} , looping n, times around S 4 * ^ and 

the shortest in its homotopy class goes out of K if only YL 

is sufficiently largeo It is so because if such a curve lies in 

K , its length is not less than (n-l)gk ^OR some gk* such 

that <^x^ $ + e ^or some e>o • But if we do not restrict 

ourselves to K , we can easily find a curve, looping va. times, 

the length of which does not exceed rt l<^+0 + C f where C is 

independent of n • Now if we take W > « — — - the correspon-

ding geodesic cannot lie in K . So we get that if the sequence 

n1, n2,... is unlimited, then y is oscillating. The theorem 

is proved. 

The examples of surfaces of 

rotation (Fig. I) show that the 

theorem 2 is not true for the ex

cluded cases of surfaces with a 

trivial or commutative fundamental 

group. Nevertheless it will be our 

aim to show that these are excep

tional, degenerated cases and un

der small perturbation we obtain 

the same picture as for surfaces 

with a free fundamental group. 

3. A horn U is called hyperbolic if Gaussian curvature in 

it is nonpositive. From now on we shall consider only hyperbolic 

horns. Cohn-Vossen /6/ proved that if Gaussian curvature in V 

is non-negative then V is a cup, so our presumption is not so 

Fig. I 
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restrictive as it seems. 
In a hyperbolic horn *U we can introduce convenient 

coordinates: 

Theorem 3. If U is a hyperbolic horn, there is an escaping 
domain VA , V i

 c U , such that in V,, we can introduce coordi
nates (x,s) of class C1 , f > 0 , S mod cL , so that 

(i) the curves S = cowst are the only escaping geodesies 
in IX, with the property to be the shortest connection between 
any two of their points 

(ii) the curve v = 0 , with 5 as a parameter on it is 
of class C x 

(iii) the Riemanian metric in coordinates (r;s) is of the 

form dL t + Y2(r,s)d2s where I is a solution of the equation 
Y" = -fcKs) Y with Y(0,s)=H a n d Y ; K s ) 4 0 

(so Y is a principal solution), -fc(%s) denotes Gaussian 
curvature. 

(iv) for an arbitrary geodesic in \JA , o L ( S ) denotes the 
angle between the vector of velocity of the geodesic and the 
curve $=co«vst ^ then <*(s) is of class CA and 

ols * r 

The proof of this theorem resembles the construction of 

stable manifolds (oricycles) for geodesic flows on surfaces of 

negative curvature. 

Proposition. \JA is a sharp horn if and only if 
5 lefts) rd-r * « » for aimogt all s 
0 

Proof. It is easy to see that 1L, is a sharp horn if and 

only if Y(r,s) when or—> + o o f for almost all s , and so 

the proposition follows from the properties of principal 

solutions, Hartman /7/, chapter XI. 
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The behaviour of geodesies in U1 depends much on =*her 

being a sharp horn or not. 

Theorem A. U1 is a sharp horn if and only if the curves 
are the only escaping geodesies in 

Proof. Suppose and|s4-sJ<V7 and|s4-sJ<V7 is an escaping 
geodesic in U1 Let /rrv< u1rty= const , for instance 4 L >0 m 

Then (s(t)r*= increases and O L ( S ^ ) ) < T I O P : X for YL<rts)dL3 

Consider a real function YL<rts)dL3 
o 

YL<rts)dL3 . f is positive, 
decreasing and convex YL<rts)dL3 . It is easy to see, that 
is a sharp horn if and only if . Let f is= COO ol . Let / r r v < COO ol ; 

Y V ^ 0 , 4 ,= COO ol , denote the coordinates of the points of intersection 
of our escaping geodesic and the curve S = 0 , and cL^ - the 

angles in these points. 
We have 

s4-sJ<V7 
= COO ol and dis 

= COO ol y 
so 

= COO ol= COO ol 

Further 
Let /rrv< Let /rrv< 

Let /rrv< 
v*= o COO ol • gfLet /rrv< rt/=)_-(*  

dr/dt rvi/rrv< rt/=)_-(* 
/rrv< rt/=)_-(* 

r=j!j 
O^ COO olz 

S=0 S=0 S=0 

So we have 
CO 

i=4 
dr/dt rvi/rrv 4 

dr/dt rvi/rrv 

(Ot*%d* (Ot*%d* ^ z 

On the other hand 
c*-«io>0c*-«io>0c*-«io>0^^^ z 

and rn =a/(Ot*%d* 
COO ol w+ / c o and|s4-sJ<V7 

COO ol 

^ A + f(Ot*%d* . w here W + # W ) c * - « i o > 0 

for sufficiently large w . Now we get 
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lin d'rà /f (rk) = a r i=k f(ri+1 /f(ri) > i=k (1+f'(rj)xtgdo) 

and so as the infinite product converges, Ifjl^fMsO and hence "Ui 

is not a sharp horn. We omit the proof of the reverse part of 

the theorem. 

4. Now we restrict our attention to a sharp hyperbolic 

horn. x 

Consider the set R of unit tangent vectors whose carriers 
belong to the curve -r^O . I n this set we introduce coordinates 
(s, cf) ,S (mod ol) along the curve v = 0 and cf (modX^t) -
the angle between the tangent vector and the curve s = oo^st 

Because of the Theorem 3 (ii) R with these coordinates is a 
closed submanifold of YA R of class C 1 . Let 
R+={Cs,<f)| ~f<cp<?; <p*0} 

R+={Cs,<f)| ~f<cp<?; <p*0} 

The geodesic flow in TT,R. defines the Poincare map $ taking, 
in view of Theorem 4, R* onto RT . $ is a diffeomorphism. 
It is easy to prove the following lemma. 

Lemma I. Let (s1,a1)= a(so,ao , then for a fixed sD , if 
f a - * O then cfy-* at and S,, —* 0 0 . 

Now our aim is to investigate the behaviour of d $ for 
($©,<Po) with cpc close to zero. 

By (e,^T) w e denote coordinates in X R defined by 
coordinates (S,cp) in R. . 

The main tool in the construction of symbolic dynamics is 
the following theorem. 
* Added in proof : the case of a hyperbolic horn that is not sharp can be 

treated in an analogous way. 
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Theorem 5* Let 5 0 and % be fixed and let $ (So,?©) = (s^f*). 

so^|< r? , l<fo-TC|< 19 and|s4-sJ<V7 

(i) for every S>0 So there is s1 O > 0 , such that if |<&,|<r£ , 

l s o ^ | < r? , l<fo-TC|< 19 a n d | s 4 - s J < V 7 then from l E ^ l ^ l ^ l COO ol 

follows that I ̂ 7 I < <5" \ ^ \ i 

(ii) if ̂"t^ Y ( T ) 0 " - * 0 When or—> + then for every (J>^ 

and > > ^ ̂"t^ there is r£>0 such that if Wol<<£ and |s0-5 0|<»2 

then from 1 1 § I 1 ^ I follows that \%+ I I • 

The proof of this theorem is obtained by the detailed study 

of the Jacobi equation with the help of the following lemma* 

Lemma 2* Let fcfcfc) be a continuous, nonpositive function for 

t > 0 and let ty0 60 be a principal solution of the equation 

e0 ^ ± * ^"t^ 

then for every £ > 0 there are r > 0 and T > 0 such that if 

4cA C O is a continuous, nonpositive function for 0 ^ " t ^ T and 

I -feW- fc/*>) < r COO ol f o r COO ol 0 ̂ ± * 0 ^ ± * T then 

from yo(o)/ yo(o)/ 
^"t^ yo(o)/yo(o) fizlrt follows that 

yo(o)/e-i 
^"t^ > 0 

where y^W) is a solution of the equation 

so^|< r? , l<fo-TC|< 19 and|s4-sJ<V7 

5* Let us now suppose that there is a geodesic on M that 

escapes to infinity in U1 both in future and in the past, that 

is some (A/3Ï)É & is taken by the geodesic flow into [s O /0)6 fl*. 

The geodesic intersects R and R transversally in TT̂  M • 

Let Y be the Poincare map taking a neighbourhood of (sA)lz) 

in ft" onto a neighbourhood of (3*;0) s-è1* in ft* , We assume 

that the following conditions are satisfied: 

(A) (transversality condition) the image of the curve (sAê7t) , 

I S ^ ' S ^ K E under Y transversally intersects the curve (s0, 0) , 

| S o - ? 0 | < £ . 
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(B) Y K ? G ) - * 0 and Y O , s J ~ > 0 when T ~+ 0 0 . 

By S(n)we denote the space of sequences { 0 . ^ ; ^ ^ ^ ^ } , 

- e o ^ ^ ^ - K o ^ r ^ ̂"t^ oo where a n e 2 , | a J > I V for n , , < r L < i a x 

and C L A ^ - C L A > = 00 # Defining a topology in s(N) as in / 2 / we 

obtain a compact space. The left shift *t takes and|s4v* A*" c^"t^ 

onto where ^"t^ dà+contains the sequences with rx^^.'f 

and ̂"t^ A"" the sequences with . 

The construction of symbolic dynamics is contained in the 

following theorem: 

Theorem 6. If (A) and (B) hold then there are N , i £ > 0 

and homeomorphism ft : $frO ^"t^, where V2= TJ^-{ | 

l s * ~ 3 © K * £ j | ( f > 0 l ^ } , such that the diagram 

is commutative. (More exactly Y . D^"t^takes h &(A*)onto 

and Y * $ * f c » f t # T on A + ) . 

Moreover for ( S 0 ,tp0) s ft ( { a n ; rw,^ »rt ̂  n x } ) if rx x = 0 then 

4 > o - 0 , and if fi^A then for ( s 4 l c f 4 ) = $ ( s 0 / < f 0 ) we have 

a 0 d | ^ l W o i + ^ . 

Analogously for (S4|cp4) s ^ " t ^ o f^)({a^. ^ 4 rv^nj)if then 

The sketch of the proof. By Lemma I § Clfn) and Y ' ^ i T ^ ) 

intersect in infinitely many components, see Pig.2. 
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Fig. 2 
Each component corresponds to geodesies that loop one and the 
same number of times around "U^ and we index the components 
by these numbers "t NA9±(Na+A)J*-* UI - a sign showing the direction 
in which the geodesic loops. Dropping finitely many of the 
components we get a sequence TT^ f i = ± ̂ x^t^i + >0j * - • of 
curvilinear quadrilaterals connecting the opposite sides of 

with horizontal sides C convergent to the curve 
(s^Tc)^Tc , in view of Theorem 5 . 

The pre-images form a sequence curvili
near quadrilaterals connecting the opposite sides of with 
horizontal sides lso~S©l^^ convergent to the curve ( s 0 > 0) , 

l so~S© l ^ ^ * The imaSe of the curve (SAj7t) lso~S©l^^ , under Y is 
by transversality condition connecting the opposite sides of 2/^ 

if f£ is sufficiently small. The same is true of V J = Y ( r O : 

they connect the opposite sides of TJy and their "vertical" 
sides converge to the Y -image of the curve [s^.Ti) 

(Fig.3). 
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Fig. 3 Fig. 4 

So we get the family of "horizontal" strips IX £ that are taken 

by Y°l lso~S©l^^ onto "vertical" strips "Vt J I s -£ s -£ (n-h),. * • in 

such a way that vertical sides of V-i are transformed onto 

vertical sides of Vi and horizontal sides onto horizontal 

(Pig0 4)o It is very important that when we take lesser oL ( $ ̂ Y'i) 

the 

picture is not destroyed, merely some of the strips are dropped 

and the rest of them are narrowed. This is the situation studied 

by Alekseev /1/ (for a simple exposition see Moser /2/) and we 

use the construction of symbolic dynamics described there. 

By Theorem 5, for sufficiently small , we obtain that the 

necessary conditions for oL I Y~o$) on U lL¿ and oL ( $ ^Y'i) 

on y are satisfied and by corresponding theorems in /1/ 

or /2/ we get homeomorphism that takes infinite sequence 

^a^;~°°^ *v^+°°}into such a point oc = kCi^*) ~ °°?)that 

^cetLa|Clt is easily extendable to the whole of $(N) 

and for this homeomorphism the theorem holds. 

This theorem provides a large family of geodesies with 

different geometrical properties. If a sequence { Q.^ ~ 00rtz=)* 
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is bounded on the right the corresponding geodesic is bounded 

in future and when it is unbounded the geodesic is oscillating. 

Finite sequences correspond to escaping geodesies. 

And thus we get continuum of oscillating geodesies. 

6. We end with a discussion of situations when the 

assumptions of Theorem 6 are satisfied. 

If there are two hyperbolic sharp horns on M then 

obviously there is a geodesic escaping in one horn in the past 

and in another in future. If analogs of conditions (A) and (B) 

for this geodesic hold then we can construct symbolic dynamics 

analogous to one described in Theorem 6. And a posteriori we 

find a geodesic escaping in future and in the past in one of the 

horns. Moreover the transversality condition is automatically 

satisfied. If condition (B) is also satisfied Theorem 6 applies. 

Suppose now there is a geodesic on M escaping in a sharp 

hyperbolic horn both in future and in the past but transversality 

condition is not satisfied. Then we can take a neighbourhood 

of a point on the geodesic and change there the metric in such 

a way that the geodesic persists to be a geodesic of the new 

metric and Gaussian curvature on it increases (or decreases). 

It is enough for the transversality condition to hold if the 

change of Gaussian curvature is not too big. The change of metric 

can be made C °° arbitrary small. 

Now if (A) holds but not (B) we can take a arbitrary 

close metric and get both (A) and (B) for a close geodesic. It 

should be pointed out that in view of Proposition condition (B) 

holds automatically if Gaussian curvature satisfies some 

uniformity condition in U>, for instance k(pip ù*)lkkok(r,s)>ko 
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for all (r,s) and S k,(r) or dor = oo . 

In conclusion we see that Theorem 6 applies to small 

perturbations of surfaces of rotation from Fig. I. 

Warsaw University and Moscow State University 
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